Search results for: hepatitis B surface antigen
5453 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System
Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky
Abstract:
Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion
Procedia PDF Downloads 2335452 Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields
Authors: Asselah Amel, Affif Chaouche M'yassa, Toudji Amira, Tazerouti Amel
Abstract:
This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions.Keywords: corrosion, surfactants, adsorption, adsorption isotherems
Procedia PDF Downloads 975451 Self-Organized TiO₂–Nb₂O₅–ZrO₂ Nanotubes on β-Ti Alloy by Anodization
Authors: Muhammad Qadir, Yuncang Li, Cuie Wen
Abstract:
Surface properties such as topography and physicochemistry of metallic implants determine the cell behavior. The surface of titanium (Ti)-based implant can be modified to enhance the bioactivity and biocompatibility. In this study, a self-organized titania–niobium pentoxide–zirconia (TiO₂–Nb₂O₅–ZrO₂) nanotubular layer on β phase Ti35Zr28Nb alloy was fabricated via electrochemical anodization. Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement techniques were used to investigate the nanotubes dimensions (i.e., the inner and outer diameters, and wall thicknesses), microstructural features and evolution of the hydrophilic properties. The in vitro biocompatibility of the TiO₂–Nb₂O₅–ZrO₂ nanotubes (NTs) was assessed by using osteoblast cells (SaOS2). Influence of anodization parameters on the morphology of TiO₂–Nb₂O₅–ZrO₂ NTs has been studied. The results indicated that the average inner diameter, outer diameter and the wall thickness of the TiO₂–Nb₂O₅–ZrO₂ NTs were ranged from 25–70 nm, 45–90 nm and 5–13 nm, respectively, and were directly influenced by the applied voltage during anodization. The average inner and outer diameters of NTs increased with increasing applied voltage, and the length of NTs increased with increasing anodization time and water content of the electrolyte. In addition, the size distribution of the NTs noticeably affected the hydrophilic properties and enhanced the biocompatibility as compared with the uncoated substrate. The results of this study could be considered for developing nano-scale coatings for a wide range of biomedical applications.Keywords: Titanium alloy, TiO₂–Nb₂O₅–ZrO₂ nanotubes, anodization, surface wettability, biocompatibility
Procedia PDF Downloads 1565450 Rupture Probability of Type of Coarse Aggregate on Fracture Surface of Concrete
Authors: B. Ramakrishna, S. Sivamurthy Reddy
Abstract:
The various types of aggregates such as granite, dolerite, Quartzite, dolomitic limestone, limestone and river gravel were used to produce the concrete with 28-day target compressive strength of 35, 60, and 80 Mpa. The compressive strength of concrete, as well as aggregates, was measured to study the effect of rupture probability of aggregate on the fracture surface of the concrete. Also, the petrographic studies were carried out to study the texture, type of minerals present and their relative proportions in various types of aggregates. The concrete of various grades produced with the same aggregate has shown a rise in RPCA with strength. However, the above relationship has ceased to exist in the concretes of the same grade, made of different types of aggregates. The carbonate aggregates namely Limestone and Dolomitic limestone have produced concrete with higher RPCA irrespective of the strength of concrete. The mode of origin, texture and mineralogical composition of aggregates have a significant impact on their pulse velocity and thereby the pulse velocity of concrete. Procedia PDF Downloads 2965449 Investigation of the Corrosion Inhibition Mechanism of Tagetes erecta Extract for Mild Steel in Nitric Acid: Gravimetric Studies
Authors: Selvam Noyel Victoria, Kavita Yadav, Manivannan Ramachandran
Abstract:
