Search results for: electrical characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4458

Search results for: electrical characterization

2958 Operational Advantages of Tungsten Inert Gas over Metal Inert Gas Welding Process

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

In this research, studies were done on the material characterization of type 304 austenitic stainless steel weld produced by TIG (Tungsten Inert Gas) and MIG (Metal Inert Gas) welding processes. This research is aimed to establish optimized process parameters that will result in a defect-free weld joint, homogenous distribution of the iron (Fe), chromium (Cr) and nickel (Ni) was observed at the welded joint of all the six samples. The welded sample produced at the current of 170 A by TIG welding process had the highest ultimate tensile strength (UTS) value of 621 MPa at the welds zone, and the welded sample produced by MIG process at the welding current of 150 A had the lowest UTS value of 568 MPa. However, it was established that TIG welding process is more appropriate for the welding of type 304 austenitic stainless steel compared to the MIG welding process.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 197
2957 Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing

Authors: Ridvan Yamanoglu

Abstract:

In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined.

Keywords: titanium, composite, nickel, hot pressing

Procedia PDF Downloads 177
2956 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes

Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje

Abstract:

The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.

Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR

Procedia PDF Downloads 162
2955 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 593
2954 A Galectin from Rock Bream Oplegnathus fasciatus: Molecular Characterization and Immunological Properties

Authors: W. S. Thulasitha, N. Umasuthan, G. I. Godahewa, Jehee Lee

Abstract:

In fish, innate immune defense is the first immune response against microbial pathogens which consists of several antimicrobial components. Galectins are one of the carbohydrate binding lectins that have the ability to identify pathogen by recognition of pathogen associated molecular patterns. Galectins play a vital role in the regulation of innate and adaptive immune responses. Rock bream Oplegnathus fasciatus is one of the most important cultured species in Korea and Japan. Considering the losses due to microbial pathogens, present study was carried out to understand the molecular and functional characteristics of a galectin in normal and pathogenic conditions, which could help to establish an understanding about immunological components of rock bream. Complete cDNA of rock bream galectin like protein B (rbGal like B) was identified from the cDNA library, and the in silico analysis was carried out using bioinformatic tools. Genomic structure was derived from the BAC library by sequencing a specific clone and using Spidey. Full length of rbGal like B (contig14775) cDNA containing 517 nucleotides was identified from the cDNA library which comprised of 435 bp in the open reading frame encoding a deduced protein composed of 145 amino acids. The molecular mass of putative protein was predicted as 16.14 kDa with an isoelectric point of 8.55. A characteristic conserved galactose binding domain was located from 12 to 145 amino acids. Genomic structure of rbGal like B consisted of 4 exons and 3 introns. Moreover, pairwise alignment showed that rock bream rbGal like B shares highest similarity (95.9 %) and identity (91 %) with Takifugu rubripes galectin related protein B like and lowest similarity (55.5 %) and identity (32.4 %) with Homo sapiens. Multiple sequence alignment demonstrated that the galectin related protein B was conserved among vertebrates. A phylogenetic analysis revealed that rbGal like B protein clustered together with other fish homologs in fish clade. It showed closer evolutionary link with Takifugu rubripes. Tissue distribution and expression patterns of rbGal like B upon immune challenges were performed using qRT-PCR assays. Among all tested tissues, level of rbGal like B expression was significantly high in gill tissue followed by kidney, intestine, heart and spleen. Upon immune challenges, it showed an up-regulated pattern of expression with Edwardsiella tarda, rock bream irido virus and poly I:C up to 6 h post injection and up to 24 h with LPS. However, In the presence of Streptococcus iniae rbGal like B showed an up and down pattern of expression with the peak at 6 - 12 h. Results from the present study revealed the phylogenetic position and role of rbGal like B in response to microbial infection in rock bream.

