Search results for: interstitial oxygen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1538

Search results for: interstitial oxygen

68 Sublethal Effects of Industrial Effluents on Fish Fingerlings (Clarias gariepinus) from Ologe Lagoon Environs, Lagos, Nigeria

Authors: Akintade O. Adeboyejo, Edwin O. Clarke, Oluwatoyin Aderinola

Abstract:

The present study is on the sub-lethal toxicity of industrial effluents (IE) from the environment of Ologe Lagoon, Lagos, Nigeria on the African catfish fingerlings Clarias gariepinus. The fish were cultured in varying concentrations of industrial effluents: 0% (control), 5%, 15%, 25%, and 35%. Trials were carried out in triplicates for twelve (12) weeks. The culture system was a static renewable bioassay and was carried out in the fisheries laboratory of the Lagos State University, Ojo-Lagos. Weekly physico-chemical parameters: Temperature (0C), pH, Conductivity (ppm) and Dissolved Oxygen (DO in mg/l) were measured in each treatment tank. Length (cm) and weight (g) data were obtained weekly and used to calculate various growth parameters: mean weight gain (MWG), percentage weight gain (PWG), daily weight gain (DWG), specific growth rate (SGR) and survival. Haematological (Packed Cell Volume (PCV), Red blood cells (RBC), White Blood Cell (WBC), Neutrophil and Lymphocytes etc) and histological alterations were measured after 12 weeks. The physico-chemical parameters showed that the pH ranged from 7.82±0.25–8.07±0.02. DO range from 1.92±0.66-4.43±1.24 mg/l. The conductivity values increased with increase in concentration of I.E. While the temperature remained stable with mean value range between 26.08±2.14–26.38±2.28. The DO showed significant differences at P<0.05. There was progressive increase in length and weight of fish during the culture period. The fish placed in the control had highest increase in both weight and length while fish in 35% had the least. MWG ranged from 16.59–35.96, DWG is from 0.3–0.48, SGR varied from 1.0–1.86 and survival was 100%. Haematological results showed that C. gariepinus had PCV ranging from 13.0±1.7-27.7±0.6, RBC ranged from 4.7±0.6–9.1±0.1, and Neutrophil ranged from 26.7±4.6–61.0±1.0 amongst others. The highest values of these parameters were obtained in the control and lowest at 35%. While the reverse effects were observed for WBC and lymphocytes. This study has shown that effluents may affect the health status of the test organism and impair vital processes if exposure continues for a long period of time. The histological examination revealed several lesions as expressed by the gills and livers. The histopathology of the gills in the control tanks had normal tissues with no visible lesion, but at higher concentrations, there were: lifting of epithelium, swollen lamellae and gill arch infiltration, necrosis and gill arch destruction. While in the liver: control (0%) show normal liver cells, at higher toxic level, there were: vacoulation, destruction of the hepatic parenchyma, tissue becoming eosinophilic (i.e. tending towards Carcinogenicity) and severe disruption of the hepatic cord architecture. The study has shown that industrial effluents from the study area may affect fish health status and impair vital processes if exposure continues for a long period of time even at lower concentrations (Sublethal).

Keywords: sublethal toxicity, industrial effluents, clarias gariepinus, ologe lagoon

Procedia PDF Downloads 610
67 Is Brain Death Reversal Possible in Near Future: Intrathecal Sodium Nitroprusside (SNP) Superfusion in Brain Death Patients=The 10,000 Fold Effect

Authors: Vinod Kumar Tewari, Mazhar Husain, Hari Kishan Das Gupta

Abstract:

Background: Primary or secondary brain death is also accompanied with vasospasm of the perforators other than tissue disruption & further exaggerates the anoxic damage, in the form of neuropraxia. In normal conditions the excitatory impulse propagates as anterograde neurotransmission (ANT) and at the level of synapse, glutamate activates NMDA receptors on postsynaptic membrane. Nitric oxide (NO) is produced by Nitric oxide Synthetase (NOS) in postsynaptic dendride or cell body and travels backwards across a chemical synapse to bind to the axon terminal of a presynaptic neuron for regulation of ANT this process is called as the retrograde neurotransmission (RNT). Thus the primary function of NO is RNT and the purpose of RNT is regulation of chemical neurotransmission at synapse. For this reason, RNT allows neural circuits to create feedback loops. The haem is the ligand binding site of NO receptor (sGC) at presynaptic membrane. The affinity of haem exhibits > 10,000-fold excess for NO than Oxygen (THE 10,000 FOLD EFFECT). In pathological conditions ANT, normal synaptic activity including RNT is absent. NO donors like sodium nitroprusside (SNP) releases NO by activating NOS at the level of postsynaptic area. NO now travels backwards across a chemical synapse to bind to the haem of NO receptor at axon terminal of a presynaptic neuron as in normal condition. NO now acts as impulse generator (at presynaptic membrane) thus bypasses the normal ANT. Also the arteriolar perforators are having Nitric Oxide Synthetase (NOS) at the adventitial side (outer border) on which sodium nitroprusside (SNP) acts; causing release of Nitric Oxide (NO) which vasodilates the perforators causing gush of blood in brain’s tissue and reversal of brain death. Objective: In brain death cases we only think for various transplantations but this study being a pilot study reverses some criteria of brain death by vasodilating the arteriolar perforators. To study the effect of intrathecal sodium nitroprusside (IT SNP) in cases of brain death in which: 1. Retrograde transmission = assessed by the hyperacute timings of reversal 2. The arteriolar perforator vasodilatation caused by NO and the maintenance of reversal of brain death reversal. Methods: 35 year old male, who became brain death after head injury and has not shown any signs of improvement after every maneuver for 6 hours, a single superfusion done by SNP via transoptic canal route for quadrigeminal cistern and cisternal puncture for IV ventricular with SNP done. Results: He showed spontaneous respiration (7 bouts) with TCD studies showing start of pulsations of various branches of common carotid arteries. Conclusions: In future we can give this SNP via transoptic canal route and in IV ventricle before declaring the body to be utilized for transplantations or dead or in broader way we can say that in near future it is possible to revert back from brain death or we have to modify our criterion.

Keywords: brain death, intrathecal sodium nitroprusside, TCD studies, perforators, vasodilatations, retrograde transmission, 10, 000 fold effect

Procedia PDF Downloads 402
66 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators

Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín

Abstract:

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.

Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator

Procedia PDF Downloads 208
65 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads

Authors: Raja Umer Sajjad, Chang Hee Lee

Abstract:

Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.

Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters

Procedia PDF Downloads 240
64 Quasi-Federal Structure of India: Fault-Lines Exposed in COVID-19 Pandemic

Authors: Shatakshi Garg

Abstract:

As the world continues to grapple with the COVID-19 pandemic, India, one of the most populous democratic federal developing nation, continues to report the highest active cases and deaths, as well as struggle to let its health infrastructure not succumb to the exponentially growing requirements of hospital beds, ventilators, oxygen to save thousands of lives daily at risk. In this context, the paper outlines the handling of the COVID-19 pandemic since it first hit India in January 2020 – the policy decisions taken by the Union and the State governments from the larger perspective of its federal structure. The Constitution of India adopted in 1950 enshrined the federal relations between the Union and the State governments by way of the constitutional division of revenue-raising and expenditure responsibilities. By way of the 72nd and 73rd Amendments in the Constitution, powers and functions were devolved further to the third tier, namely the local governments, with the intention of further strengthening the federal structure of the country. However, with time, several constitutional amendments have shifted the scales in favour of the union government. The paper briefly traces some of these major amendments as well as some policy decisions which made the federal relations asymmetrical. As a result, data on key fiscal parameters helps establish how the union government gained upper hand at the expense of weak state governments, reducing the local governments to mere constitutional bodies without adequate funds and fiscal autonomy to carry out the assigned functions. This quasi-federal structure of India with the union government amassing the majority of power in terms of ‘funds, functions and functionaries’ exposed the perils of weakening sub-national governments post COVID-19 pandemic. With a complex quasi-federal structure and a heterogeneous population of over 1.3 billion, the announcement of a sudden nationwide lockdown by the union government was followed by a plight of migrants struggling to reach homes safely in the absence of adequate arrangements for travel and safety-net made by the union government. With limited autonomy enjoyed by the states, they were mostly dictated by the union government on most aspects of handling the pandemic, including protocols for lockdown, re-opening post lockdown, and vaccination drive. The paper suggests that certain policy decisions like demonetization, the introduction of GST, etc., taken by the incumbent government since 2014 when they first came to power, have further weakened the states and local governments, which have amounted to catastrophic losses, both economic and human. The role of the executive, legislature and judiciary are explored to establish how all these three arms of the government have worked simultaneously to further weaken and expose the fault-lines of the federal structure of India, which has lent the nation incapacitated to handle this pandemic. The paper then suggests the urgency of re-looking at the federal structure of the country and undertaking measures that strengthen the sub-national governments and restore the federal spirit as was enshrined in the constitution to avoid mammoth human and economic losses from a pandemic of this sort.

Keywords: COVID-19 pandemic, India, federal structure, economic losses

Procedia PDF Downloads 179
63 Neonatology Clinical Routine in Cats and Dogs: Cases, Main Conditions and Mortality

Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, João C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

The neonatal care of cats and dogs represents a challenge to veterinarians due to the small size of the newborns and their physiological particularities. In addition, many Veterinary Medicine colleges around the world do not include neonatology in the curriculum, which makes it less likely for the veterinarian to have basic knowledge regarding neonatal care and worsens the clinical care these patients receive. Therefore, lack of assistance and negligence have become frequent in the field, which contributes towards the high mortality rates. This study aims at describing cases and the main conditions pertaining to the neonatology clinical routine in cats and dogs, highlighting the importance of specialized care in this field of Veterinary Medicine. The study included 808 neonates admitted to the São Paulo State University (UNESP) Veterinary Hospital, Botucatu, São Paulo, Brazil, between January 2018 and November 2019. Of these, 87.3% (705/808) were dogs and 12.7% (103/808) were cats. Among the neonates admitted, 57.3% (463/808) came from emergency c-sections due to dystocia, 8.7% (71/808) cane from vaginal deliveries with obstetric maneuvers due to dystocia, and 34% (274/808) were admitted for clinical care due to neonatal conditions. Among the neonates that came from emergency c-sections and vaginal deliveries, 47.3% (253/534) was born in respiratory distress due to severe hypoxia or persistent apnea and required resuscitation procedure, such as the Jen Chung acupuncture point (VG26), oxygen therapy with mask, pulmonary expansion with resuscitator, heart massages and administration of emergency medication, such as epinephrine. On the other hand, in the neonatal clinical care, the main conditions and alterations observed in the newborns were omphalophlebitis, toxic milk syndrome, neonatal conjunctivitis, swimmer puppy syndrome, neonatal hemorrhagic syndrome, pneumonia, trauma, low weight at birth, prematurity, congenital malformations (cleft palate, cleft lip, hydrocephaly, anasarca, vascular anomalies in the heart, anal atresia, gastroschisis, omphalocele, among others), neonatal sepsis and other local and systemic bacterial infections, viral infections (feline respiratory complex, parvovirus, canine distemper, canine infectious traqueobronchitis), parasitical infections (Toxocara spp., Ancylostoma spp., Strongyloides spp., Cystoisospora spp., Babesia spp. and Giardia spp.) and fungal infections (dermatophytosis by Microsporum canis). The most common clinical presentation observed was the neonatal triad (hypothermia, hypoglycemia and dehydration), affecting 74.6% (603/808) of the patients. The mortality rate among the neonates was 10.5% (85/808). Being knowledgeable about neonatology is essential for veterinarians to provide adequate care for these patients in the clinical routine. Adding neonatology to college curriculums, improving the dissemination of information on the subject, and providing annual training in neonatology for veterinarians and employees are important to improve immediate care and reduce the mortality rates.

Keywords: neonatal care, puppies, neonatal, conditions

Procedia PDF Downloads 228
62 Inflammatory and Cardio Hypertrophic Remodeling Biomarkers in Patients with Fabry Disease

Authors: Margarita Ivanova, Julia Dao, Andrew Friedman, Neil Kasaci, Rekha Gopal, Ozlem Goker-Alpan

Abstract:

