Search results for: biomass fuel
989 Nonlinear Modeling of the PEMFC Based on NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear modeling, NNARX
Procedia PDF Downloads 381988 Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks
Authors: Kihyon Kwon, Hyun T. Park, Gil Y. Chung, Sang-Hoon Lee
Abstract:
This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes.Keywords: FSI analysis, seismically-isolated nuclear tank system, sloshing-induced overflow
Procedia PDF Downloads 474987 Modelling and Simulation of a Commercial Thermophilic Biogas Plant
Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production
Procedia PDF Downloads 442986 Review of Various Designs and Development in Hydropower Turbines
Authors: Fatemeh Behrouzi, Adi Maimun, Mehdi Nakisa
Abstract:
The growth of population, rising fossil fuel prices which the fossil fuels are limited and decreased day by day, pollution problem due to use of fossil fuels and electrical demand are important role to encourage of using the green energy and renewable technologies. Among different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Nowadays, researchers focus on design and development of different kind of turbines to capture hydro-power electricity generation as clean and reliable energy. This article is review about statues of water current turbines carried out to generate electricity from hydro-kinetic energy especially places that they do not have electricity, but they have access to the current water.Keywords: water current turbine, renewable energy, hydro-power, mechanic
Procedia PDF Downloads 479985 Renewable Energy and Ecosystem Services: A Geographi̇cal Classification in Azerbaijan
Authors: Nijat S. İmamverdiyev
Abstract:
The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. It also highlights the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographical assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Here, also explores potential solutions to mitigate the negative effects of renewable energy infrastructure on ecosystem services, such as the use of ecological compensation measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder involvement in decision-making processes.Keywords: renewable energy, solar energy, climate change, energy production
Procedia PDF Downloads 64984 Age and Population Structure of the Goby Parapocryptes Serperaster in the Mekong Delta, Vietnam, Based on Length-Frequency and Otolith Analyses
Authors: Quang Minh Dinh, Jian Guang Qin, Sabine Dittmann, Dinh Dac Tran
Abstract:
The age and population structure the dermal gopy Parapocryptes serperaster were studied using length distributions, otolith and von Bertalanffy model in the Mekong Delta over a whole year through monthly sampling. The sex ratio of P. serperaster was near 1:1, and von Bertalanffy growth parameters were L∞= 25.2 cm, K = 0.74 yr-1, and t0 = -0.22 yr-1. Fish size at first entry to fishery was 14.6 cm, and fishing mortality (1.57 yr-1) and natural mortality (1.51 yr-1) accounted for 51% and 49% of the total mortality (3.07 yr-1), respectively. Relative yield-per-recruit and biomass-per-recruit analyses revealed the levels of maximum exploitation yield (Emax = 0.83), maximum economic yield (E0.1 = 0.71) and the yield at 50% reduction of exploitation (E0.5 = 0.37). Otoliths from 164 female and 196 male gobies were readable, and the otolith morphometry data were used for age identification. The mean age estimated by reading otolith annual rings and by analysing length frequency distribution was consistent. This study shows that the otolith morphometry is a reliable method for aging this goby and possibly also applicable for other tropical gobies. The fishery analysis indicates that this goby stock has not been overexploited in the Mekong Delta.Keywords: Parapcryptes serperaster, otolith, age, pulation structure, Vietnam
Procedia PDF Downloads 656983 Biosorption of Heavy Metals by Low Cost Adsorbents
Authors: Azam Tabatabaee, Fereshteh Dastgoshadeh, Akram Tabatabaee
Abstract:
This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents.Keywords: adsorbents, heavy metals, commercial adsorbents, wastewater, by-products
Procedia PDF Downloads 411982 The Use of Nano-Crystalline Starch in Probiotic Yogurt and Its Effects on the Physicochemical and Biological Properties
Authors: Ali Seirafi
Abstract:
The purpose of this study was to investigate the effect and application of starch nanocrystals on physicochemical and microbial properties in the industrial production of probiotic yogurt. In this study, probiotic yoghurt was manufactured by industrial method with the optimization and control of the technological factors affecting the probabilistic biomass, using probiotic bacteria Lactobacillus acidophilus and Bifidobacterium bifidum with commonly used yogurt primers. Afterwards, the effects of different levels of fat (1.3%, 2.5 and 4%), as well as the effects of various perbiotic compounds include starch nanocrystals (0.5%, 1 and 1.5%), galactolegalosaccharide (0.5% 1 and 1.5%) and fructooligosaccharide (0.5%, 1 and 1.5%) were evaluated. In addition, the effect of packaging (polyethylene and glass) was studied, while the effect of pH changes and final acidity were studied at each stage. In this research, all experiments were performed in 3 replications and the results were analyzed in a completely randomized design with SAS version 9.1 software. The results of this study showed that the addition of starch nanocrystal compounds as well as the use of glass packaging had the most positive effects on the survival of Lactobacillus acidophilus bacteria and the addition of nano-crystals and the increase in the cooling rate of the product, had the most positive effects on the survival of bacteria Bifidobacterium bifidum.Keywords: Bifidobacterium bifidum, Lactobacillus acidophilus, prebiotics, probiotic yogurt