The extract of Tagetes erecta (marigold flower) was used as a green corrosion inhibitor for mild steel (MS) in nitric acid medium. The weight loss measurements were performed to understand the inhibition mechanism. The effect of temperature on the behaviour of mild steel corrosion without and with inhibitor was studied. The temperature studies revealed that the activation energy increased from 12 kJ/mol to 28.8 kJ/mol with the addition of 500 ppm inhibitor concentration. The thermodynamic analysis and the adsorption isotherm studies revealed that the molecules of inhibitor show physical adsorption on the surface of mild steel. Based on weight loss measurements, adsorption of the inhibitor on the surface of mild steel follows Langmuir isotherm.Keywords: Tagetes erecta, corrosion, adsorption, inhibitor
Procedia PDF Downloads 2485448 Effect of Environmental Stress Factors on the Degradation of Display Glass
Authors: Jinyoung Choi, Hyun-A Kim, Sunmook Lee
Abstract:
The effects of environmental stress factors such as storage conditions on the deterioration phenomenon and the characteristic of the display glass were studied. In order to investigate the effect of chemical stress on the glass during the period of storage, the respective components of commercial glass were first identified by XRF (X-ray fluorescence). The glass was exposed in the acid, alkali, neutral environment for about one month. Thin film formed on the glass surface was analyzed by XRD (X-ray diffraction) and FT-IR (Fourier transform infrared). The degree of corrosion and the rate of deterioration of each sample were confirmed by measuring the concentrations of silicon, calcium and chromium with ICP-OES (Inductively coupled plasma-optical emission spectrometry). The optical properties of the glass surface were confirmed by SEM (Scanning electron microscope) before and after the treatment. Acknowledgement—The authors gratefully acknowledge the financial support from the Ministry of Trade, Industry and Energy (Grant Number: 10076817)Keywords: corrosion, degradation test, display glass, environmental stress factor
Procedia PDF Downloads 4625447 Medicinal Plants and Arbuscular mycorrhizal Colonization
Abstract:
Demands of traditional herbal medicines are increasing day by day over the world. Considering the growing demand of medicinal plants in curative treatments and the role of VAM fungi in augmentation of the production of active secondary metabolites by the medicinal plants, the present work has been undertaken to survey the mycorrhizal status in 30 different medicinal plants belonging to various families from Krishna district, Andhra Pradesh. The roots were collected carefully and stained by the Phillips & Hayman technique. Basing on the occurrence of vesicles and arbuscules, categorized into four grades; Excellent: mycelia, vesicles or arbuscules present more than 75% of root bits, Good: mycelia, vesicles or arbuscules present 50-75% in surface of root bits, moderate: mycelia, vesicles or arbuscules present 25-50% in surface of root bits, and poor: mycelia, vesicles or arbuscules present 1-25% in surface of root bits. The study reveals that the roots of all plants were colonized by AM fungi. Percentage of root colonization by AM fungi was more in Aloe vera, Phylanthus emblica, Azadiracta indica and least in plants such as Aerva lanata, Vinca rosea, Crotalaria verrucosa among the 30 medicinal plants in present study. The enhancement of growth and vigour and increased production of bioactive compounds of the medicinal plants is desirable which may be achieved by inoculation of the roots with Arbuscular mycorrhizal fungi. There is a steady increase in the cultivation of medicinal plants to maintain a steady supply to support the increasing demand but corresponding researches of VAM fungi and their association in medicinal plants have received very little attention as compared to the studies on forest species and field crops. So a vast research on this field is necessary for a better tomorrow.Keywords: Arbuscular mycorrhizae, colonization, categories, medicinal plants
Procedia PDF Downloads 4055446 Liquid Biopsy and Screening Biomarkers in Glioma Grading
Authors: Abdullah Abdu Qaseem Shamsan
Abstract:
Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches.Keywords: GBM: glioblastoma multiforme, CT: computed tomography, MRI: magnetic resonance imaging, ctRNA: circulating tumor RNA
Procedia PDF Downloads 535445 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models
Authors: Akinnubi Rufus Temidayo
Abstract:
Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.Keywords: west africa, radiative, climate, resilence, anthropogenic