In Fabry disease (FD), α-galactosidase A (α-Gal A) deficiency leads to the accumulation of globotriaosylceramide (Lyso-Gb3 and Gb3), triggering a pathologic cascade that causes the severity of organs damage. The heart is one of the several organs with high sensitivity to the α-Gal A deficiency. A subgroup of patients with significant residual of α-Gal A activity with primary cardiac involvement is occasionally referred to as “cardiac variant.” The cardiovascular complications are most frequently encountered, contributing substantially to morbidity, and are the leading cause of premature death in male and female patients with FD. The deposition of Lyso-Gb-3 and Gb-3 within the myocardium affects cardiac function with resultant progressive cardiovascular pathology. Gb-3 and Lyso-Gb-3 accumulation at the cellular level trigger a cascade of events leading to end-stage fibrosis. In the cardiac tissue, Lyso-Gb-3 deposition is associated with the increased release of inflammatory factors and transforming growth factors. Infiltration of lymphocytes and macrophages into endomyocardial tissue indicates that inflammation plays a significant role in cardiac damage. Moreover, accumulated data suggest that chronic inflammation leads to multisystemic FD pathology even under enzyme replacement therapy (ERT). NF-κB activation plays a subsequent role in the inflammatory response to cardiac dysfunction and advanced heart failure in the general population. TNFalpha/NF-κB signaling protects the myocardial evoking by ischemic preconditioning; however, this protective effect depends on the concentration of TNF-α. Thus, we hypothesize that TNF-α is a critical factor in determining the grade of cardio-pathology. Cardiac hypertrophy corresponds to the expansion of the coronary vasculature to maintain a sufficient supply of nutrients and oxygen. Coronary activation of angiogenesis and fibrosis plays a vital role in cardiac vascularization, hypertrophy, and tissue remodeling. We suggest that the interaction between the inflammatory pathways and cardiac vascularization is a bi-directional process controlled by secreted cytokines and growth factors. The co-coordination of these two processes has never been explored in FD. In a cohort of 40 patients with FD, biomarkers associated with inflammation and cardio hypertrophic remodeling were studied. FD patients were categorized into three groups based on LVmass/DSA, LVEF, and ECG abnormalities: FD with no cardio complication, FD with moderate cardio complication, and severe cardio complication. Serum levels of NF-kB, TNFalpha, Il-6, Il-2, MCP1, ING-gamma, VEGF, IGF-1, TGFβ, and FGF2 were quantified by enzyme-linked immunosorbent assays (ELISA). Among the biomarkers, MCP-1, INF-gamma, VEGF, TNF-alpha, and TGF-beta were elevated in FD patients. Some of these biomarkers also have the potential to correlate with cardio pathology in FD. Conclusion: The study provides information about the role of inflammatory pathways and biomarkers of cardio hypertrophic remodeling in FD patients. This study will also reveal the mechanisms that link intracellular accumulation of Lyso-GB-3 and Gb3 to the development of cardiomyopathy with myocardial thickening and resultant fibrosis.

Keywords: biomarkers, Fabry disease, inflammation, growth factors

Procedia PDF Downloads 82
61 Phorbol 12-Myristate 13-Acetate (PMA)-Differentiated THP-1 Monocytes as a Validated Microglial-Like Model in Vitro

Authors: Amelia J. McFarland, Andrew K. Davey, Shailendra Anoopkumar-Dukie

Abstract:

Microglia are the resident macrophage population of the central nervous system (CNS), contributing to both innate and adaptive immune response, and brain homeostasis. Activation of microglia occurs in response to a multitude of pathogenic stimuli in their microenvironment; this induces morphological and functional changes, resulting in a state of acute neuroinflammation which facilitates injury resolution. Adequate microglial function is essential for the health of the neuroparenchyma, with microglial dysfunction implicated in numerous CNS pathologies. Given the critical role that these macrophage-derived cells play in CNS homeostasis, there is a high demand for microglial models suitable for use in neuroscience research. The isolation of primary human microglia, however, is both difficult and costly, with microglial activation an unwanted but inevitable result of the extraction process. Consequently, there is a need for the development of alternative experimental models which exhibit morphological, biochemical and functional characteristics of human microglia without the difficulties associated with primary cell lines. In this study, our aim was to evaluate whether THP-1 human peripheral blood monocytes would display microglial-like qualities following an induced differentiation, and, therefore, be suitable for use as surrogate microglia. To achieve this aim, THP-1 human peripheral blood monocytes from acute monocytic leukaemia were differentiated with a range of phorbol 12-myristate 13-acetate (PMA) concentrations (50-200 nM) using two different protocols: a 5-day continuous PMA exposure or a 3-day continuous PMA exposure followed by a 5-day rest in normal media. In each protocol and at each PMA concentration, microglial-like cell morphology was assessed through crystal violet staining and the presence of CD-14 microglial / macrophage cell surface marker. Lipopolysaccharide (LPS) from Escherichia coli (055: B5) was then added at a range of concentrations from 0-10 mcg/mL to activate the PMA-differentiated THP-1 cells. Functional microglial-like behavior was evaluated by quantifying the release of prostaglandin (PG)-E2 and pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α using mediator-specific ELISAs. Furthermore, production of global reactive oxygen species (ROS) and nitric oxide (NO) were determined fluorometrically using dichlorodihydrofluorescein diacetate (DCFH-DA) and diaminofluorescein diacetate (DAF-2-DA) respectively. Following PMA-treatment, it was observed both differentiation protocols resulted in cells displaying distinct microglial morphology from 10 nM PMA. Activation of differentiated cells using LPS significantly augmented IL-1β, TNF-α and PGE2 release at all LPS concentrations under both differentiation protocols. Similarly, a significant increase in DCFH-DA and DAF-2-DA fluorescence was observed, indicative of increases in ROS and NO production. For all endpoints, the 5-day continuous PMA treatment protocol yielded significantly higher mediator levels than the 3-day treatment and 5-day rest protocol. Our data, therefore, suggests that the differentiation of THP-1 human monocyte cells with PMA yields a homogenous microglial-like population which, following stimulation with LPS, undergo activation to release a range of pro-inflammatory mediators associated with microglial activation. Thus, the use of PMA-differentiated THP-1 cells represents a suitable microglial model for in vitro research.

Keywords: differentiation, lipopolysaccharide, microglia, monocyte, neuroscience, THP-1

Procedia PDF Downloads 388
60 Raman Spectroscopy of Fossil-like Feature in Sooke #1 from Vancouver Island

Authors: J. A. Sawicki, C. Ebrahimi

Abstract:

The first geochemical, petrological, X-ray diffraction, Raman, Mössbauer, and oxygen isotopic analyses of very intriguing 13-kg Sooke #1 stone covered in 70% of its surface with black fusion crust, found in and recovered from Sooke Basin, near Juan de Fuca Strait, in British Columbia, were reported as poster #2775 at LPSC52 in March. Our further analyses reported in poster #6305 at 84AMMS in August and comparisons with the Mössbauer spectra of Martian meteorite MIL03346 and Martian rocks in Gusev Crater reported by Morris et al. suggest that Sooke #1 find could be a stony achondrite of Martian polymict breccia type ejected from early watery Mars. Here, the Raman spectra of a carbon-rich ~1-mm² fossil-like white area identified in this rock on a surface of polished cut have been examined in more detail. The low-intensity 532 nm and 633 nm beams of the InviaRenishaw microscope were used to avoid any destructive effects. The beam was focused through the microscope objective to a 2 m spot on a sample, and backscattered light collected through this objective was recorded with CCD detector. Raman spectra of dark areas outside fossil have shown bands of clinopyroxene at 320, 660, and 1020 cm-1 and small peaks of forsteritic olivine at 820-840 cm-1, in agreement with results of X-ray diffraction and Mössbauer analyses. Raman spectra of the white area showed the broad band D at ~1310 cm-1 consisting of main mode A1g at 1305 cm⁻¹, E2g mode at 1245 cm⁻¹, and E1g mode at 1355 cm⁻¹ due to stretching diamond-like sp3 bonds in diamond polytype lonsdaleite, as in Ovsyuk et al. study. The band near 1600 cm-1 mostly consists of D2 band at 1620 cm-1 and not of the narrower G band at 1583 cm⁻¹ due to E2g stretching in planar sp2 bonds that are fundamental building blocks of carbon allotropes graphite and graphene. In addition, the broad second-order Raman bands were observed with 532 nm beam at 2150, ~2340, ~2500, 2650, 2800, 2970, 3140, and ~3300 cm⁻¹ shifts. Second-order bands in diamond and other carbon structures are ascribed to the combinations of bands observed in the first-order region: here 2650 cm⁻¹ as 2D, 2970 cm⁻¹ as D+G, and 3140 cm⁻¹ as 2G ones. Nanodiamonds are abundant in the Universe, found in meteorites, interplanetary dust particles, comets, and carbon-rich stars. The diamonds in meteorites are presently intensely investigated using Raman spectroscopy. Such particles can be formed by CVD process and during major impact shocks at ~1000-2300 K and ~30-40 GPa. It cannot be excluded that the fossil discovered in Sooke #1 could be a remnant of an alien carbon organism that transformed under shock impact to nanodiamonds. We trust that for the benefit of research in astro-bio-geology of meteorites, asteroids, Martian rocks, and soil, this find deserves further, more thorough investigations. If possible, the Raman SHERLOCK spectrometer operating on the Perseverance Rover should also search for such objects in the Martian rocks.

Keywords: achondrite, nanodiamonds, lonsdaleite, raman spectra

Procedia PDF Downloads 151
59 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 180
58 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance

Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier

Abstract:

Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.

Keywords: durability, PEMFC, recovery procedure, reversible degradation

Procedia PDF Downloads 134
57 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging

Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz

Abstract:

Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.

Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging

Procedia PDF Downloads 223
56 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 235
55 Nanoparticle Supported, Magnetically Separable Metalloporphyrin as an Efficient Retrievable Heterogeneous Nanocatalyst in Oxidation Reactions

Authors: Anahita Mortazavi Manesh, Mojtaba Bagherzadeh

Abstract:

Metalloporphyrins are well known to mimic the activity of monooxygenase enzymes. In this regard, metalloporphyrin complexes have been largely employed as valuable biomimetic catalysts, owing to the critical roles they play in oxygen transfer processes in catalytic oxidation reactions. Investigating in this area is based on different strategies to design selective, stable and high turnover catalytic systems. Immobilization of expensive metalloporphyrin catalysts onto supports appears to be a good way to improve their stability, selectivity and the catalytic performance because of the support environment and other advantages with respect to recovery, reuse. In other words, supporting metalloporphyrins provides a physical separation of active sites, thus minimizing catalyst self-destruction and dimerization of unhindered metalloporphyrins. Furthermore, heterogeneous catalytic oxidations have become an important target since their process are used in industry, helping to minimize the problems of industrial waste treatment. Hence, the immobilization of these biomimetic catalysts is much desired. An attractive approach is the preparation of the heterogeneous catalyst involves immobilization of complexes on silica coated magnetic nano-particles. Fe3O4@SiO2 magnetic nanoparticles have been studied extensively due to their superparamagnetism property, large surface area to volume ratio and easy functionalization. Using heterogenized homogeneous catalysts is an attractive option to facile separation of catalyst, simplified product work-up and continuity of catalytic system. Homogeneous catalysts immobilized on magnetic nanoparticles (MNPs) surface occupy a unique position due to combining the advantages of both homogeneous and heterogeneous catalysts. In addition, superparamagnetic nature of MNPs enable very simple separation of the immobilized catalysts from the reaction mixture using an external magnet. In the present work, an efficient heterogeneous catalyst was prepared by immobilizing manganese porphyrin on functionalized magnetic nanoparticles through the amino propyl linkage. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, atomic absorption spectroscopy, UV-Vis spectroscopy, and scanning electron microscopy. Application of immobilized metalloporphyrin in the oxidation of various organic substrates was explored using Gas chromatographic (GC) analyses. The results showed that the supported Mn-porphyrin catalyst (Fe3O4@SiO2-NH2@MnPor) is an efficient and reusable catalyst in oxidation reactions. Our catalytic system exhibits high catalytic activity in terms of turnover number (TON) and reaction conditions. Leaching and recycling experiments revealed that nanocatalyst can be recovered several times without loss of activity and magnetic properties. The most important advantage of this heterogenized catalytic system is the simplicity of the catalyst separation in which the catalyst can be separated from the reaction mixture by applying a magnet. Furthermore, the separation and reuse of the magnetic Fe3O4 nanoparticles were very effective and economical.

Keywords: Fe3O4 nanoparticle, immobilized metalloporphyrin, magnetically separable nanocatalyst, oxidation reactions

Procedia PDF Downloads 299
54 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol

Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya

Abstract:

Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.

Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol

Procedia PDF Downloads 257
53 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management

Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin

Abstract:

The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.

Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus

Procedia PDF Downloads 114
52 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils

Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang

Abstract:

For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.

Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics

Procedia PDF Downloads 228
51 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 240
50 Assessment of Antioxidant and Cholinergic Systems, and Liver Histopathologies in Lithobates catesbeianus Exposed to the Waters of an Urban Stream

Authors: Diego R. Boiarski, Camila M. Toigo, Thais M. Sobjak, Andrey F. P. Santos, Silvia Romao, Ana T. B. Guimaraes

Abstract:

Anthropogenic activities promote changes in the community’s structures and decrease the species abundance of amphibians. Biological communities of fluvial systems are assemblies of organisms that have adapted to regional conditions, including the physical environment and food resources, and are further refined through interactions with other species. The aim of this study was to assess neurotoxic alterations and in the antioxidant system on tadpoles of Lithobates catesbeianus exposed to waters from Cascavel River, in the south of Brazil. A total of 420 L of water was collected from the Cascavel River, 140 L from each of the three different locations: Site 1 – headwater; Site 2 – stretch of the stream that runs through an urbanized area; Site 3 – a stretch from the rural area. Twelve tadpoles were acclimated in each aquarium (100 L of water) for seven days. The water from each aquarium was replaced with the ones sampled from the river, except the one from the control aquarium. After seven days, a portion of the liver was removed and conditioned for ChE, SOD, CAT and LPO analysis; other part of the tissue was conditioned for histological analysis. The statistical analysis performed was one-way ANOVA, followed by post-hoc Tukey-HSD test, and the multivariate principal components analysis. It was not observed any neurotoxic effect, but a slight increase in SOD activity and elevation of CAT activity in both urban and rural environment. A decrease in LPO reaction was detected, mainly among the tadpoles exposed to the waters from the rural area. The results of the present study demonstrate the alteration of the antioxidant system, as well as liver histopathologies in tadpoles exposed mainly to waters collected in urban and rural environments. These alterations may cause the reduction in the velocity of the metamorphosis process from the tadpoles. Further, were observed histological alterations, highlighting necrotic areas mainly among the animals exposed to urban waters. Those damages can lead to metabolic dysfunction, interfering with survival capacity, diminishing not only individual fitness but for the whole population. In the interpretation synthesis of all biomarkers, the cellular damage gradient is perceptible, characterized by the variables related to the antioxidant system, due to the flow direction of the stream. This result is indicative that along the course of the creek occurs dumping of organic material, which promoted an acute response upon tadpoles of L. catesbeianus. and it was also observed the difference in tissue damage between the experimental groups and the control group, the latter presenting histological alterations, but to a lesser degree than the animals exposed to the waters of the Cascavel river. These damages, caused by reactive oxygen species possibly resulting from the contamination by organic compounds, can lead the animals to a series of metabolic dysfunctions, interfering with its metamorphosis capacity. Interruption of metamorphosis may affect survival, which may impair its growth, development and reproduction, diminishing not only the fitness of each individual but in a long-term, to the entire population.

Keywords: American bullfrog, histopathology, oxidative stress, urban creeks pollution

Procedia PDF Downloads 187
49 Removal of VOCs from Gas Streams with Double Perovskite-Type Catalyst

Authors: Kuan Lun Pan, Moo Been Chang

Abstract:

Volatile organic compounds (VOCs) are one of major air contaminants, and they can react with nitrogen oxides (NOx) in atmosphere to form ozone (O3) and peroxyacetyl nitrate (PAN) with solar irradiation, leading to environmental hazards. In addition, some VOCs are toxic at low concentration levels and cause adverse effects on human health. How to effectively reduce VOCs emission has become an important issue. Thermal catalysis is regarded as an effective way for VOCs removal because it provides oxidation route to successfully convert VOCs into carbon dioxide (CO2) and water (H2O(g)). Single perovskite-type catalysts are promising for VOC removal, and they are of good potential to replace noble metals due to good activity and high thermal stability. Single perovskites can be generally described as ABO3 or A2BO4, where A-site is often a rare earth element or an alkaline. Typically, the B-site is transition metal cation (Fe, Cu, Ni, Co, or Mn). Catalytic properties of perovskites mainly rely on nature, oxidation states and arrangement of B-site cation. Interestingly, single perovskites could be further synthesized to form double perovskite-type catalysts which can simply be represented by A2B’B”O6. Likewise, A-site stands for an alkaline metal or rare earth element, and the B′ and B′′ are transition metals. Double perovskites possess unique surface properties. In structure, three-dimensional of B-site with ordered arrangement of B’O6 and B”O6 is presented alternately, and they corner-share octahedral along three directions of the crystal lattice, while cations of A-site position between the void of octahedral. It has attracted considerable attention due to specific arrangement of alternating B-site structure. Therefore, double perovskites may have more variations than single perovskites, and this greater variation may promote catalytic performance. It is expected that activity of double perovskites is higher than that of single perovskites toward VOC removal. In this study, double perovskite-type catalyst (La2CoMnO6) is prepared and evaluated for VOC removal. Also, single perovskites including LaCoO3 and LaMnO3 are tested for the comparison purpose. Toluene (C7H8) is one of the important VOCs which are commonly applied in chemical processes. In addition to its wide application, C7H8 has high toxicity at a low concentration. Therefore, C7H8 is selected as the target compound in this study. Experimental results indicate that double perovskite (La2CoMnO6) has better activity if compared with single perovskites. Especially, C7H8 can be completely oxidized to CO2 at 300oC as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskite has unique surface properties and is of higher amounts of lattice oxygen, leading to higher activity. For durability test, La2CoMnO6 maintains high C7H8 removal efficiency of 100% at 300oC and 30,000 h-1, and it also shows good resistance to CO2 (5%) and H2O(g) (5%) of gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalyst operated at 300℃, indicating that double perovskites are promising catalysts for VOCs removal, and possible mechanisms will be elucidated in this paper.

Keywords: volatile organic compounds, Toluene (C7H8), double perovskite-type catalyst, catalysis

Procedia PDF Downloads 165
48 The 10,000 Fold Effect of Retrograde Neurotransmission, a New Concept for Stroke Revival: Use of Intracarotid Sodium Nitroprusside

Authors: Vinod Kumar

Abstract:

Background: Tissue Plasminogen Activator (tPA) showed a level 1 benefit in acute stroke (within 3-6 hrs). Intracarotid sodium nitroprusside (ICSNP) has been studied in this context with a wide treatment window, fast recovery and affordability. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a)Retrograde Neurotransmission (acute cases): 1)Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2)Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b)Vasospasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c)Long-Term Potentıatıon (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Des’gn: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat stroke cases. Case-control prospective study. Mater’als And Methods: The experimental population included 82 stroke patients (10 patients were given control treatments without superfusion or with 5% dextrose superfusion, and 72 patients comprised the ICSNP group). The mean time for superfusion was 9.5 days post-stroke. Pre- and post-ICSNP status was monitored by NIHSS, MRI and TCD. Results: After 90 seconds in the ICSNP group, the mean change in the NIHSS score was a decrease of 1.44 points, or 6.55%; after 2 h, there was a decrease of 1.16 points; after 24 h, there was an increase of 0.66 points, 2.25%, compared to the control-group increase of 0.7 points, or 3.53%; at 7 days, there was an 8.61-point decrease, 44.58%, compared to the control-group increase of 2.55 points, or 22.37%; at 2 months in ICSNP, there was a 6.94-points decrease, 62.80%, compared to the control-group decrease of 2.77 points, or 8.78%. TCD was documented and improvements were noted. Conclusions: ICSNP is a swift-acting drug in the treatment of stroke, acting within 90 seconds on day 9.5 post-stroke with a small decrease after 24 hours. The drug recovers from this decrease quickly.

