Search results for: linked data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26367

Search results for: linked data

24897 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 405
24896 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 440
24895 Contentious Issues Concerning the Methodology of Using the Lexical Approach in Teaching ESP

Authors: Elena Krutskikh, Elena Khvatova

Abstract:

In tertiary settings expanding students’ vocabulary and teaching discursive competence is seen as one of the chief goals of a professional development course. However, such a focus often is detrimental to students’ cognitive competences, such as analysis, synthesis, and creative processing of information, and deprives students of motivation for self-improvement and self-development of language skills. The presentation is going to argue that in an ESP course special attention should be paid to reading/listening which can promote understanding and using the language as a tool for solving significant real world problems, including professional ones. It is claimed that in the learning process it is necessary to maintain a balance between the content and the linguistic aspect of the educational process as language acquisition is inextricably linked with mental activity and the need to express oneself is a primary stimulus for using a language. A study conducted among undergraduates indicates that they place a premium on quality materials that motivate them and stimulate their further linguistic and professional development. Thus, more demands are placed on study materials that should contain new information for students and serve not only as a source of new vocabulary but also prepare them for real tasks related to professional activities.

Keywords: critical reading, english for professional development, english for specific purposes, high order thinking skills, lexical approach, vocabulary acquisition

Procedia PDF Downloads 170
24894 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data

Authors: Salihah Alghamdi, Surajit Ray

Abstract:

Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.

Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray

Procedia PDF Downloads 144
24893 Utilising an Online Data Collection Platform for the Development of a Community Engagement Database: A Case Study on Building Inter-Institutional Partnerships at UWC

Authors: P. Daniels, T. Adonis, P. September-Brown, R. Comalie

Abstract:

The community engagement unit at the University of the Western Cape was tasked with establishing a community engagement database. The database would store information of all community engagement projects related to the university. The wealth of knowledge obtained from the various disciplines would be used to facilitate interdisciplinary collaboration within the university, as well as facilitating community university partnership opportunities. The purpose of this qualitative study was to explore electronic data collection through the development of a database. Two types of electronic data collection platforms were used, namely online questionnaire and email. The semi structured questionnaire was used to collect data related to community engagement projects from different faculties and departments at the university. There are many benefits for using an electronic data collection platform, such as reduction of costs and time, ease in reaching large numbers of potential respondents, and the possibility of providing anonymity to participants. Despite all the advantages of using the electronic platform, there were as many challenges, as depicted in our findings. The findings suggest that certain barriers existed by using an electronic platform for data collection, even though it was in an academic environment, where knowledge and resources were in abundance. One of the challenges experienced in this process was the lack of dissemination of information via email to staff within faculties. The actual online software used for the questionnaire had its own limitations, such as only being able to access the questionnaire from the same electronic device. In a few cases, academics only completed the questionnaire after a telephonic prompt or face to face meeting about "Is higher education in South Africa ready to embrace electronic platform in data collection?"

Keywords: community engagement, database, data collection, electronic platform, electronic tools, knowledge sharing, university

Procedia PDF Downloads 266
24892 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer

Authors: Philippa Saunders, Claire Fletcher

Abstract:

INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.

Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft

Procedia PDF Downloads 148
24891 Women Entrepreneurial Resiliency Amidst COVID-19

Authors: Divya Juneja, Sukhjeet Kaur Matharu

Abstract:

Purpose: The paper is aimed at identifying the challenging factors experienced by the women entrepreneurs in India in operating their enterprises amidst the challenges posed by the COVID-19 pandemic. Methodology: The sample for the study comprised 396 women entrepreneurs from different regions of India. A purposive sampling technique was adopted for data collection. Data was collected through a self-administered questionnaire. Analysis was performed using the SPSS package for quantitative data analysis. Findings: The results of the study state that entrepreneurial characteristics, resourcefulness, networking, adaptability, and continuity have a positive influence on the resiliency of women entrepreneurs when faced with a crisis situation. Practical Implications: The findings of the study have some important implications for women entrepreneurs, organizations, government, and other institutions extending support to entrepreneurs.