Procedia PDF Downloads 145444 Evaluation of the Efficacy of Titanium Alloy Dental Implants Coated by Bio-ceramic Apatite Wollastonite (Aw) and Hydroxyapatite (Ha) by Pulsed Laser Deposition
Authors: Betsy S. Thomas, Manjeet Marpara, K. M. Bhat
Abstract:
Introduction: After the initial enthusiasm and interest in hydroxyapatite products subsided due to dissolution of the coating and failure at the coating interface, this was a unique attempt to create a next generation of dental implant. Materials and Methods: The adhesion property of AW and HA coatings at various temperature by pulsed laser deposition was assessed on titanium plates. Moreover, AW/HA coated implants implanted in the femur of the rabbits was evaluated at various intervals. Results: Decohesion load was more for AW in scratch test and more bone formation around AW coated implants on histological evaluation. Discussion: AW coating by pulsed laser deposition was more adherent to the titanium surface and led to faster bone formation than HA. Conclusion: This experiment opined that AW coated by pulsed laser deposition seems to be a promising method in achieving bioactive coatings on titanium implants.Keywords: surface coating, dental implants, osseo integration, biotechnology
Procedia PDF Downloads 3665443 3D Interactions in Under Water Acoustic Simulationseffect of Green Synthesized Metal Nanoparticles on Gene Expression in an In-Vitro Model of Non-alcoholic Steatohepatitis
Authors: Nendouvhada Livhuwani Portia, Nicole Sibuyi, Kwazikwakhe Gabuza, Adewale Fadaka
Abstract:
Metabolic dysfunction-associated liver disease (MASLD) is a chronic condition characterized by excessive fat accumulation in the liver, distinct from conditions caused by alcohol, viral hepatitis, or medications. MASLD is often linked with metabolic syndrome, including obesity, diabetes, hyperlipidemia, and hypertriglyceridemia. This disease can progress to metabolic dysfunction-associated steatohepatitis (MASH), marked by liver inflammation and scarring, potentially leading to cirrhosis. However, only 43-44% of patients with steatosis develop MASH, and 7-30% of those with MASH progress to cirrhosis. The exact mechanisms underlying MASLD and its progression remain unclear, and there are currently no specific therapeutic strategies for MASLD/MASH. While anti-obesity and anti-diabetic medications can reduce progression, they do not fully treat or reverse the disease. As an alternative, green-synthesized metal nanoparticles (MNPs) are emerging as potential treatments for liver diseases due to their anti-diabetic, anti-inflammatory, and anti-obesity properties with minimal side effects. MNPs like gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have been shown to improve metabolic processes by lowering blood glucose, body fat, and inflammation. The study aimed to explore the effects of green-synthesized MNPs on gene expression in an in vitro model of MASH using C3A/HepG2 liver cells. The MASH model was created by exposing these cells to free fatty acids (FFAs) followed by lipopolysaccharide (LPS) to induce inflammation. Cell viability was assessed with the Water-Soluble Tetrazolium (WST)-1 assay, and lipid accumulation was measured using the Oil Red O (ORO) assay. Additionally, mitochondrial membrane potential was assessed by the tetramethyl rhodamine, methyl ester (TMRE) assay, and inflammation was measured with an Enzyme-Linked Immunosorbent Assay (ELISA). The study synthesized AuNPs from Carpobrotus edulis fruit (CeF) and avocado seed (AvoSE) and AgNPs from Salvia africana-lutea (SAL) using optimized conditions. The MNPs were characterized by UV-Vis spectrophotometry and Dynamic Light Scattering (DLS). The nanoparticles were tested at various concentrations for their impact on the C3A/HepG2-induced MASH model. Among the MNPs tested, AvoSE-AuNPs showed the most promise. They reduced cell proliferation and intracellular lipid content more effectively than CeFE-AuNPs and SAL-AgNPs. Molecular analysis using real-time polymerase chain reaction revealed that AvoSE-AuNPs could potentially reverse MASH effects by reducing the expression of key pro-inflammatory and metabolic genes, including tumor necrosis factor-alpha (TNF-α), Fas cell surface death receptor (FAS), Peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, and Sterol regulatory element-binding protein (SREBPF)-1. Further research is needed to confirm the molecular mechanisms behind the effects of these MNPs and to identify the specific phytochemicals responsible for their synthesis and bioactivities.Keywords: gold nanoparticles, green nanotechnology, metal nanoparticles, obesity