Keywords: brain infarcts, intracarotid sodium nitroprusside, perforators, vasodilatıons, retrograde transmission, the 10, 000-fold effect

Procedia PDF Downloads 307
47 The 10,000 Fold Effect of Retrograde Neurotransmission: A New Concept for Cerebral Palsy Revival by the Use of Nitric Oxide Donars

Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta

Abstract:

Background: Nitric Oxide Donars (NODs) (intrathecal sodium nitroprusside (ITSNP) and oral tadalafil 20mg post ITSNP) has been studied in this context in cerebral palsy patients for fast recovery. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a) Retrograde Neurotransmission (acute cases): 1) Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2) Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b) Vasopasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c) Long-Term Potentiation (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Design: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat cerebral palsy cases. Case-control prospective study. Materials and Methods: The experimental population included 82 cerebral palsy patients (10 patients were given control treatments without NOD or with 5% dextrose superfusion, and 72 patients comprised the NOD group). The mean time for superfusion was 5 months post-cerebral palsy. Pre- and post-NOD status was monitored by Gross Motor Function Classification System for Cerebral Palsy (GMFCS), MRI, and TCD studies. Results: After 7 days in the NOD group, the mean change in the GMFCS score was an increase of 1.2 points mean; after 3 months, there was an increase of 3.4 points mean, compared to the control-group increase of 0.1 points at 3 months. MRI and TCD documented the improvements. Conclusions: NOD (ITSNP boosts up the recovery and oral tadalafil maintains the recovery to a well-desired level) acts swiftly in the treatment of CP, acting within 7 days on 5 months post-cerebral palsy either of the three mechanisms.

Keywords: cerebral palsy, intrathecal sodium nitroprusside, oral tadalafil, perforators, vasodilations, retrograde transmission, the 10, 000-fold effect, long-term potantiation

Procedia PDF Downloads 362
46 Impact of Anthropogenic Stresses on Plankton Biodiversity in Indian Sundarban Megadelta: An Approach towards Ecosystem Conservation and Sustainability

Authors: Dibyendu Rakshit, Santosh K. Sarkar

Abstract:

The study illustrates a comprehensive account of large-scale changes plankton community structure in relevance to water quality characteristics due to anthropogenic stresses, mainly concerned for Annual Gangasagar Festival (AGF) at the southern tip of Sagar Island of Indian Sundarban wetland for 3-year duration (2012-2014; n=36). This prograding, vulnerable and tide-dominated megadelta has been formed in the estuarine phase of the Hooghly Estuary infested by largest continuous tract of luxurious mangrove forest, enriched with high native flora and fauna. The sampling strategy was designed to characterize the changes in plankton community and water quality considering three diverse phases, namely during festival period (January) and its pre - (December) as well as post (February) events. Surface water samples were collected for estimation of different environmental variables as well as for phytoplankton and microzooplankton biodiversity measurement. The preservation and identification techniques of both biotic and abiotic parameters were carried out by standard chemical and biological methods. The intensive human activities lead to sharp ecological changes in the context of poor water quality index (WQI) due to high turbidity (14.02±2.34 NTU) coupled with low chlorophyll a (1.02±0.21 mg m-3) and dissolved oxygen (3.94±1.1 mg l-1), comparing to pre- and post-festival periods. Sharp reduction in abundance (4140 to 2997 cells l-1) and diversity (H′=2.72 to 1.33) of phytoplankton and microzooplankton tintinnids (450 to 328 ind l-1; H′=4.31 to 2.21) was very much pronounced. The small size tintinnid (average lorica length=29.4 µm; average LOD=10.5 µm) composed of Tintinnopsis minuta, T. lobiancoi, T. nucula, T. gracilis are predominant and reached some of the greatest abundances during the festival period. Results of ANOVA revealed a significant variation in different festival periods with phytoplankton (F= 1.77; p=0.006) and tintinnid abundance (F= 2.41; P=0.022). RELATE analyses revealed a significant correlation between the variations of planktonic communities with the environmental data (R= 0.107; p= 0.005). Three distinct groups were delineated from principal component analysis, in which a set of hydrological parameters acted as the causative factor(s) for maintaining diversity and distribution of the planktonic organisms. The pronounced adverse impact of anthropogenic stresses on plankton community could lead to environmental deterioration, disrupting the productivity of benthic and pelagic ecosystems as well as fishery potentialities which directly related to livelihood services. The festival can be considered as multiple drivers of changes in relevance to beach erosion, shoreline changes, pollution from discarded plastic and electronic wastes and destruction of natural habitats resulting loss of biodiversity. In addition, deterioration in water quality was also evident from immersion of idols, causing detrimental effects on aquatic biota. The authors strongly recommend for adopting integrated scientific and administrative strategies for resilience, sustainability and conservation of this megadelta.

Keywords: Gangasagar festival, phytoplankton, Sundarban megadelta, tintinnid

Procedia PDF Downloads 234
45 Recycling Biomass of Constructed Wetlands as Precursors of Electrodes for Removing Heavy Metals and Persistent Pollutants

Authors: Álvaro Ramírez Vidal, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero, José Villaseñor Camacho, Javier Llanos López

Abstract:

In recent times, environmental problems have led to the extensive use of biological systems to solve them. Among the different types of biological systems, the use of plants such as aquatic macrophytes in constructed wetlands and terrestrial plant species for treating polluted soils and sludge has gained importance. Though the use of constructed wetlands for wastewater treatment is a well-researched domain, the slowness of pollutant degradation and high biomass production pose some challenges. Plants used in CW participate in different mechanisms for the capture and degradation of pollutants that also can retain some pharmaceutical and personal care products (PPCPs) that are very persistent in the environment. Thus, these systems present advantages in line with the guidelines published for the transition towards friendly and ecological procedures as they are environmentally friendly systems, consume low energy, or capture atmospheric CO₂. However, the use of CW presents some drawbacks, as the slowness of pollutant degradation or the production of important amounts of plant biomass, which need to be harvested and managed periodically. Taking this opportunity in mind, it is important to highlight that this residual biomass (of lignocellulosic nature) could be used as the feedstock for the generation of carbonaceous materials using thermochemical transformations such as slow pyrolysis or hydrothermal carbonization to produce high-value biomass-derived carbons through sustainable processes as adsorbents, catalysts…, thereby improving the circular carbon economy. Thus, this work carried out the analysis of some PPCPs commonly found in urban wastewater, as salicylic acid or ibuprofen, to evaluate the remediation carried out for the Phragmites Australis. Then, after the harvesting, this biomass can be used to synthesize electrodes through hydrothermal carbonization (HTC) and produce high-value biomass-derived carbons with electrocatalytic activity to remove heavy metals and persistent pollutants, promoting circular economy concepts. To do this, it was chosen biomass derived from the natural environment in high environmental risk as the Daimiel Wetlands National Park in the center of Spain, and the rest of the biomass developed in a CW specifically designed to remove pollutants. The research emphasizes the impact of the composition of the biomass waste and the synthetic parameters applied during HTC on the electrocatalytic activity. Additionally, this parameter can be related to the physicochemical properties, as porosity, surface functionalization, conductivity, and mass transfer of the electrodes lytic inks. Data revealed that carbon materials synthesized have good surface properties (good conductivities and high specific surface area) that enhance the electro-oxidants generated and promote the removal of PPCPs and the chemical oxygen demand of polluted waters.