Procedia PDF Downloads 160981 Simple and Concise Maximum Power Control Circuit for PV Power Generation
Authors: Keiju Matsui, Mikio Yasubayashi, Masayoshi Umeno
Abstract:
Consumption of energy is increasing every year, and yet does not the decline at all. The main energy source is fossil fuels such as petroleum and natural gas. Since it is the finite resources, they will be exhausted someday. Moreover, to make the fossil fuel an energy source causes an environment problem. In such way, one solution of the problems is the solar battery that is remarkable as one of the alternative energies. Under such circumstances, in this paper, we propose a novel maximum power control circuit for photovoltaic power generation system with simple and fast-response operation. In addition to an application to the solar battery, since this control system is possible to operate with simple circuit and fast-response, the polar value control like the maximum or the minimum value tracking for general application could be easily realized.Keywords: maximum power control, inter-connection, photovoltaic power generation, PI controller, multiplier, exclusive-or, power system
Procedia PDF Downloads 441980 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels
Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila
Abstract:
Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.Keywords: alternative fuels, cement clinker, microstructure, SEM
Procedia PDF Downloads 365979 The Application of Simulation Techniques to Enhance Nitroglycerin Production Efficiency: A Case Study of the Military Explosive Factory in Nakhon Sawan Province
Authors: Jeerasak Wisatphan, Nara Samattapapong
Abstract:
This study's goals were to enhance nitroglycerin manufacturing efficiency through simulation, recover nitroglycerin from the storage facility, and enhance nitroglycerine recovery and purge systems. It was found that the problem was nitroglycerin reflux. Therefore, the researcher created three alternatives to solve the problem. The system of Nitroglycerine Recovery and Purge was then simulated using the FlexSim program, and each alternative was tested. The results demonstrate that the alternative system-led Nitroglycerine Recovery and Nitroglycerine Purge System collaborate to produce Nitroglycerine, which is more efficient than other alternatives and can reduce production time. It can also improve the recovery of nitroglycerin. It also serves as a guideline for developing a real-world system and modeling it for training staff without wasting raw chemical materials or fuel energy.Keywords: efficiency increase, nitroglycerine recovery and purge system, production improvement, simulation
Procedia PDF Downloads 129978 Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane
Authors: N. Hasbullah, K. A. Sekak
Abstract:
The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell.Keywords: polymer electrolyte membrane (PEM), sulfonated poly (ether ether ketone) (SPEEK), degree sulfonation, Electrospinning, Nanofibers
Procedia PDF Downloads 311977 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia
Authors: Zouhaier Nasr, Mohamed Nouri
Abstract:
The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.Keywords: forest, soil, carbon, climate change, Tunisia
Procedia PDF Downloads 131976 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather
Procedia PDF Downloads 165975 Effect of Nitrogen Source on Production of CMCase by Bacillus megaterium 1295S Isolated from Sewage Treatment Plants
Authors: Adel A. S. Al-Gheethi, M. O. Abdul-Monem
Abstract:
Cellulase-producing bacteria were isolated from wastewater and sludge, and identified as Bacillus megaterium 1295S, Sporosarcina pasteurii 586S, Bacillus subtilis 117S, Burkholderia cepacia 120S and Staphylococcus xylosus 222W. Among bacteria, B. megaterium 1295S was the best cellulase producer under the catabolic repression and was therefore selected to study the factors affecting cellulase production. The optimum conditions for cellulase production were observed in CMC-Yeast Extract (CYE) agar medium (pH 6.5) inoculated with 0.4 mL of bacterial culture and incubated at 45˚C for 72 h. Twenty amino acids were introduced into the production medium as nitrogen source to investigate the production of cellulase in presence of amino acids in comparison to peptone (as an organic source) and sodium nitrate (as an inorganic source). The results found that the maximum production of cellulase was recorded at 50 ppm when L-hydroxy proline, L-arginine, glycine, L-histidine, L-leucine, DL-isoleucine, DL-β-phenylalanine were used as sole nitrogen sources and at 100 ppm when DL-threonine, L-ornithine 12.29, L-proline were used as sole nitrogen sources. The highest biomass yield was found when glycine 5 ppm and DL-serine 100 ppm used as a nitrogen source.Keywords: CMCase, Bacillus megaterium 1295S, factors, amino acids