Procedia PDF Downloads 295442 Covalently Conjugated Gold–Porphyrin Nanostructures
Authors: L. Spitaleri, C. M. A. Gangemi, R. Purrello, G. Nicotra, G. Trusso Sfrazzetto, G. Casella, M. Casarin, A. Gulino
Abstract:
Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas.Keywords: gold nanoparticle, porphyrin, surface plasmon resonance, luminescence, nanostructures
Procedia PDF Downloads 1575441 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation
Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha
Abstract:
This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.Keywords: pressure contour, surface tension, volume of fluid, velocity field
Procedia PDF Downloads 4065440 Morphological Study of Trichomes in Indigofera wightii Grah. ex Wigh & Arn., Indigo Dye Species, Traditionally Used by “Thaisongdam” Thailand
Authors: Supanyika Sengsai, Aree Thongpukdee, Chalermchai Kanchanakachain
Abstract:
The study aimed to collect morphological data of secretory structures that contribute to taxonomy of Indigofera. Detail features of trichomes occurrence in vegetative and reproductive organs of Indigofera wightii Grah. ex Wigh & Arn., a species traditionally used as source of indigo to dye “Thaisongdam” clothing were investigated. Examination through light microscopy and scanning electrom microscopy were done. Non secretory, T-shaped trichomes appeared throughout surfaces of stems, leaves, flowers and fruits. Secretory or glandular trichomes occurred in two types; one has big cylindrical head and short peduncle, distributed on adaxial surface of sepals and around the pedicel, whereas another possesses smaller cylindrical head but long peduncle. The latter was found on apical surface of immature pods. No phenolic and lipophilic compounds were detected from these glands.Keywords: indigofera, trichome, Thaisongdam, Thailand
Procedia PDF Downloads 3085439 New Drug Discoveries and Packaging Challenges
Authors: Anupam Chanda
Abstract:
Presently Packaging plays a significant role for drug discoveries. The process of selecting materials and the type of packaging also offers an opportunity for the Packaging scientist to look for biological delivery choices. Most injectable protein products were supplied in some sort of glass vial, prefilled syringe, cartridge. Those product having high Ph content there is a chance of “delamination “from inner surface of glass vial. With protein-based drugs, the biggest issue is the effect of packaging derivatives on the protein’s threedimensional and surface structure. These are any effects that relate to denaturation or aggregation of the protein due to oxidation or interactions from contaminants or impurities in the preparation. The potential for these effects needs to be carefully considered in choosing the container and the container closure system to avoid putting patients in jeopardy. Cause of Delamination : -Formulations with a high pH include phosphate and citrate buffers increase the risk of glass delamination. -High alkali content in glass could accelerate erosion. -High temperature during the vial-forming process increase the risk of glass delamination. -Terminal sterilization (irradiated at 20-40 kGy for 150 min) also is a risk factor for specific products(veterinary parenteral administration),could cause delamination. -High product-storage temperatures and long exposure times can increase the rate and severity of glass delamination. How to prevent Delamination -Treating the surface of the glass vials with materials, such as ammonium sulfate or siliconization can reduce the rate of glass erosion. -Consider alternative sterilization methods only in rare cases. -The correct specification for the glass to ensure its suitability for the pH of the product. -Use Cyclic olefin copolymer(COC)/Cyclic olefin Polymer(COP) Adsorption of protein and Solutions: Option#1 Coat with linear methoxylated polyglycerol and hyperbranchedmethoxylated polyglycerol. Option#2 Thehyperbranched non-methoxylated coating performed best. Option#3 Coat with hyperbranched polyglycerol Option#4 Right selection of Sterilization of glass vial/syringe.Keywords: delamination of glass, ptrotien adoptions inside the glass surface, extractable & leachable solutions, injectable designs for new drugs