Keywords: women entrepreneurs, analysis, data analysis, positive influence, resiliency

Procedia PDF Downloads 117
24890 The Use of Voice in Online Public Access Catalog as Faster Searching Device

Authors: Maisyatus Suadaa Irfana, Nove Eka Variant Anna, Dyah Puspitasari Sri Rahayu

Abstract:

Technological developments provide convenience to all the people. Nowadays, the communication of human with the computer is done via text. With the development of technology, human and computer communications have been conducted with a voice like communication between human beings. It provides an easy facility for many people, especially those who have special needs. Voice search technology is applied in the search of book collections in the OPAC (Online Public Access Catalog), so library visitors will find it faster and easier to find books that they need. Integration with Google is needed to convert the voice into text. To optimize the time and the results of searching, Server will download all the book data that is available in the server database. Then, the data will be converted into JSON format. In addition, the incorporation of some algorithms is conducted including Decomposition (parse) in the form of array of JSON format, the index making, analyzer to the result. It aims to make the process of searching much faster than the usual searching in OPAC because the data are directly taken to the database for every search warrant. Data Update Menu is provided with the purpose to enable users perform their own data updates and get the latest data information.

Keywords: OPAC, voice, searching, faster

Procedia PDF Downloads 348
24889 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 159
24888 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization

Procedia PDF Downloads 280
24887 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 621
24886 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 134
24885 Assessment of Non-Timber Forest Products from Community Managed Forest of Thenzawl Forest Division, Mizoram, Northeast India

Authors: K. Lalhmingsangi, U. K. Sahoo

Abstract:

Non-Timber Forest Products represent one of the key sources of income and subsistence to the fringe communities living in rural areas. A study was conducted for the assessment of NTFP within the community forest of five villages under Thenzawl forest division. Participatory Rural Appraisal (PRA), questionnaire, field exercise, discussion and interview with the first hand NTFP exploiter and sellers was adopted for the field study. Fuel wood, medicinal plants, fodder, wild vegetables, fruits, broom grass, thatch grass, bamboo pole and cane species are the main NTFP harvested from the community forest. Among all the NTFPs, the highest percentage of household involvement was found in fuel wood, i.e. 53% of household and least in medicinal plants 5%. They harvest for their own consumption as well as for selling to the market to meet their needs. Edible food and fruits are sold to the market and it was estimated that 300 (Rs/hh/yr) was earned by each household through the selling of this NTFP from the community forest alone. No marketing channels are linked with fuelwood, medicinal plants and fodder since they harvest only for their own consumption.

Keywords: community forest, subsistence, non-timber forest products, Thenzawl Forest Division

Procedia PDF Downloads 156
24884 Qualitative Data Analysis for Health Care Services

Authors: Taner Ersoz, Filiz Ersoz

Abstract:

This study was designed enable application of multivariate technique in the interpretation of categorical data for measuring health care services satisfaction in Turkey. The data was collected from a total of 17726 respondents. The establishment of the sample group and collection of the data were carried out by a joint team from The Ministry of Health and Turkish Statistical Institute (Turk Stat) of Turkey. The multiple correspondence analysis (MCA) was used on the data of 2882 respondents who answered the questionnaire in full. The multiple correspondence analysis indicated that, in the evaluation of health services females, public employees, younger and more highly educated individuals were more concerned and complainant than males, private sector employees, older and less educated individuals. Overall 53 % of the respondents were pleased with the improvements in health care services in the past three years. This study demonstrates the public consciousness in health services and health care satisfaction in Turkey. It was found that most the respondents were pleased with the improvements in health care services over the past three years. Awareness of health service quality increases with education levels. Older individuals and males would appear to have lower expectancies in health services.

Keywords: multiple correspondence analysis, multivariate categorical data, health care services, health satisfaction survey

Procedia PDF Downloads 245
24883 Slipping Through the Net: Women’s Experiences of Maternity Services and Social Support in the UK During the COVID-19 Pandemic

Authors: Freya Harding, Anne Gatuguta, Chi Eziefula

Abstract:

Introduction Research shows the quality of experiences of pregnancy, birth, and postpartum impacts the health and well-being of the mother and baby. This is recognised by the WHO in their recommendations ‘Intrapartum care for a positive childbirth experience’. The COVID-19 pandemic saw the transformation of the NHS Maternity services to prevent the transmission of COVID-19. Physical and social isolation may have affected women’s experiences of pregnancy, birth and postpartum; especially those of healthcare. Examples of such changes made to the NHS include both the reduction in volume of face-to-face consultations and restrictions to visitor time in hospitals. One notable detriment due to these changes was the absence of a partner during certain stages of birth. The aim of this study was to explore women’s experiences of pregnancy, birth, and postnatal period during the COVID-19 pandemic in the UK. Methods We collected qualitative data from women who had given birth during the COVID-19 pandemic. In-depth, semi-structured interviews were conducted with twelve participants recruited from mother and baby groups in Southeast England. Data were audio-recorded, transcribed verbatim, and analysed thematically using both inductive and deductive approaches. Ethics permission was granted from Brighton and Sussex Medical School (ER/BSMS9A83/1). Results Interviews were conducted with 12 women who gave birth between May 2020 and February 2021. Ages of the participants ranged between 28 and 42 years, most of which were white British, with one being Asian British. All participants were heterosexual and either married or co-habiting with their partner. Five participants worked in the NHS, and all participants had professional occupations. Women felt inadequately supported both socially and medically. An appropriate sense of control over their own birthing experience was lacking. Safety mechanisms, such as in-person visits from the midwife, had no suitable alternatives in place. Serious health issues were able to “slip through the net.” Mental health conditions in some of those interviewed worsened or developed. Similarly, reduced support from partners during birth and during the immediate postpartum period at the hospital, coupled with reduced ward staffing, resulted in some traumatic experiences; particularly for women who had undergone caesarean section. However, some unexpected positive effects were reported; one example being that partners were able to spend more time with their baby due to furlough schemes and working from home. Similarly, emergency care was not felt to have been compromised. Overall, six themes emerged: (1) Self-reported traumatic experiences, (2) Challenges of caring for a baby with reduced medical and social support, (3) Unexpected benefits to the parenting experience, (4) The effects of a sudden change in medical management (5) Poor communication from healthcare professionals (6) Social change; with subthemes of support accessing medical care, the workplace, family and friends, and antenatal & baby groups. Conclusions The results indicate that the healthcare system was unable to adequately deliver maternity care to facilitate positive pregnancy, birth, and postnatal experiences during the heights of the pandemic. The poor quality of such experiences has been linked an increased risk of long-term health complications in both the mother and child.

Keywords: pregnancy, birth, postpartum, postnatal, COVID-19, maternity, social support, qualitative, pandemic

Procedia PDF Downloads 142
24882 Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala

Authors: Jina Lee

Abstract:

Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.

Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management

Procedia PDF Downloads 170
24881 Substitution of Formaldehyde in Phenolic Resins with Innovative and Bio-Based Vanillin Derived Compounds

Authors: Sylvain Caillol, Ghislain David

Abstract:

Phenolic resins are industrially used in a wide range of applications from commodity and construction materials to high-technology aerospace industry. They are mainly produced from the reaction between phenolic compounds and formaldehyde. Nevertheless, formaldehyde is a highly volatile and hazardous compound, classified as a Carcinogenic, Mutagenic and Reprotoxic chemical (CMR). Vanillin is a bio-based and non-toxic aromatic aldehyde compound obtained from the abundant lignin resources. Also, its aromaticity is very interesting for the synthesis of phenolic resins with high thermal stability. However, because of the relatively low reactivity of its aldehyde function toward phenolic compounds, it has never been used to synthesize phenolic resins. We developed innovative functionalization reactions and designed new bio-based aromatic aldehyde compounds from vanillin. Those innovative compounds present improved reactivity toward phenolic compounds compared to vanillin. Moreover, they have target structures to synthesize highly cross-linked phenolic resins with high aromatic densities. We have obtained phenolic resins from substituted vanillin, thus without the use of any aldehyde compound classified as CMR. The analytical tests of the cured resins confirmed that those bio-based resins exhibit high levels of performance with high thermal stability and high rigidity properties

Keywords: phenolic resins, formaldehyde-free, vanillin, bio-based, non-toxic

Procedia PDF Downloads 273
24880 Raising Test of English for International Communication (TOEIC) Scores through Purpose-Driven Vocabulary Acquisition

Authors: Edward Sarich, Jack Ryan

Abstract:

In contrast to learning new vocabulary incidentally in one’s first language, foreign language vocabulary is often acquired purposefully, because a lack of natural exposure requires it to be studied in an artificial environment. It follows then that foreign language vocabulary may be more efficiently acquired if it is purpose-driven, or linked to a clear and desirable outcome. The research described in this paper relates to the early stages of what is seen as a long-term effort to measure the effectiveness of a methodology for purpose-driven foreign language vocabulary instruction, specifically by analyzing whether directed studying from high-frequency vocabulary lists leads to an improvement in Test of English for International Communication (TOEIC) scores. The research was carried out in two sections of a first-year university English composition class at a small university in Japan. The results seem to indicate that purposeful study from relevant high-frequency vocabulary lists can contribute to raising TOEIC scores and that the test preparation methodology used in this study was thought by students to be beneficial in helping them to prepare to take this high-stakes test.