Procedia PDF Downloads 448974 Wet Extraction of Lutein and Lipids from Microalga by Quantitative Determination of Polarity
Authors: Mengyue Gong, Xinyi Li, Amarjeet Bassi
Abstract:
Harvesting by-products while recovering biodiesel is considered a potentially valuable approach to increase the market feasibility of microalgae industry. Lutein is a possible by-product from microalgae that promotes eye health. The extraction efficiency and the expensive drying process of wet algae represent the major challenges for the utilization of microalgae biomass as a feedstock for lipids, proteins, and carotenoids. A wet extraction method was developed to extract lipids and lutein from microalga Chlorella vulgaris. To evaluate different solvent (mixtures) for the extraction, a quantitative analysis was established based on the polarity of solvents using Nile Red as the polarity (ETN) indicator. By the choice of binary solvent system then adding proper amount of water to achieve phase separation, lipids and lutein can be extracted simultaneously. Some other parameters for lipids and lutein production were also studied including saponification time, temperature, choice of alkali, and pre-treatment methods. The extraction efficiency with wet algae was compared with dried algae and shown better pigment recovery. The results indicated that the product pattern in each extracted phase was polarity dependent. Lutein and β-carotene were the main carotenoids extracted with ethanol while lipids come out with hexane.Keywords: biodiesel, Chlorella vulgaris, extraction, lutein
Procedia PDF Downloads 341973 Benzoxaboralone: A Boronic Acid with High Oxidative Stability and Utility in Biological Contexts
Authors: Brian J. Graham, Ronald T. Raines
Abstract:
The presence of a nearly vacant p orbital on boron endows boronic acids with unique abilities as a catalyst and ligand. An organocatalytic process has been developed for the conversion of biomass-derived sugars to 5-hydroxymethylfurfural, which is a platform chemical. Specifically, 2-carboxyphenylboronic acid (2-CPBA) has been shown to be an optimal catalyst for this process, promoting the desired transformation in the absence of metals. The attributes of 2-CPBA as a catalyst led to additional investigations of its structure and reactivity. 2-CPBA was found to exist as a cyclized benzoxaborolone adduct rather than a free carboxylic acid. This cyclization has profound consequences for the oxidative stability of the boronic acid. Stereoelectronic effects within the oxaborolone ring destabilize the oxidation transition state by reducing electron donation from the cyclic oxygen to the developing p orbital on boron. That leads to a 10,000-fold increase in oxidative stability while maintaining the normal reactivity of boronic acids toward diols (e.g., carbohydrates) and nucleophiles in proteins while also presenting numerous hydrogen-bond accepting and donating groups. Thus, benzoxaborolones are useful in catalysis, chemical biology, medicinal chemistry, and allied fields.Keywords: bioisosteres, boronic acid, catalysis, oxidative stability, pharmacophore, stereoelectronic effects
Procedia PDF Downloads 189972 Robustness Analysis of the Carbon and Nitrogen Co-Metabolism Model of Mucor mucedo
Authors: Nahid Banihashemi
Abstract:
An emerging important area of the life sciences is systems biology, which involves understanding the integrated behavior of large numbers of components interacting via non-linear reaction terms. A centrally important problem in this area is an understanding of the co-metabolism of protein and carbohydrate, as it has been clearly demonstrated that the ratio of these metabolites in diet is a major determinant of obesity and related chronic disease. In this regard, we have considered a systems biology model for the co-metabolism of carbon and nitrogen in colonies of the fungus Mucor mucedo. Oscillations are an important diagnostic of underlying dynamical processes of this model. The maintenance of specific patterns of oscillation and its relation to the robustness of this system are the important issues which have been targeted in this paper. In this regard, parametric sensitivity approach as a theoretical approach has been considered for the analysis of the robustness of this model. As a result, the parameters of the model which produce the largest sensitivities have been identified. Furthermore, the largest changes that can be made in each parameter of the model without losing the oscillations in biomass production have been computed. The results are obtained from the implementation of parametric sensitivity analysis in Matlab.Keywords: system biology, parametric sensitivity analysis, robustness, carbon and nitrogen co-metabolism, Mucor mucedo
Procedia PDF Downloads 328971 Policies for Circular Bioeconomy in Portugal: Barriers and Constraints