Procedia PDF Downloads 945438 Topology Optimization of Heat Exchanger Manifolds for Aircraft
Authors: Hanjong Kim, Changwan Han, Seonghun Park
Abstract:
Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.Keywords: topology optimization, manifold, heat exchanger, 3D printing
Procedia PDF Downloads 2505437 Corrosion Inhibition of Copper in 1M HNO3 Solution by Oleic Acid
Authors: S. Nigri, R. Oumeddour, F. Djazi
Abstract:
The inhibition of the corrosion of copper in 1 M HNO3 solution by oleic acid was investigated by weight loss measurement, potentiodynamic polarization and scanning electron microscope (SEM) studies. The experimental results have showed that this compound revealed a good corrosion inhibition and the inhibition efficiency is increased with the inhibitor concentration to reach 98%. The results obtained revealed that the adsorption of the inhibitor molecule onto metal surface is found to obey Langmuir adsorption isotherm. The temperature effect on the corrosion behavior of copper in 1 M HNO3 without and with inhibitor at different concentration was studied in the temperature range from 303 to 333 K and the kinetic parameters activation such as Ea, ∆Ha and ∆Sa were evaluated. Tafel plot analysis revealed that oleic acid acts as a mixed type inhibitor. SEM analysis substantiated the formation of protective layer over the copper surface.Keywords: oleic acid, weight loss, electrochemical measurement, SEM analysis
Procedia PDF Downloads 3965436 WT1 Exprassion in Malignant Surface Epithelial Ovarian Tumors
Authors: Mahmoodreza Tahamtan
Abstract:
Background: Malignant surface epithelial ovarian tumors (SEOT) account for approximately 90% of primary ovarian cancer. Wilms tumor gene (WT1) product was defined as a tumor suppressor gene, but today it is considered capable of performing oncogenic functions. There seems to be differences in WT1 expression patterns among SEOT subtypes. We evaluate the immunohistochemical expression of WT1 protein among different histologic subtypes of SEOT. Materials and Methods: Immunohistochemistry for WT1 was done on 35 serous cystadenocarcinomas, 9 borderline serous tumors, 3 mucinous cystadenocarcinomas, 10 borderline mucinous tumors, 7 endometrioid ovarian carcinomas, 3 clear cell carcinomas, 1 malignant Brenner tumor, 2 metastatic adenocarcinomas, and 6 endometrial adenocarcinomas. A tumor was considered negative if < 1% of tumor cells were stained.Positive reactions were graded as follows:1+,1%-24%; 2+,25%-49%; 3+,50%-74%; 4+,75%-100%. Results: Of the 35 cases of ovarian serous cystadenocarcinoma, 30(85.7%) were diffusely positive (3+,4+),4 showed reactivity of < 50% of the tumor cells (1+,2+), and one were negative. All 9 borderline serous tumors showed immunoreactivity with WT1. All the mucinous tumors(n:13), endometrioid carcinomas (n: 7), clear cell carcinomas (n: 3), metastatic adenocarcinomas (n: 2) and primary endometrial carcinomas (n:6) were negative. The single malignant Brenner tumor showed a positive reaction for WT1(4+) Conclusion: WT1 is a good marker to distinguish primary ovarian serous carcinomas from other surface epithelial tumors (especially endometrioid subtype) and metastatic carcinomas (especially endometrial serous carcinoma), other than malignant mesothelioma. We cannot rely to the degree of expression inorder to separate high grade borderline serous tumors from low grade ones.Keywords: WT1, ovary, epithelial tumors, malignant
Procedia PDF Downloads 1045435 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability
Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi
Abstract:
The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, this type of machines has always been used prudently and are non efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565µm, indicating that this machine tool is capable of producing higher product quality.Keywords: frequency response, finite element, gantry machine, gantry design, static and dynamic analysis