Keywords: galectin like protein B, immune response, Oplegnathus fasciatus, molecular characterization

Procedia PDF Downloads 360
2953 Synthesis, Characterization and Anti-Microbial Study of Urethanized Poly Vinyl Alcohol Metal Complexes

Authors: Maha A. Younus, Dhefaf H. Badri, Maha A. Al Abayaji, Taha M. Salih

Abstract:

Polymer metal complexes of poly vinyl alcohol and Cu (II), Ni (II), Mn (II) and Co (III) were prepared from the reaction of PVA with three different percentages of urea. The compound was characterized by fourier transform infrared spectrometry (FTIR) analysis and differential scanning calorimetric (DSC) Analysis. It has been established that the polymer and its metal complexes showed good activities against nine pathogenic bacteria (Escherichia coli, Klebsiellapneumonae, Staphylococcusaureus, Staphylococcus Albus, Salmonella Typhoid, Pseudomonas Aeruginosa, Shigella Dysentery, Proteus Morgani, Brucella Militensis). The polymer metal complexes show activity higher than that of the free polymer. The increasing activities were in the order (polymer < pol-Mn< pol-Co < pol-Ni ˂ pol-Cu). The ability of these compounds to show antimicrobial properties suggests that they can be further evaluated for medicinal and/or environmental applications.

Keywords: antimicrobial activity, PVA, polymer-metal complex, urea

Procedia PDF Downloads 341
2952 Synthesis and Performance Study of Co3O4 as a Bi-Functional Next Generation Material

Authors: Shrikaant Kulkarni, Akshata Naik Nimbalkar

Abstract:

In this worki a method protocol has been developed for the synthesis of innovative Co3O4 material by using a method of chemical synthesis followed by calcination. The effect of calcination temperature on the morphology, structure and catalytic performance on material in question is investigated by using characterization tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy and electrochemical techniques. The SEM images reveal that the morphology of the Co3O4 material undergoes a change from the rod to a beadlike shape on calcination at temperature of 700 °C. The XRD image shows that although the morphology of synthesized Co3O4 material exhibits a cubic phase but it differs in crystallinity depending upon morphology. Similarly spherical beadlike Co3O4 material has exhibited better activity than its rodlike counterpart which is reflected from electrochemical findings. Further, its performance in terms of bifunctional nature and hlods a lot much of promise as a excellent electrode material in the next generation batteries and fuel cells.

Keywords: bifunctional, next generation material, Co3O4, XRD

Procedia PDF Downloads 384
2951 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries

Authors: Tatheer Zahra

Abstract:

Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.

Keywords: auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics

Procedia PDF Downloads 129
2950 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging

Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland

Abstract:

A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.

Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography

Procedia PDF Downloads 162
2949 Analytical Similarity Assessment of Bevacizumab Biosimilar Candidate MB02 Using Multiple State-of-the-Art Assays

Authors: Marie-Elise Beydon, Daniel Sacristan, Isabel Ruppen

Abstract:

MB02 (Alymsys®) is a candidate biosimilar to bevacizumab, which was developed against the reference product (RP) Avastin® sourced from both the European Union (EU) and United States (US). MB02 has been extensively characterized comparatively to Avastin® at a physicochemical and biological level using sensitive orthogonal state-of-the-art analytical methods. MB02 has been demonstrated similar to the RP with regard to its primary and higher-order structure, post- and co-translational profiles such as glycosylation, charge, and size variants. Specific focus has been put on the characterization of Fab-related activities, such as binding to VEGF A 165, which directly reflect the bevacizumab mechanism of action. Fc-related functionality was also investigated, including binding to FcRn, which is indicative of antibodies' half-life. The data generated during the analytical similarity assessment demonstrate the high analytical similarity of MB02 to its RP.

Keywords: analytical similarity, bevacizumab, biosimilar, MB02

Procedia PDF Downloads 294
2948 Synthesis, Characterization and Catalytic Applications of Divalent Schiff Base Metal Complexes Derived from Amino Coumarins and Substituted Benzaldehydes and Acetophenones

Authors: Srinivas Nerella

Abstract:

A series of new heterodentate N, O-donor ligands derived from condensing 3-amino Coumarins with hydroxy benzaldehydes and acetophenones were used to afford new mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) coordination compounds. All the complexes were characterized by IR, 1H-NMR, 13C-NMR, Mass, ESR, Electronic spectra, Conductance, Magnetic and Thermal studies. The ligands show hexa coordination in Mn(II), Co(II), Ni(II), and Pd(II) complexes resulting octahedral geometries, while the ligands in Zn(II) and Cu(II) complexes show tetra coordination resulting tetrahedral and square planar geometries respectively. These mononuclear complexes were investigated as catalysts in the hydrothiolation of aromatic and aliphatic alkynes with thiols. These metal complexes were acted as versatile catalysts and gave good yields.