Keywords: corpus vocabulary, language asssessment, second language vocabulary acquisition, TOEIC test preparation

Procedia PDF Downloads 152
24879 Rethinking Urban Voids: An Investigation beneath the Kathipara Flyover, Chennai into a Transit Hub by Adaptive Utilization of Space

Authors: V. Jayanthi

Abstract:

Urbanization and pace of urbanization have increased tremendously in last few decades. More towns are now getting converted into cities. Urbanization trend is seen all over the world but is becoming most dominant in Asia. Today, the scale of urbanization in India is so huge that Indian cities are among the fastest-growing in the world, including Bangalore, Hyderabad, Pune, Chennai, Delhi, and Mumbai. Urbanization remains a single predominant factor that is continuously linked to the destruction of urban green spaces. With reference to Chennai as a case study, which is suffering from rapid deterioration of its green spaces, this paper sought to fill this gap by exploring key factors aside urbanization that is responsible for the destruction of green spaces. The paper relied on a research approach and triangulated data collection techniques such as interviews, focus group discussion, personal observation and retrieval of archival data. It was observed that apart from urbanization, problem of ownership of green space lands, low priority to green spaces, poor maintenance, enforcement of development controls, wastage of underpass spaces, and uncooperative attitudes of the general public, play a critical role in the destruction of urban green spaces. Therefore the paper narrows down to a point, that for a city to have a proper sustainable urban green space, broader city development plans are essential. Though rapid urbanization is an indicator of positive development, it is also accompanied by a host of challenges. Chennai lost a lot of greenery, as the city urbanized rapidly that led to a steep fall in vegetation cover. Environmental deterioration will be the big price we pay if Chennai continues to grow at the expense of greenery. Soaring skyscrapers, multistoried complexes, gated communities, and villas, frame the iconic skyline of today’s Chennai city which reveals that we overlook the importance of our green cover, which is important to balance our urban and lung spaces. Chennai, with a clumped landscape at the center of the city, is predicted to convert 36% of its total area into urban areas by 2026. One major issue is that a city designed and planned in isolation creates underused spaces all around the cities which are of negligence. These urban voids are dead, underused, unused spaces in the cities that are formed due to inefficient decision making, poor land management, and poor coordination. Urban voids have huge potential of creating a stronger urban fabric, exploited as public gathering spaces, pocket parks or plazas or just enhance public realm, rather than dumping of debris and encroachments. Flyovers need to justify their existence themselves by being more than just traffic and transport solutions. The vast, unused space below the Kathipara flyover is a case in point. This flyover connects three major routes: Tambaram, Koyambedu, and Adyar. This research will focus on the concept of urban voids, how these voids under the flyovers, can be used for place making process, how this space beneath flyovers which are neglected, can be a part of the urban realm through urban design and landscaping.

Keywords: landscape design, flyovers, public spaces, reclaiming lost spaces, urban voids

Procedia PDF Downloads 288
24878 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 458
24877 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 105
24876 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 24
24875 Inf-γ and Il-2 Asses the Therapeutic Response in Anti-tuberculosis Patients at Jamot Hospital Yaounde, Cameroon

Authors: Alexandra Emmanuelle Membangbi, Jacky Njiki Bikoï, Esther Del-florence Moni Ndedi, Marie Joseph Nkodo Mindimi, Donatien Serge Mbaga, Elsa Nguiffo Makue, André Chris Mikangue Mbongue, Martha Mesembe, George Ikomey Mondinde, Eric Walter Perfura-yone, Sara Honorine Riwom Essama

Abstract:

Background: Tuberculosis (TB) is one of the top lethal infectious diseases worldwide. In recent years, interferon-γ (INF-γ) release assays (IGRAs) have been established as routine tests for diagnosing TB infection. However, produced INF-γ assessment failed to distinguish active TB (ATB) from latent TB infection (LTBI), especially in TB epidemic areas. In addition to IFN-γ, interleukin-2 (IL-2), another cytokine secreted by activated T cells, is also involved in immune response against Mycobacterium tuberculosis. The aim of the study was to assess the capacity of IFN-γ and IL2 to evaluate the therapeutic response of patients on anti-tuberculosis treatment. Material and Methods: We conducted a cross-sectional study in the Pneumonology Departments of the Jamot Hospital in Yaoundé between May and August 2021. After signed the informed consent, the sociodemographic data, as well as 5 mL of blood, were collected in the crook of the elbow of each participant. Sixty-one subjects were selected (n= 61) and divided into 4 groups as followed: group 1: resistant tuberculosis (n=13), group 2: active tuberculosis (n=19), group 3 cured tuberculosis (n=16), and group 4: presumed healthy persons (n=13). The cytokines of interest were determined using an indirect Enzyme-linked Immuno-Sorbent Assay (ELISA) according to the manufacturer's recommendations. P-values < 0.05 were interpreted as statistically significant. All statistical calculations were performed using SPSS version 22.0 Results: The results showed that men were more 14/61 infected (31,8%) with a high presence in active and resistant TB groups. The mean age was 41.3±13.1 years with a 95% CI = [38.2-44.7], the age group with the highest infection rate was ranged between 31 and 40 years. The IL-2 and INF-γ means were respectively 327.6±160.6 pg/mL and 26.6±13.0 pg/mL in active tuberculosis patients, 251.1±30.9 pg/mL and 21.4±9.2 pg/mL in patients with resistant tuberculosis, while it was 149.3±93.3 pg/mL and 17.9±9.4 pg/mL in cured patients, 15.1±8.4 pg/mL and 5.3±2.6 pg/mL in participants presumed healthy (p <0.0001). Significant differences in IFN-γ and IL-2 rates were observed between the different groups. Conclusion: Monitoring the serum levels of INF-γ and IL-2 would be useful to evaluate the therapeutic response of anti-tuberculosis patients, particularly in the both cytokines association case, that could improve the accuracy of routine examinations.

Keywords: antibiotic therapy, interferon gamma, interleukin 2, tuberculosis

Procedia PDF Downloads 121
24874 Dependence of Androgen Status in Men with Primary Hypothyroidism on Duration and Condition of Compensation

Authors: Krytskyy T.

Abstract:

Introduction: The role of androgen deficiency in men as a factor in the pathogenesis of many somatic diseases is unmistakable. The interaction of thyroid and sex hormones with hypothyroidism in men is still the subject of discussions. The purpose of the study is to assess the androgen status of men with primary hypothyroidism, depending on its duration and the state of compensation. Materials and methods: 45 men with primary hypothyroidism aged 35 to 60 years, as well as 25 healthy men, who formed a control group, were under supervision. A selection of men for examination was conducted in the process of outpatient and in-patient treatment at the endocrinology department of the University Hospital in Ternopil. The functional state of the pituitary-gonadal system was evaluated in order to characterize the androgen status of patients. The concentration of follicle stimulating hormone, luteinizing hormone, prolactin, thyroid-stimulating hormone was determined in blood with the help of enzyme-linked method. Also, the content of hormones: total testosterone, linking sex hormones globulin were determined. Results: Reduced total testosterone (TT) content was found in 42.2% of patients with hypothyroidism. Herewith in 17.8% of patients, blood TT levels were lower than 8.0 nmol / L, and in 11 (24.4%) men, the rate was in the range of 8.0 to 12.0 nmol / L. Based on the results of the determination of the content of free testosterone (FT), the frequency of laboratory hypogonadism in men with hypothyroidism was higher than the results of the determination of TT. The degree of compensation of hypothyroidism probably did not affect the average levels of gonadotropic and sex hormones. Conclusions: Reduced total testosterone content was found in 42.2% of patients with primary hypothyroidism. Herewith, in 17.8% of patients blood TT levels were lower than 8.0 nmol / L, which is a sign of absolute deficiency of testosterone, and in 24.4% of men the rate ranged from 8.0 to 12.0 nmol / l , indicating partial androgen deficiency. Linking sex hormones globulin levels were believed to be lower in 46.7% of patients with hypothyroidism compared to control group. The average levels of E2 in the examined patients did not significantly differ from the mean of control group. FSH, LH, and prolactin levels in men with hypothyroidism were within the normal age limits and probably did not differ from those of control group. The degree of compensation of hypothyroidism probably did not affect the average levels of gonadotropic and sex hormones. The mean LH content in the blood was significantly increased in men with a duration of hypothyroidism up to 5 years and did not differ from that of the control group and in men with a duration of hypothyroidism over 5 years. In men with hypothyroidism, a probable reduction in T / LH coefficient is found. The obtained data may indicate a combined lesion of the central and peripheral parts of the pituitary-gonadal system in men with hypothyroidism.