Procedia PDF Downloads 3595434 A Study of 3 Different Reintroduction Regimens in Anti-Tubercular Therapy-Induced Hepatitis in Extra-Pulmonary Tuberculosis
Authors: Alpana Meena
Abstract:
Background: Tuberculosis is one of the major causes of death in south-east nations. Anti-TB–induced hepatotoxicity (AIH) is associated with a mortality of 6%–12%. The risk is increased when the drugs are combined. Reintroduction of anti-tuberculosis drugs in patients with AIH has never been studied systematically. The present study was planned to see the clinical profile of patients of AIH and the response to reintroduction of therapy. Methods: The trial was conducted in the Department of Medicine, Maulana Azad Medical College and associated Lok Nayak Hospital, on 32 patients with extra-pulmonary tuberculosis who developed AIH. Patients were randomly allocated into 3 groups. In group 1- Isoniazid (INH) and Rifampicin (RIF) were given at full dosages (weight calculated) from day 1. In group 2- RIF was given at maximum dosage from day 1 and INH at maximum dosage from day 8. In group 3- INH was given at maximum dosage from day 1 and RIF at maximum dosage from day 8. Pyrazinamide was added when above regimens were tolerated. Results: The mean age of presentation was 29.37±13.497 years. The incidence was found to be highest in patients with tubercular meningitis (41%) followed by abdominal, pericardial, disseminated, spinal, and lymph nodes. The mean latent period for development of AIH was 7.84 days ± 6.149 days and the median normalization days for LFT’s was 8.81 ± 4.22 days (3-21). In the study, 21% patients had recurrence of AIH with majority of patients having tolerated the reintroduction of drugs. Pyrazinamide was introduced after establishing isoniazid and rifampicin safety, thus emphasizing the role of gradual reintroduction of ATT to avoid the combined effects of hepatotoxicity. Conclusion: To conclude, the recurrence rate of hepatotoxicity was not statistically significant between the three groups studied (p > 0.05), and thus all 3 hepatotoxic drugs can be reintroduced safely in patients developing AIH.Keywords: anti-tubercular therapy induced hepatotoxicity, extra-pulmonary tuberculosis, reintroduction regimens, risk factors
Procedia PDF Downloads 3005433 Potential of Water Purification of Turbid Surface Water Sources in Remote Arid and Semi-Arid Rural Areas of Rajasthan by Moringa Oleifera (Drumstick) Tree Seeds
Authors: Pomila Sharma
Abstract:
Rajasthan is among regions with greatest climate sensitivity and lowest adaptive capabilities. In many parts of the Rajasthan surface water which can be highly turbid and contaminated with fecal coliform bacteria is used for drinking purposes. The majority rely almost exclusively upon traditional sources of highly turbid and untreated pathogenic surface water for their domestic water needs. In many parts of rural areas of Rajasthan, it is still difficult to obtain clean water, especially remote habitations with no groundwater due to quality issues or depletion and limited feasibility to connect with surface water schemes due to low density of population in these areas to justify large infrastructure investment. The most viable sources are rain water harvesting, community managed open wells, private wells, ponds and small-scale irrigation reservoirs have often been the main traditional sources of rural drinking water. Turbidity is conventionally removed by treating the water with expensive chemicals. This study has to investigate the use of crushed seeds from the tree Moringa oleifera (drumstick) as a natural alternative to conventional coagulant chemicals. The use of Moringa oleifera seed powder can produce potable water of higher quality than the original source. Moringa oleifera a native species of northern India, the tree is now grown extensively throughout the tropics and found in many countries of Africa, Asia & South America. The seeds of tree contains significant quantities of low molecular weight, water soluble proteins which carries the positive charge when the crushed seeds are added to water. This protein binds in raw water with negatively charged