Authors: Ana Fonseca, Ana Gouveia, Edgar Ramalho, Rita Henriques, Filipa Figueiredo, João Nunes
Abstract:
Due to persistent climate pressures, there is a need to find a resilient economic system that is regenerative in nature. Bioeconomy offers the possibility of replacing non-renewable and non-biodegradable materials derived from fossil fuels with ones that are renewable and biodegradable, while a Circular Economy aims at sustainable and resource-efficient operations. The term "Circular Bioeconomy", which can be summarized as all activities that transform biomass for its use in various product streams, expresses the interaction between these two ideas. Portugal has a very favourable context to promote a Circular Bioeconomy due to its variety of climates and ecosystems, availability of biologically based resources, location, and geomorphology. Recently, there have been political and legislative efforts to develop the Portuguese Circular Bioeconomy. The Action Plan for a Sustainable Bioeconomy, approved in 2021, is composed of five axes of intervention, ranging from sustainable production and the use of regionally based biological resources to the development of a circular and sustainable bioindustry through research and innovation. However, as some statistics show, Portugal is still far from achieving circularity. According to Eurostat, Portugal has circularity rates of 2.8%, which is the second lowest among the member states of the European Union. Some challenges contribute to this scenario, including sectorial heterogeneity and fragmentation, prevalence of small producers, lack of attractiveness for younger generations, and absence of implementation of collaborative solutions amongst producers and along value chains.Regarding the Portuguese industrial sector, there is a tendency towards complex bureaucratic processes, which leads to economic and financial obstacles and an unclear national strategy. Together with the limited number of incentives the country has to offer to those that pretend to abandon the linear economic model, many entrepreneurs are hesitant to invest the capital needed to make their companies more circular. Absence of disaggregated, georeferenced, and reliable information regarding the actual availability of biological resources is also a major issue. Low literacy on bioeconomy among many of the sectoral agents and in society in general directly impacts the decisions of production and final consumption. The WinBio project seeks to outline a strategic approach for the management of weaknesses/opportunities in the technology transfer process, given the reality of the territory, through road mapping and national and international benchmarking. The developed work included the identification and analysis of agents in the interior region of Portugal, natural endogenous resources, products, and processes associated with potential development. Specific flow of biological wastes, possible value chains, and the potential for replacing critical raw materials with bio-based products was accessed, taking into consideration other countries with a matured bioeconomy. The study found food industry, agriculture, forestry, and fisheries generate huge amounts of waste streams, which in turn provide an opportunity for the establishment of local bio-industries powered by this biomass. The project identified biological resources with potential for replication and applicability in the Portuguese context. The richness of natural resources and potentials known in the interior region of Portugal is a major key to developing the Circular Economy and sustainability of the country.Keywords: circular bioeconomy, interior region of portugal, regional development., public policy
Procedia PDF Downloads 91970 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon
Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim
Abstract:
The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon
Procedia PDF Downloads 229969 Design of Black-Seed Pulp biomass-Derived New Bio-Sorbent by Combining Methods of Mineral Acids and High-Temperature for Arsenic Removal
Authors: Mozhgan Mohammadi, Arezoo Ghadi
Abstract:
Arsenic is known as a potential threat to the environment. Therefore, the aim of this research is to assess the arsenic removal efficiency from an aqueous solution, with a new biosorbent composed of a black seed pulp (BSP). To treat BSP, the combination of two methods (i.e. treating with mineral acids and use at high temperature) was used and designed bio-sorbent called BSP-activated/carbonized. The BSP-activated and BSP-carbonized were also prepared using HCL and 400°C temperature, respectively, to compare the results of each three methods. Followed by, adsorption parameters such as pH, initial ion concentration, biosorbent dosage, contact time, and temperature were assessed. It was found that the combination method has provided higher adsorption capacity so that up to ~99% arsenic removal was observed with BSP-activated/carbonized at pH of 7.0 and 40°C. The adsorption capacity for BSP-carbonized and BSP-activated were 87.92% (pH: 7, 60°C) and 78.50% (pH: 6, 90°C), respectively. Moreover, adsorption kinetics data indicated the best fit with the pseudo-second-order model. The maximum biosorption capacity, by the Langmuir isotherm model, was also recorded for BSP-activated/carbonized (53.47 mg/g). It is notable that arsenic adsorption on studied bio sorbents takes place as spontaneous and through chemisorption along with the endothermic nature of the biosorption process and reduction of random collision in the solid-liquid phase.Keywords: black seed pulp, bio-sorbents, treatment of sorbents, adsorption isotherms