Keywords: androgenic status, hypothyroidism, testosterone, linking sex hormones globulin

Procedia PDF Downloads 198
24873 HydroParks: Directives for Physical Environment Interventions Battling Childhood Overweight in Berlin, Germany

Authors: Alvaro Valera Sosa

Abstract:

Background: In recent years, childhood overweight and obesity have become an increasing and challenging phenomenon in Berlin and Germany in general. The highest shares of childhood overweight in Berlin are district localities within the inner city ring with lowest socio-economic levels and the highest number of migration background populations. Most factors explaining overweight and obesity are linked to individual dispositions and nutrition balances. Among various strategies, to target drinking behaviors of children and adolescents has been proven to be effective. On the one hand, encouraging the intake of water – which does not contain energy and thus may support a healthy weight status – on the other hand, reducing the consumption of sugar-containing beverages – which are linked to weight gain and obesity. Anyhow, these preventive approaches have mostly developed into individual or educational interventions widely neglecting environmental modifications. Therefore, little is known on how urban physical environment patterns and features can act as influence factors for childhood overweight. Aiming the development of a physical environment intervention tackling children overweight, this study evaluated urban situations surrounding public playgrounds in Berlin where the issue is evident. It verified the presence and state of physical environmental conditions that can be conducive for children to engage physical activity and water intake. Methods: The study included public playgrounds for children from 0-12 y/o within district localities with the highest prevalence of childhood overweight, highest population density, and highest mixed uses. A systematic observation was realized to describe physical environment patterns and features that may affect children health behavior leading to overweight. Neighborhood walkability for all age groups was assessed using the Walkability for Health framework (TU-Berlin). Playground physical environment conditions were evaluated using Active Living Research assessment sheets. Finally, the food environment in the playground’s pedestrian catchment areas was reviewed focusing on: proximity to suppliers offering sugar-containing beverages, and physical access for 5 y/o children and up to drinking water following the Drinking Fountains and Public Health guidelines of the Pacific Institute. Findings: Out of 114 locations, only 7 had a child population over 3.000. Three with the lowest socio-economic index and highest percentage of migration background were selected. All three urban situations presented similar walkability: large trafficked avenues without buffer bordering at least one side of the playground, and important block to block disconnections for active travel. All three playgrounds rated equipment conditions from good to very good. None had water fountains at the reach of a 5 y/o. and all presented convenience stores and/or fast food outlets selling sugar-containing beverages nearby the perimeter. Conclusion: The three playground situations selected are representative of Berlin locations where most factors that influence children overweight are found. The results delivered urban and architectural design directives for an environmental intervention, used to study children health-related behavior. A post-intervention evaluation could prove associations between designed spaces and children overweight rate reduction creating a precedent in public health interventions and providing novel strategies for the health sector.

Keywords: children overweight, evaluation research, public playgrounds, urban design, urban health

Procedia PDF Downloads 159
24872 Impact of Foreign Trade on Economic Growth: A Panel Data Analysis for OECD Countries

Authors: Burcu Guvenek, Duygu Baysal Kurt

Abstract:

The impact of foreign trade on economic growth has been discussed since the Classical Economists. Today, foreign trade has become more important for the country's economy with the increasing globalization. When it comes to foreign trade, policies which may vary from country to country and from time to time as protectionism or free trade are implemented. In general, the positive effect of foreign trade on economic growth is alleged. However, as studies supporting this general acceptance take place in the economics literature, there are also studies in the opposite direction. In this paper, the impact of foreign trade on economic growth will be investigated with the help of panel data analysis. For this research, 24 OECD countries’ GDP and foreign trade data, including the period of 1990 and 2010, will be used.

Keywords: foreign trade, economic growth, OECD countries, panel data analysis

Procedia PDF Downloads 390
24871 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems

Authors: Emanuel Koseos

Abstract:

Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.

Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools

Procedia PDF Downloads 175
24870 Living outside the fence: Opportunities for Neighbouring Communities to Supply Products and Services to the Sabi Sand Game Reserve, South Africa

Authors: Andrew Rylance, Anna Spenceley

Abstract:

An evaluation was undertaken to understand opportunities for stimulating local enterprise development within the tourism supply chain, linked to a private game reserve in South Africa, the Sabi Sand Game Reserve, which neighbors the Kruger National Park. The study focused on understanding the market demand for local products and services from commercial lodges, and the current local supply from enterprises and entrepreneurs in local communities. This article quantifies the value of current procurement spend by lodges on local products and services and estimates their potential future expenditure. The study matches these responses with the availability of products and services in the neighboring communities. It also provides insights into relationships between private lodges, game reserves and local communities in South Africa. It concurs with previous research on tourism supply chains in rural South Africa, and also makes recommendations for the development of local businesses with higher technical capacity development.

Keywords: tourism, communities, business development, South Africa, Sabi Sand Game Reserve, market study, supply study

Procedia PDF Downloads 532
24869 Data about Loggerhead Sea Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) in Vlora Bay, Albania

Authors: Enerit Sacdanaku, Idriz Haxhiu

Abstract:

This study was conducted in the area of Vlora Bay, Albania. Data about Sea Turtles Caretta caretta and Chelonia mydas, belonging to two periods of time (1984–1991; 2008–2014) are given. All data gathered were analyzed using recent methodologies. For all turtles captured (as by catch), the Curve Carapace Length (CCL) and Curved Carapace Width (CCW) were measured. These data were statistically analyzed, where the mean was 67.11 cm for CCL and 57.57 cm for CCW of all individuals studied (n=13). All untagged individuals of marine turtles were tagged using metallic tags (Stockbrand’s titanium tag) with an Albanian address. Sex was determined and resulted that 45.4% of individuals were females, 27.3% males and 27.3% juveniles. All turtles were studied for the presence of the epibionts. The area of Vlora Bay is used from marine turtles (Caretta caretta) as a migratory corridor to pass from the Mediterranean to the northern part of the Adriatic Sea.

Keywords: Caretta caretta, Chelonia mydas, CCL, CCW, tagging, Vlora Bay

Procedia PDF Downloads 181
24868 Barriers to Participation in Sport for Children without Disability: A Systematic Review

Authors: S. Somerset, D. J. Hoare

Abstract:

Participation in sport is linked to better mental and physical health in children and adults. Studies have shown children who participate in sports benefit from improved social skills, self-confidence, communication skills and a better quality of life. Children who participate in sports from a young age are also more likely to continue to have active lifestyles during adulthood. This is an important consideration with a nation where physical activity levels are declining and the incidences of obesity are rising. Getting children active and keeping them active can provide long term health benefits to the individual but also a potential reduction in health costs in the future. This systematic review aims to identify the barriers to participation in sport for children aged up to 18 years and encompasses both qualitative and quantitative studies. The bibliographic databases, EMBASE, Medline, CINAHL and SportDiscus were searched. Additional hand searches were carried out on review articles found in the searches to identify any studies that may have been missed. Studies involving children up to 18 years without additional needs focusing on barriers to participation in sport were included. Randomised control trials, policy guidelines, studies with sport as an intervention, studies focusing on the female athlete triad, tobacco abuse, alcohol abuse, drug abuse, pre exercise testing, and cardiovascular disease were excluded. Abstract review, full paper review and quality appraisal were conducted by two researchers. A consensus meeting took place to resolve any differences at the abstract, full text and data extraction / quality appraisal stages. The CASP qualitative studies appraisal tool and the CASP cohort studies tool (excluding question 3 and 4 which refer to interventions) were used for quality appraisal in this review. The review identified several salient barriers to participation in sport for children. These barriers ranged from the uniform worn during school physical education lessons to the weather during participation in sport. The most commonly identified barriers in the review include parental support, time allocation, location of the activity and the cost of the activity. Therefore, it would be beneficial for a greater provision to be made within the school environment for children to participate sport. This can reduce the cost and time commitment required from parents to encourage participation. This would help to increase activity levels of children, which ultimately can only be a good thing.

Keywords: barrier, children, participation, sport

Procedia PDF Downloads 366