turbid water with bacteria, clay, algae, etc. Under proper mixing, these particles make flocks, which may be left to settle by gravity or be removed by filtration. Using Moringa oleifera as a replacement coagulation in such surface sources of arid and semi-arid areas can meet the need for water purification in remote places of Rajasthan state of India. The present study accesses to find out laboratory based investigation of the effect of seeds of Moringa tree on its coagulation effectiveness (purification) using turbid water samples of surface source of the Rajasthan state. In this study, moringa seed powder showed that filtering with seed powder may diminish water pollution and bacterial counts. Results showed Moringa oleifera seeds coagulate 90-95% of turbidity and color efficiently leading to an aesthetically clear supernatant & reduced about 85-90% of bacterial load reduction in samples.Keywords: bacterial load, coagulant, turbidity, water purification
Procedia PDF Downloads 1475432 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties
Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich
Abstract:
Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis
Procedia PDF Downloads 1085431 Effect of Primer on Bonding between Resin Cement and Zirconia Ceramic
Authors: Deog-Gyu Seo, Jin-Soo Ahn
Abstract:
Objectives: Recently, the development of adhesive primers on stable bonding between zirconia and resin cement has been on the increase. The bond strength of zirconia-resin cement can be effectively increased with the treatment of primer composed of the adhesive monomer that can chemically bond with the oxide layer, which forms on the surface of zirconia. 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) that contains phosphate ester and acidic monomer 4-methacryloxyethyl trimellitic anhydride(4-META) have been suggested as monomers that can form chemical bond with the surface oxide layer of zirconia. Also, these suggested monomers have proved to be effective zirconia surface treatment for bonding to resin cement. The purpose of this study is to evaluate the effects of primer treatment on the bond strength of Zirconia-resin cement by using three different kinds of primers on the market. Methods: Zirconia blocks were prepared into 60 disk-shaped specimens by using a diamond saw. Specimens were divided into four different groups: first three groups were treated with zirconiaLiner(Sun Medical Co., Ltd., Furutaka-cho, Moriyama, Shiga, Japan), Alloy primer (Kuraray Noritake Dental Inc., Sakaju, Kurashiki, Okayama, Japan), and Universal primer (Tokuyama dental Corp., Taitou, Taitou-ku, Tokyo, Japan) respectively. The last group was the control with no surface treatment. Dual cured resin cement (Biscem, Bisco Inc., Schaumburg, IL, USA) was luted to each group of specimens. And then, shear bond strengths were measured by universal tesing machine. The significance of the result was statistically analyzed by one-way ANOVA and Tukey test. The failure sites in each group were inspected under a magnifier. Results: Mean shear bond strength were 0.60, 1.39, 1.03, 1.38 MPa for control, Zirconia Liner (ZL), Alloy primer (AP), Universal primer (UP), respectively. Groups with application of each of the three primers showed significantly higher shear bond strength compared to the control group (p < 0.05). Among the three groups with the treatment, ZL and UP showed significantly higher shear bond strength than AP (p < 0.05), and there were no significant differences in mean shear bond strength between ZL and UP (p < 0.05). While the most specimens of control groups showed adhesive failure (80%), the most specimens of three primer-treated groups showed cohesive or mixed failure (80%).Keywords: primer, resin cement, shear bond strength, zirconia
Procedia PDF Downloads 2035430 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study
Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes
Abstract:
The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.Keywords: coal ash, mine tailings, paste blends, surface disposal
Procedia PDF Downloads 2975429 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.Keywords: settlement, Subway Line, FLAC3D, ANFIS Method
Procedia PDF Downloads 2355428 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles
Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver
Abstract:
Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.Keywords: cancer cell, nanoparticles, cell culture, SEM
Procedia PDF Downloads 7355427 Effects of GRF on CMJ in Different Wooden Surface Systems
Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen
Abstract:
Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad
Procedia PDF Downloads 4475426 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings
Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof
Abstract:
False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes
Procedia PDF Downloads 3075425 The High Efficiency of Cationic Azo Dye Removal Using Raw, Purified and Pillared Clay from Algerian Clay
Authors: Amina Ramdani, Abdelkader Kadeche, Zoubida Taleb, Safia Taleb
Abstract:
The aim of this present study is to evaluate the adsorption capacity of a dye, Malachite green, on a local Algerian montmorillonite clay mineral (raw, purified and Cr-pillared). Various parameters influencing the dye adsorption process ie contact time, adsorbent dose, initial concentration of dye, pH of the solution and temperature. Cr pillared clay has been obtained with a better surface character than purified and natural clay. An increase in basal spacing from 12.45 Å (Mont-Na) to 22.88 Å (Mont-PLCr), surface area from 67 m2 /g (Mont-Na) to 102 m2 /g (Mont-PLCr). The experimental results show that the dye adsorption kinetic were fast: 5 min for Cr-pillared clay mineral, and 30 min for raw and purified clay mineral (RC and Mont-Na). The removal efficiency on Mont-PLCr (98.64%) is greater than that of Mont-Na (86.20%) and RC (82.09%). The acidity and basicity of the medium considerably affect the adsorption of the dye. It attained its maximum at pH 4.8. The equilibrium and kinetic data were found to fit well the Langmuir model and the pseudo-second-order model.Keywords: Dye removal, pillared clay, isotherm, kinetic
Procedia PDF Downloads 1675424 In silico and in vitro Investigation of the Role of Acinetobacter baumannii in the Pathogenesis of Multiple Sclerosis
Authors: Kieren Luellman, Makenzi Rockwell, Eduardo Callegari, Nichole Haag, Chun Wu
Abstract:
Multiple sclerosis (MS) is an autoimmune disorder that damages the myelin sheath of neurons in the central nervous system. The presence of Acinetobacter bacteria and anti-Acinetobacter antibodies in MS patients has led to the hypothesis that the bacteria may contribute to MS pathogenesis. In this study, the protein sequences of Acinetobacter baumannii were compared to five peptides from three mammalian myelin proteins, i.e., Proteolipid Protein (PLP): PLP 139-151, PLP 178-191, Myelin Basic Protein (MBP): MBP 84-104 and Myelin Oligodendrocyte Glycoprotein (MOG): MOG 35-55 and MOG 92-106 respectively, known to induce experimental autoimmune encephalomyelitis (EAE), a condition similar to MS. We found 11 hits (i.e., with five or more amino acid sequence similarity) in Acinetobacter baumannii, which are identical or similar to PLP139-151, 32 hits to PLP178-191, 35 to MBP 84-104, 41 hits to MOG 35-55 and 26 hits to MOG92-106. In addition, Western blotting was used to assess possible interaction between the bacterial proteins and human anti-MBP, anti-MOG, and anti-PLP antibodies produced in rabbits, corresponding to MBP 84-104, MOG 35-55, and PLP 139-151, respectively. We found that both human Polyclonal anti-MOG antibody and anti-PLP antibody recognized a protein or more proteins of the same molecular mass of around 25 kDa. in Acinetobacter baumannii. The results suggested that this/these protein(s) might potentially serve as antigen(s) to induce anti-MOG antibody and anti-PLP antibody production in mammalian B cells. The proteomic study identified 433 hits, among which the sequence of Acinetobacter baumannii protein 491 subunit A matches a previously published enzyme Acinetobacter 3-Oxoadipate CoA-Transferase, in which a fragment of its peptide was observed to recognize MS patient serum via ELISA method. Our findings might pave the road to understanding one of the pathogenesis mechanisms of MS.Keywords: multiple sclerosis, pathogenesis, Acinetobacter baumannii, antibody recognition
Procedia PDF Downloads 121