Keywords: constructed wetlands, carbon materials, heavy metals, pharmaceutical and personal care products, hydrothermal carbonization

Procedia PDF Downloads 94
44 Post-Exercise Recovery Tracking Based on Electrocardiography-Derived Features

Authors: Pavel Bulai, Taras Pitlik, Tatsiana Kulahava, Timofei Lipski

Abstract:

The method of Electrocardiography (ECG) interpretation for post-exercise recovery tracking was developed. Metabolic indices (aerobic and anaerobic) were designed using ECG-derived features. This study reports the associations between aerobic and anaerobic indices and classical parameters of the person’s physiological state, including blood biochemistry, glycogen concentration and VO2max changes. During the study 9 participants, healthy, physically active medium trained men and women, which trained 2-4 times per week for at least 9 weeks, fulfilled (i) ECG monitoring using Apple Watch Series 4 (AWS4); (ii) blood biochemical analysis; (iii) maximal oxygen consumption (VO2max) test, (iv) bioimpedance analysis (BIA). ECG signals from a single-lead wrist-wearable device were processed with detection of QRS-complex. Aerobic index (AI) was derived as the normalized slope of QR segment. Anaerobic index (ANI) was derived as the normalized slope of SJ segment. Biochemical parameters, glycogen content and VO2max were evaluated eight times within 3-60 hours after training. ECGs were recorded 5 times per day, plus before and after training, cycloergometry and BIA. The negative correlation between AI and blood markers of the muscles functional status including creatine phosphokinase (r=-0.238, p < 0.008), aspartate aminotransferase (r=-0.249, p < 0.004) and uric acid (r = -0.293, p<0.004) were observed. ANI was also correlated with creatine phosphokinase (r= -0.265, p < 0.003), aspartate aminotransferase (r = -0.292, p < 0.001), lactate dehydrogenase (LDH) (r = -0.190, p < 0.050). So, when the level of muscular enzymes increases during post-exercise fatigue, AI and ANI decrease. During recovery, the level of metabolites is restored, and metabolic indices rising is registered. It can be concluded that AI and ANI adequately reflect the physiology of the muscles during recovery. One of the markers of an athlete’s physiological state is the ratio between testosterone and cortisol (TCR). TCR provides a relative indication of anabolic-catabolic balance and is considered to be more sensitive to training stress than measuring testosterone and cortisol separately. AI shows a strong negative correlation with TCR (r=-0.437, p < 0.001) and correctly represents post-exercise physiology. In order to reveal the relation between the ECG-derived metabolic indices and the state of the cardiorespiratory system, direct measurements of VO2max were carried out at various time points after training sessions. The negative correlation between AI and VO2max (r = -0.342, p < 0.001) was obtained. These data testifying VO2max rising during fatigue are controversial. However, some studies have revealed increased stroke volume after training, that agrees with findings. It is important to note that post-exercise increase in VO2max does not mean an athlete’s readiness for the next training session, because the recovery of the cardiovascular system occurs over a substantially longer period. Negative correlations registered for ANI with glycogen (r = -0.303, p < 0.001), albumin (r = -0.205, p < 0.021) and creatinine (r = -0.268, p < 0.002) reflect the dehydration status of participants after training. Correlations between designed metabolic indices and physiological parameters revealed in this study can be considered as the sufficient evidence to use these indices for assessing the state of person’s aerobic and anaerobic metabolic systems after training during fatigue, recovery and supercompensation.

Keywords: aerobic index, anaerobic index, electrocardiography, supercompensation

Procedia PDF Downloads 115
43 Effect of Salinity and Heavy Metal Toxicity on Gene Expression, and Morphological Characteristics in Stevia rebaudiana Plants

Authors: Umara Nissar Rafiqi, Irum Gul, Nazima Nasrullah, Monica Saifi, Malik Z. Abdin

Abstract:

Background: Stevia rebaudiana, a member of Asteraceae family is an important medicinal plant and produces a commercially used non-caloric natural sweetener, which is also an alternate herbal cure for diabetes. Steviol glycosides are the main sweetening compounds present in these plants. Secondary metabolites are crucial to the adaption of plants to the environment and its overcoming stress conditions. In agricultural procedures, the abiotic stresses like salinity, high metal toxicity and drought, in particular, are responsible for the majority of the reduction that differentiates yield potential from harvestable yield. Salt stress and heavy metal toxicity lead to increased production of reactive oxygen species (ROS). To avoid oxidative damage due to ROS and osmotic stress, plants have a system of anti-oxidant enzymes along with several stress induced enzymes. This helps in scavenging the ROS and relieve the osmotic stress in different cell compartments. However, whether stress induced toxicity modulates the activity of these enzymes in Stevia rebaudiana is poorly understood. Aim: The present study focussed on the effect of salinity, heavy metal toxicity (lead and mercury) on physiological traits and transcriptional profiling of Stevia rebaudiana. Method: Stevia rebaudiana plants were collected from the Central Institute of Medicinal and Aromatic plants (CIMAP), Patnagar, India and maintained under controlled conditions in a greenhouse at Hamdard University, Delhi, India. The plants were subjected to different concentrations of salt (0, 25, 50 and 75 mM respectively) and heavy metals, lead and mercury (0, 100, 200 and 300 µM respectively). The physiological traits such as shoot length, root numbers, leaf growth were evaluated. The samples were collected at different developmental stages and analysed for transcription profiling by RT-PCR. Transcriptional studies in stevia rebaudiana involves important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), cytochrome P450 monooxygenase (CYP) and stress induced aquaporin (AQU), auxin repressed protein (ARP-1), Ndhc gene. The data was analysed using GraphPad Prism and expressed as mean ± SD. Result: Low salinity and lower metal toxicity did not affect the fresh weight of the plant. However, this was substantially decreased by 55% at high salinity and heavy metal treatment. With increasing salinity and heavy metal toxicity, the values of all studied physiological traits were significantly decreased. Chlorosis in treated plants was also observed which could be due to changes in Fe:Zn ratio. At low concentrations (upto 25 mM) of NaCl and heavy metals, we did not observe any significant difference in the gene expressions of treated plants compared to control plants. Interestingly, at high salt concentration and high metal toxicity, a significant increase in the expression profile of stress induced genes was observed in treated plants compared to control (p < 0.005). Conclusion: Stevia rebaudiana is tolerant to lower salt and heavy metal concentration. This study also suggests that with the increase in concentrations of salt and heavy metals, harvest yield of S. rebaudiana was hampered.