Procedia PDF Downloads 95968 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier
Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)
Procedia PDF Downloads 280967 India’s Energy Transition, Pathways for Green Economy
Authors: B. Sudhakara Reddy
Abstract:
In modern economy, energy is fundamental to virtually every product and service in use. It has been developed on the dependence of abundant and easy-to-transform polluting fossil fuels. On one hand, increase in population and income levels combined with increased per capita energy consumption requires energy production to keep pace with economic growth, and on the other, the impact of fossil fuel use on environmental degradation is enormous. The conflicting policy objectives of protecting the environment while increasing economic growth and employment has resulted in this paradox. Hence, it is important to decouple economic growth from environmental degeneration. Hence, the search for green energy involving affordable, low-carbon, and renewable energies has become global priority. This paper explores a transition to a sustainable energy system using the socio-economic-technical scenario method. This approach takes into account the multifaceted nature of transitions which not only require the development and use of new technologies, but also of changes in user behaviour, policy and regulation. The scenarios that are developed are: baseline business as usual (BAU) as well as green energy (GE). The baseline scenario assumes that the current trends (energy use, efficiency levels, etc.) will continue in future. India’s population is projected to grow by 23% during 2010 –2030, reaching 1.47 billion. The real GDP, as per the model, is projected to grow by 6.5% per year on average between 2010 and 2030 reaching US$5.1 trillion or $3,586 per capita (base year 2010). Due to increase in population and GDP, the primary energy demand will double in two decades reaching 1,397 MTOE in 2030 with the share of fossil fuels remaining around 80%. The increase in energy use corresponds to an increase in energy intensity (TOE/US $ of GDP) from 0.019 to 0.036. The carbon emissions are projected to increase by 2.5 times from 2010 reaching 3,440 million tonnes with per capita emissions of 2.2 tons/annum. However, the carbon intensity (tons per US$ of GDP) decreases from 0.96 to 0.67. As per GE scenario, energy use will reach 1079 MTOE by 2030, a saving of about 30% over BAU. The penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. The study develops new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. Our scenarios are, to a great extent, based on the existing technologies. The challenges to this path lie in socio-economic-political domains. However, to attain a green economy the appropriate policy package should be in place which will be critical in determining the kind of investments that will be needed and the incidence of costs and benefits. These results provide a basis for policy discussions on investments, policies and incentives to be put in place by national and local governments.Keywords: energy, renewables, green technology, scenario
Procedia PDF Downloads 248966 Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains
Authors: Rupa Rani, Vipin Kumar
Abstract:
Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil.Keywords: organochlorine pesticides, endosulfan, degradation, plant-bacteria partnerships
Procedia PDF Downloads 151965 Heavy Liquid Metal Coolant – the Key Safety Element in the Complex of New Nuclear Energy Technologies
Authors: A. Orlov, V. Rachkov
Abstract:
The future of Nuclear Energetics is seen in fast reactors with inherent safety working in the closed nuclear fuel cycle. The concept of inherent safety, which lies in deterministic elimination of the most severe accidents due to inherent properties of the reactor rather than through building up engineered barriers, is a cornerstone of success in ensuring safety and economic efficiency of future Nuclear Energetics. The focus of this paper is one of the key elements of inherent safety - the lead coolant of a nuclear reactor. Advantages of lead coolant for reactor application, influence on safety are reviewed. BREST-OD-300 fast reactor, currently being developed in Russia withing the “Proryv” Project utilizes lead coolant and a special set of measures and devices, called technology of lead coolant that ensures safe operation in a wide range of temperatures. Here these technological elements are reviewed, and current progress in their development is discussed.Keywords: BREST-OD-300. , fast reactor, inherent safety, lead coolant
Procedia PDF Downloads 153964 Salt Stress Affects Growth, Nutrition and Anatomy of Stipa lagascae: A Psammophile Grass in Southern Tunisia