Keywords: schiff bases, divalent metal complexes of schiff bases, Catalytic activity, hydrothiolation

Procedia PDF Downloads 423
2947 Characterization of Bacteria by a Nondestructive Sample Preparation Method in a TEM System

Authors: J. Shiue, I. H. Chen, S. W. Y. Chiu, Y. L. Wang

Abstract:

In this work, we present a nondestructive method to characterize bacteria in a TEM system. Unlike the conventional TEM specimen preparation method, which needs to thin the specimen in a destructive way, or spread the samples on a tiny millimeter sized carbon grid, our method is easy to operate without the need of sample pretreatment. With a specially designed transparent chip that allows the electron beam to pass through, and a custom made chip holder to fit into a standard TEM sample holder, the bacteria specimen can be easily prepared on the chip without any pretreatment, and then be observed under TEM. The centimeter-sized chip is covered with Au nanoparticles in the surface as the markers which allow the bacteria to be observed easily on the chip. We demonstrate the success of our method by using E. coli as an example, and show that high-resolution TEM images of E. coli can be obtained with the method presented. Some E. coli morphology characteristics imaged using this method are also presented.

Keywords: bacteria, chip, nanoparticles, TEM

Procedia PDF Downloads 319
2946 Hydrothermal Synthesis of Octahedral Molecular Sieve from Mn Oxide Residues

Authors: Irlana C. do Mar, Thayna A. Ferreira, Dayane S. Rezende, Bruno A. M. Figueira, José M. R. Mercury

Abstract:

This work presents a low-cost Mn starting material to synthesis manganese oxide octahedral molecular sieve with Mg²⁺ in the tunnel (Mg-OMS-1), based on the Mn residues from Carajás Mineral Province (Amazon, Brazil). After hydrothermal and cation exchange procedures, the Mn residues transformed to a single phase, Mg-OMS-1. The raw material and the synthesis processes were analyzed by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Infrared spectroscopy (FTIR). The tunnel structure was synthesized hydrothermally at 180 °C for three days without impurities. According to the XRD analysis, the formation of crystalline Mg-OMS-1 was identified through reflections at 9.8º, 12º and 18º (2θ), as well as a thermal stability around 300 ºC. The SEM analysis indicated that the final product presents good crystallinity with a homogeneous size. In addition, an intense and diagnostic FTIR band was identified at 515 cm⁻¹ related to the MnO₆ octahedral stretching vibrations.

Keywords: Mn residues , Octahedral Molecular Sieve, Synthesis, Characterization

Procedia PDF Downloads 197
2945 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing

Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev

Abstract:

The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.

Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect

Procedia PDF Downloads 134
2944 Zeolite 4A-confined Ni-Co Nanocluster: An Efficient and Durable Electrocatalyst for Alkaline Methanol Oxidation Reaction

Authors: Sarmistha Baruah, Akshai Kumar, Nageswara Rao Peela

Abstract:

The global energy crisis due to the dependence on fossil fuels and its limited reserves as well as environmental pollution are key concerns to the research communities. However, the implementation of alcohol-based fuel cells such as methanol is anticipated as a reliable source of future energy technology due to their high energy density, environment friendliness, ease of storage, transportation, etc. To drive the anodic methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs), an active and long-lasting catalyst is necessary for efficient energy conversion from methanol. Recently, transition metal-zeolite-based materials have been considered versatile catalysts for a variety of industrial and lab-scale processes. Large specific surface area, well-organized micropores, and adjustable acidity/basicity are characteristics of zeolites that make them excellent supports for immobilizing small-sized and highly dispersed metal species. Significant advancement in the production and characterization of well-defined metal clusters encapsulated within zeolite matrix has substantially expanded the library of materials available, and consequently, their catalytic efficacy. In this context, we developed bimetallic Ni-Co catalysts encapsulated within LTA (also known as 4A) zeolite via a method combined with the in-situ encapsulation of metal species using hydrothermal treatment followed by a chemical reduction process. The prepared catalyst was characterized using advanced characterization techniques, such as X-ray diffraction (XRD), field emission transmission electron microscope (FETEM), field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activity of the catalyst for MOR was carried out in an alkaline medium at room temperature using techniques such as cyclic voltammetry (CV), and chronoamperometry (CA). The resulting catalyst exhibited better catalytic activity of 12.1 mA cm-2 at 1.12 V vs Ag/AgCl and retained remarkable stability (~77%) even after 1000 cycles CV test for the electro-oxidation of methanol in alkaline media without any significant microstructural changes. The high surface area, better Ni-Co species integration in the zeolite, and the ample amount of surface hydroxyl groups contribute to highly dispersed active sites and quick analyte diffusion, which provide notable MOR kinetics. Thus, this study will open up new possibilities to develop a noble metal-free zeolite-based electrocatalyst due to its simple synthesis steps, large-scale fabrication, improved stability, and efficient activity for DMFC application.

Keywords: alkaline media, bimetallic, encapsulation, methanol oxidation reaction, LTA zeolite.

Procedia PDF Downloads 69
2943 Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V–f) features of Au/GaN Schottky diodes

Authors: Abdelaziz Rabehi

Abstract:

The current–voltage (I–V) characteristics of Au/GaN Schottky diodes were measured at room temperature. In addition, capacitance–voltage–frequency (C–V–f) characteristics are investigated by considering the interface states (Nss) at frequency range 100 kHz to 1 MHz. From the I–V characteristics of the Schottky diode, ideality factor (n) and barrier height (Φb) values of 1.22 and 0.56 eV, respectively, were obtained from a forward bias I–V plot. In addition, the interface states distribution profile as a function of (Ess − Ev) was extracted from the forward bias I–V measurements by taking into account the bias dependence of the effective barrier height (Φe) for the Schottky diode. The C–V curves gave a barrier height value higher than those obtained from I–V measurements. This discrepancy is due to the different nature of the I–V and C–V measurement techniques.

Keywords: Schottky diodes, frequency dependence, barrier height, interface states

Procedia PDF Downloads 307
2942 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite

Procedia PDF Downloads 450
2941 Synthesis, Characterization, Photocatalytic and Photovoltaic Performance of Ag-Doped ZnO2 Loaded on the Pt-Carbon Spheres

Authors: M. Mujahid, Omar A. Al-Hartomy

Abstract:

Ag-doped ZnO2 loaded on the Pt-carbon spheres have been synthesized and characterized by standard analytical techniques. i.e., UV-Vis spectroscopy, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). In order to find the effect of loading of Ag doping on ZnO2, the concentration of Ag was varied from 0-3.5%. The XRD analysis showed that the obtained particles are anatase phase. The SEM images showed Ag-doped ZnO2 are loaded on the surface of the Pt-carbon spheres. The photocatalytic activity of the synthesized particles was tested by studying the degradation of methyl orange dye and 4-chlorophenol as a function of time on irradiation in aqueous suspension. Ag-doped ZnO2@Pt-carbon sphere particle with platinum concentration of 3.0 % showed the highest photocatalytic activity as compared to the other Ag concentrations for the degradation of methyl orange and 4-chlorophenol.

Keywords: Ag-ZnO2, Pt-carbon spheres, degradation, methyl orange, 4-chlorophenol

Procedia PDF Downloads 373
2940 Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm

Authors: Mahendran Samykano, Ram Mohan, Shyam Aravamudhan

Abstract:

The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.

Keywords: anodic alumina oxide, electrodeposition, nanowires, nickel

Procedia PDF Downloads 283
2939 Characterization of Thermal Images Due to Aging of H.V Glass Insulators Using Thermographic Scanning

Authors: Nasir A. Al-Geelani, Zulkurnain Abdul-Malek, M. Afendi M. Piah

Abstract:

This research paper investigation is carried out in the laboratory on single units of transmission line glass insulator characterized by different thermal images, which aimed to find out the age of the insulators. The tests were carried out on virgin and aged insulators using the thermography scan. Various samples having different periods of aging 20, 15, and 5 years from a 132 kV transmission line which have exhibited a different degree of corrosion. The second group of insulator samples was relatively mild aged insulators, while the third group was lightly aged; finally, the fourth group was the brand new insulators. The results revealed a strong correlation between the aging and the thermal images captured by the infrared camera. This technique can be used to monitor the aging of high voltage insulators as a precaution to avoid disaster.

