Search results for: speech signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5626

Search results for: speech signal processing

5506 The Complaint Speech Act Set Produced by Arab Students in the UAE

Authors: Tanju Deveci

Abstract:

It appears that the speech act of complaint has not received as much attention as other speech acts. However, the face-threatening nature of this speech act requires a special attention in multicultural contexts in particular. The teaching context in the UAE universities, where a big majority of teaching staff comes from other cultures, requires investigations into this speech act in order to improve communication between students and faculty. This session will outline the results of a study conducted with this purpose. The realization of complaints by Freshman English students in Communication courses at Petroleum Institute was investigated to identify communication patterns that seem to cause a strain. Data were collected using a role-play between a teacher and students, and a judgment scale completed by two of the instructors in the Communications Department. The initial findings reveal that the students had difficulty putting their case, produced the speech act of criticism along with a complaint and that they produced both requests and demands as candidate solutions. The judgement scales revealed that the students’ attitude was not appropriate most of the time and that the judges would behave differently from students. It is concluded that speech acts, in general, and complaint, in particular, need to be taught to learners explicitly to improve interpersonal communication in multicultural societies. Some teaching ideas are provided to help increase foreign language learners’ sociolinguistic competence.

Keywords: speech act, complaint, pragmatics, sociolinguistics, language teaching

Procedia PDF Downloads 507
5505 Searching Linguistic Synonyms through Parts of Speech Tagging

Authors: Faiza Hussain, Usman Qamar

Abstract:

Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.

Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics

Procedia PDF Downloads 307
5504 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 281
5503 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal

Authors: Jugal Bhandari, K. Hari Priya

Abstract:

The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.

Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language

Procedia PDF Downloads 367
5502 On Overcoming Common Oral Speech Problems through Authentic Films

Authors: Tamara Matevosyan

Abstract:

The present paper discusses the main problems that students face while developing oral skills through authentic films. It states that special attention should be paid not only to the study of verbal speech but also to non-verbal communication. Authentic films serve as an important tool to understand both native speaker’s gestures and their culture of pausing while speaking. Various phonetic difficulties causing phonetic interference in actual speech are covered in the paper emphasizing the role of authentic films in overcoming them.

Keywords: compressive speech, filled pauses, unfilled pauses, pausing culture

Procedia PDF Downloads 353
5501 Makhraj Recognition Using Convolutional Neural Network

Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak

Abstract:

This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.

Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow

Procedia PDF Downloads 335
5500 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array

Procedia PDF Downloads 385
5499 Cognitive SATP for Airborne Radar Based on Slow-Time Coding

Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu

Abstract:

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.

Keywords: space-time adaptive processing (STAP), airborne radar, signal-to-clutter ratio, slow-time coding

Procedia PDF Downloads 273
5498 Lip Localization Technique for Myanmar Consonants Recognition Based on Lip Movements

Authors: Thein Thein, Kalyar Myo San

Abstract:

Lip reading system is one of the different supportive technologies for hearing impaired, or elderly people or non-native speakers. For normal hearing persons in noisy environments or in conditions where the audio signal is not available, lip reading techniques can be used to increase their understanding of spoken language. Hearing impaired persons have used lip reading techniques as important tools to find out what was said by other people without hearing voice. Thus, visual speech information is important and become active research area. Using visual information from lip movements can improve the accuracy and robustness of a speech recognition system and the need for lip reading system is ever increasing for every language. However, the recognition of lip movement is a difficult task because of the region of interest (ROI) is nonlinear and noisy. Therefore, this paper proposes method to detect the accurate lips shape and to localize lip movement towards automatic lip tracking by using the combination of Otsu global thresholding technique and Moore Neighborhood Tracing Algorithm. Proposed method shows how accurate lip localization and tracking which is useful for speech recognition. In this work of study and experiments will be carried out the automatic lip localizing the lip shape for Myanmar consonants using the only visual information from lip movements which is useful for visual speech of Myanmar languages.

Keywords: lip reading, lip localization, lip tracking, Moore neighborhood tracing algorithm

Procedia PDF Downloads 352
5497 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading

Authors: Danladi Ali, Onah Festus Iloabuchi

Abstract:

In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using one-dimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment

Procedia PDF Downloads 338
5496 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography

Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu

Abstract:

Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.

Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli

Procedia PDF Downloads 254
5495 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, e-health sensor shield, Raspberry Pi, wiFi technology

Procedia PDF Downloads 401
5494 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
5493 Developing an Intonation Labeled Dataset for Hindi

Authors: Esha Banerjee, Atul Kumar Ojha, Girish Nath Jha

Abstract:

This study aims to develop an intonation labeled database for Hindi. Although no single standard for prosody labeling exists in Hindi, researchers in the past have employed perceptual and statistical methods in literature to draw inferences about the behavior of prosody patterns in Hindi. Based on such existing research and largely agreed upon intonational theories in Hindi, this study attempts to develop a manually annotated prosodic corpus of Hindi speech data, which can be used for training speech models for natural-sounding speech in the future. 100 sentences ( 500 words) each for declarative and interrogative types have been labeled using Praat.