Keywords: Stevia rebaudiana, natural sweetener, salinity, heavy metal toxicity

Procedia PDF Downloads 196
42 Decreased Tricarboxylic Acid (TCA) Cycle Staphylococcus aureus Increases Survival to Innate Immunity

Authors: Trenten Theis, Trevor Daubert, Kennedy Kluthe, Austin Nuxoll

Abstract:

Staphylococcus aureus is a gram-positive bacterium responsible for an estimated 23,000 deaths in the United States and 25,000 deaths in the European Union annually. Recurring S. aureus bacteremia is associated with biofilm-mediated infections and can occur in 5 - 20% of cases, even with the use of antibiotics. Despite these infections being caused by drug-susceptible pathogens, they are surprisingly difficult to eradicate. One potential explanation for this is the presence of persister cells—a dormant type of cell that shows a high tolerance to antibiotic treatment. Recent studies have shown a connection between low intracellular ATP and persister cell formation. Specifically, this decrease in ATP, and therefore increase in persister cell formation, is due to an interrupted tricarboxylic acid (TCA) cycle. However, S. aureus persister cells’ role in pathogenesis remains unclear. Initial studies have shown that a fumC (TCA cycle gene) knockout survives challenge from aspects of the innate immune system better than wild-type S. aureus. Specifically, challenges from two antimicrobial peptides--LL-37 and hBD-3—show a log increase in survival of the fumC::N∑ strain compared to wild type S. aureus after 18 hours. Furthermore, preliminary studies show that the fumC knockout has a log more survival within a macrophage. These data lead us to hypothesize that the fumC knockout is better suited to other aspects of the innate immune system compared to wild-type S. aureus. To further investigate the mechanism for increased survival of fumC::N∑ within a macrophage, we tested bacterial growth in the presence of reactive oxygen species (ROS), reactive nitrogen species (RNS), and a low pH. Preliminary results suggest that the fumC knockout has increased growth compared to wild-type S. aureus in the presence of all three antimicrobial factors; however, no difference was observed in any single factor alone. To investigate survival within a host, a nine-day biofilm-associated catheter infection was performed on 6–8-week-old male and female C57Bl/6 mice. Although both sexes struggled to clear the infection, female mice were trending toward more frequently clearing the HG003 wild-type infection compared to the fumC::N∑ infection. One possible reason for the inability to reduce the bacterial burden is that biofilms are largely composed of persister cells. To test this hypothesis further, flow cytometry in conjunction with a persister cell marker was used to measure persister cells within a biofilm. Cap5A (a known persister cell marker) expression was found to be increased in a maturing biofilm, with the lowest levels of expression seen in immature biofilms and the highest expression exhibited by the 48-hour biofilm. Additionally, bacterial cells in a biofilm state closely resemble persister cells and exhibit reduced membrane potential compared to cells in planktonic culture, further suggesting biofilms are largely made up of persister cells. These data may provide an explanation as to why infections caused by antibiotic-susceptible strains remain difficult to treat.

Keywords: antibiotic tolerance, Staphylococcus aureus, host-pathogen interactions, microbial pathogenesis

Procedia PDF Downloads 180
41 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane

Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato

Abstract:

Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.

Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell

Procedia PDF Downloads 154
40 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 109
39 Emergency Department Utilisation of Older People Presenting to Four Emergency Departments

Authors: M. Fry, L. Fitzpatrick, Julie Considine, R. Z. Shaban, Kate Curtis

Abstract:

Introduction: The vast majority of older Australians lives independently and are self-managing at home, despite a growing number living with a chronic illness that requires health intervention. Evidence shows that between 50% and 80% of people presenting to the emergency department (ED) are in pain. Australian EDs manage 7.2 million attendances every year and 1.4 million of these are people aged 65 years or more. Research shows that 28% of ED patients aged 65 years or more have Cognitive impairment (CI) associated with dementia, delirium and neurological conditions. Background: Traditional ED service delivery may not be suitable for older people who present with multiple, complex and ongoing illnesses. Likewise, ED clinical staff often perceive that their role should be focused more on immediate and potential lifethreatening illness and conditions which are episodic in nature. Therefore, the needs of older people and their family/carers may not be adequately addressed in the context of an ED presentation. Aim: We aimed to explore the utilisation and characteristics of older people presenting to four metropolitan EDs. Method: The findings being presented are part of a program of research exploring pain management practices for older persons with long bone fractures. The study was conducted across four metropolitan emergency departments of older patients (65years and over) and involved a 12-month randomised medical record audit (n=255). Results: ED presentations across four ED sites in 2012 numbered 168021, with 44778 (26.6%) patients aged 65 and over. Of the 44778 patients, the average age was 79.1 years (SD 8.54). There were more females 23932 (53.5%). The majority (26925: 85.0%) of older persons self-referred to the ED and lived independently. The majority arrived by ambulance (n=18553: 41.4%) and were allocated triage category was 3 (n=19,507:43.65%) or Triage category 4 at (n=15,389: 34.43%). The top five triage symptom presentations involved pain (n=8088; 18.25%), dyspnoea (n=4735; 10.7%), falls (n=4032; 9.1%), other (n=3984; 9.0%), cardiac (n=2987; 6.7%). The top five system based diagnostic presentations involved musculoskeletal (n=8902; 20.1%), cardiac (n=6704:15.0%), respiratory (n=4933; 11.0%), neurological (n=4909; 11.0%), gastroenterology (n=4321; 9.7%). On review of one tertiary hospital database the vital signs on average at time triage: Systolic Blood Pressure 143.6mmHg. Heart Rate 83.4 beats/minute; Respiratory Rate 18.5 breaths/ minute; Oxygen saturation 97.0% and Tympanic temperature 36.7 and Blood Glucose Level 7.4mmols/litre. The majority presented with a Glasgow Coma Score of 14 or higher. On average the older person stayed in the ED 4:56 (SD 3:28minutes).The average time to be seen was 39 minutes (SD 48 minutes). The majority of older persons were admitted (n=27562: 61.5%), did not wait for treatment (n= 8879: 0.02%) discharged home (n=16256: 36.0%). Conclusion: The vast majority of older persons are living independently, although many require admission on arrival to the ED. Many arrived in pain and with musculoskeletal injuries and or conditions. New models of care need to be considered, which may better support self-management and independent living of the older person and the National Emergency Access Targets.

Keywords: chronic, older person, aged care, emergency department

Procedia PDF Downloads 236