Keywords: glass insulator, infrared camera, corona diacharge, transmission lines, thermograpy, surface discharge

Procedia PDF Downloads 164
2938 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer

Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod

Abstract:

To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.  

Keywords: inertial confinement fusion, mach-zehnder interferometer, digital holographic microscopy, image reconstruction, holovision

Procedia PDF Downloads 307
2937 Elaboration and Characterization of PP/TiO2 Composites

Authors: F. Z. Benabid, S. Kridi, F. Zouai, D. Benachour

Abstract:

The aim of present work is to characterize the PP/TiO2 blends as composites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the impact strength results which increased about 39% compared to neat PP. The rheological study showed an increase in the fluidity in all developed composite compositions, involved by the good dispersion of TiO2 particles.

Keywords: composites, PP, TiO2, comixing, mechanical treatment

Procedia PDF Downloads 274
2936 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 513
2935 Entropy-Based Multichannel Stationary Measure for Characterization of Non-Stationary Patterns

Authors: J. D. Martínez-Vargas, C. Castro-Hoyos, G. Castellanos-Dominguez

Abstract:

In this work, we propose a novel approach for measuring the stationarity level of a multichannel time-series. This measure is based on a stationarity definition over time-varying spectrum, and it is aimed to quantify the relation between local stationarity (single-channel) and global dynamic behavior (multichannel dynamics). To assess the proposed approach validity, we use a well known EEG-BCI database, that was constructed for separate between motor/imagery tasks. Thus, based on the statement that imagination of movements implies an increase on the EEG dynamics, we use as discriminant features the proposed measure computed over an estimation of the non-stationary components of input time-series. As measure of separability we use a t-student test, and the obtained results evidence that such measure is able to accurately detect the brain areas projected on the scalp where motor tasks are realized.

Keywords: stationary measure, entropy, sub-space projection, multichannel dynamics

Procedia PDF Downloads 419
2934 Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon

Authors: Serife Parlayici, Erol Pehlivan

Abstract:

In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively.

Keywords: plum-stone, activated carbon, copper and lead, isotherms

Procedia PDF Downloads 375
2933 Suitability of Class F Flyash for Construction Industry: An Indian Scenario

Authors: M. N. Akhtar, J. N. Akhtar

Abstract:

The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.

Keywords: fly ash, class F, class C, chemical, physical, SEM, EDS

Procedia PDF Downloads 183
2932 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio

Authors: Danilo López, Edwin Rivas, Fernando Pedraza

Abstract:

Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.

Keywords: ANFIS, cognitive radio, prediction primary user, RNA

Procedia PDF Downloads 425
2931 Bioactive Chemical Markers Based Strategy for Quality Control of Herbal Medicines

Authors: Zhenzhong Yang

Abstract:

Herbal medicines are important supplements to chemical drugs and usually consist of a complex mixture of constituents. The current quality control strategy of herbal medicines is mainly based on chemical markers, which largely failed to owe to the markers, not reflecting the herbal medicines’ multiple mechanisms of action. Herein, a bioactive chemical markers based strategy was proposed and applied to the quality assessment and control of herbal medicines. This strategy mainly includes the comprehensive chemical characterization of herbal medicines, bioactive chemical markers identification, and related quantitative analysis methods development. As a proof-of-concept, this strategy was applied to a Panax notoginseng derived herbal medicine. The bioactive chemical markers based strategy offers a rational approach for quality assessment and control of herbal medicines.

Keywords: bioactive chemical markers, herbal medicines, quality assessment, quality control

Procedia PDF Downloads 182
2930 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track

Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes

Abstract:

A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.

Keywords: white etching layer, arcing, brown etching layer, material characterisation

Procedia PDF Downloads 124
2929 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 142