Authors: Raoudha Abdellaoui, Faycal Boughalleb, Zohra Chebil
Abstract:
In arid and semi-arid regions, salinity represents a major constraint towards plants’ growth. Stipa lagascae, a psammophile grass, is a promised species since its economic and ecological interests. Our study aims to explore the effects of different salt concentrations (0; 100; 200; 300 and 400 mM) on physiological, biochemical and anatomic parameters. Salt stress was applied on S. lagascae plants cultivated under controlled conditions. Results show that salinity reduces biomass production especially when plants are subjected to severe stress (>200 mM NaCl). Concerning the nutritional level, the fact of enriching soil with NaCl, leads to an accumulation of Na+ against other nutritional elements (K+, Ca2+). To maintain tissues hydration, S. lagascae established osmotic adaptation by accumulation of proline and soluble sugars. Salt stress affected significantly root and foliar anatomy. Indeed, plants increased their vessels’ diameter and mesophyll surface. S. lagascae plants reduced also the surface of the belluforme cells to defeat dehydration. According to our results, S. lagascae seems to be a tolerant plant at acceptable concentrations that do not exceed 6g/l.Keywords: anatomical adaptations, mineral nutrition, plant growth, salt stress, stipa lagascae
Procedia PDF Downloads 265963 The Effects of Key Factors in Traffic-Oriented Road Alignment Adjustment for Low Emissions Profile: A Case Study in Norway
Authors: Gaylord K. Booto, Marinelli Giuseppe, Helge Brattebø, Rolf A. Bohne
Abstract:
Emissions reduction has emerged among the principal targets in the process of planning and designing road alignments today. Intelligent road design methods that can result in optimized alignment constitute concrete and innovative responses towards better alternatives and more sustainable road infrastructures. As the largest amount of emissions of road infrastructures occur in the operation stage, it becomes very important to consider traffic weight and distribution in alignment design process. This study analyzes the effects of four traffic factors (i.e. operating speed, vehicle category, technology and fuel type) on adjusting the vertical alignment of a given road, using optimization techniques. Further, factors’ effects are assessed qualitatively and quantitatively, and the emission profiles of resulting alignment alternatives are compared.Keywords: alignment adjustment, emissions reduction, optimization, traffic-oriented
Procedia PDF Downloads 370962 Ramification of Oil Prices on Renewable Energy Deployment
Authors: Osamah A. Alsayegh
Abstract:
This paper contributes to the literature by updating the analysis of the impact of the recent oil prices fall on the renewable energy (RE) industry and deployment. The research analysis uses the Renewable Energy Industrial Index (RENIXX), which tracks the world’s 30 largest publicly traded companies and oil prices daily data from January 2003 to March 2016. RENIXX represents RE industries developing solar, wind, geothermal, bioenergy, hydropower and fuel cells technologies. This paper tests the hypothesis that claims high oil prices encourage the substitution of alternate energy sources for conventional energy sources. Furthermore, it discusses RENIXX performance behavior with respect to the governments’ policies factor that investors should take into account. Moreover, the paper proposes a theoretical model that relates RE industry progress with oil prices and policies through the fuzzy logic system.Keywords: Fuzzy logic, investment, policy, stock exchange index
Procedia PDF Downloads 238961 Refining Waste Spent Hydroprocessing Catalyst and Their Metal Recovery
Authors: Meena Marafi, Mohan S. Rana
Abstract:
Catalysts play an important role in producing valuable fuel products in petroleum refining; but, due to feedstock’s impurities catalyst gets deactivated with carbon and metal deposition. The disposal of spent catalyst falls under the category of hazardous industrial waste that requires strict agreement with environmental regulations. The spent hydroprocessing catalyst contains Mo, V and Ni at high concentrations that have been found to be economically significant for recovery. Metal recovery process includes deoiling, decoking, grinding, dissolving and treatment with complexing leaching agent such as ethylene diamine tetra acetic acid (EDTA). The process conditions have been optimized as a function of time, temperature and EDTA concentration in presence of ultrasonic agitation. The results indicated that optimum condition established through this approach could recover 97%, 94% and 95% of the extracted Mo, V and Ni, respectively, while 95% EDTA was recovered after acid treatment.Keywords: atmospheric residue desulfurization (ARDS), deactivation, hydrotreating, spent catalyst
Procedia PDF Downloads 323960 Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices
Authors: M. Habibi
Abstract:
The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy.Keywords: plasmoids, p11B fuel, ion viscous heating, quantum magnetic field, plasma focus device
Procedia PDF Downloads 463