Keywords: speech dataset, Hindi, intonation, labeled corpus

Procedia PDF Downloads 197
5492 Assessment of the Occupancy’s Effect on Speech Intelligibility in Al-Madinah Holy Mosque

Authors: Wasim Orfali, Hesham Tolba

Abstract:

This research investigates the acoustical characteristics of Al-Madinah Holy Mosque. Extensive field measurements were conducted in different locations of Al-Madinah Holy Mosque to characterize its acoustic characteristics. The acoustical characteristics are usually evaluated by the use of objective parameters in unoccupied rooms due to practical considerations. However, under normal conditions, the room occupancy can vary such characteristics due to the effect of the additional sound absorption present in the room or by the change in signal-to-noise ratio. Based on the acoustic measurements carried out in Al-Madinah Holy Mosque with and without occupancy, and the analysis of such measurements, the existence of acoustical deficiencies has been confirmed.

Keywords: Al-Madinah Holy Mosque, mosque acoustics, speech intelligibility, worship sound

Procedia PDF Downloads 177
5491 All Optical Wavelength Conversion Based On Four Wave Mixing in Optical Fiber

Authors: Surinder Singh, Gursewak Singh Lovkesh

Abstract:

We have designed wavelength conversion based on four wave mixing in an optical fiber at 10 Gb/s. The power of converted signal increases with increase in signal power. The converted signal power is investigated as a function of input signal power and pump power. On comparison of converted signal power at different value of input signal power, we observe that best converted signal power is obtained at -2 dBm input signal power for both up conversion as well as for down conversion. Further, FWM efficiency, quality factor is observed for increase in input signal power and optical fiber length.

Keywords: FWM, optical fiiber, wavelngth converter, quality

Procedia PDF Downloads 579
5490 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 63
5489 The Philippines’ War on Drugs: a Pragmatic Analysis on Duterte's Commemorative Speeches

Authors: Ericson O. Alieto, Aprillete C. Devanadera

Abstract:

The main objective of the study is to determine the dominant speech acts in five commemorative speeches of President Duterte. This study employed Speech Act Theory and Discourse analysis to determine how the speech acts features connote the pragmatic meaning of Duterte’s speeches. Identifying the speech acts is significant in elucidating the underlying message or the pragmatic meaning of the speeches. From the 713 sentences or utterances from the speeches, assertive with 208 occurrences from the corpus or 29% is the dominant speech acts. It was followed by expressive with 177 or 25% occurrences, directive accounts for 152 or 15% occurrences. While commisive accounts for 104 or 15% occurrences and declarative got the lowest percentage of occurrences with 72 or 10% only. These sentences when uttered by Duterte carry a certain power of language to move or influence people. Thus, the present study shows the fundamental message perceived by the listeners. Moreover, the frequent use of assertive and expressive not only explains the pragmatic message of the speeches but also reflects the personality of President Duterte.

Keywords: commemorative speech, discourse analysis, duterte, pragmatics

Procedia PDF Downloads 287
5488 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 262
5487 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 44
5486 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 499
5485 Hate Speech Detection Using Machine Learning: A Survey

Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile

Abstract:

Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.

Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection

Procedia PDF Downloads 177
5484 Transient Signal Generator For Fault Indicator Testing

Authors: Mohamed Shaban, Ali Alfallah

Abstract:

This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signal

Keywords: signal generator-fault indicator, harmonic signal generator, voltage output

Procedia PDF Downloads 495
5483 Role of Speech Language Pathologists in Vocational Rehabilitation

Authors: Marlyn Mathew

Abstract:

Communication is the key factor in any vocational /job set-up. However many persons with disabilities suffer a deficit in this very area in terms of comprehension, expression and cognitive skills making it difficult for them to get employed appropriately or stay employed. Vocational Rehabilitation is a continuous and coordinated process which involves the provision of vocational related services designed to enable a person with disability to obtain and maintain employment. Therefore the role of the speech language pathologist is crucial in assessing the communication deficits and needs of the individual at the various phases of employment- right from the time of seeking a job and attending interview with suitable employers and also at regular intervals of the employment. This article discusses the various communication deficits and the obstacles faced by individuals with special needs including but not limited to cognitive- linguistic deficits, execution function deficits, speech and language processing difficulties and strategies that can be introduced in the workplace to overcome these obstacles including use of visual cues, checklists, flow charts. The paper also throws light on the importance of educating colleagues and work partners about the communication difficulties faced by the individual. This would help to reduce the communication barriers in the workplace, help colleagues develop an empathetic approach and also reduce misunderstandings that can arise as a result of the communication impairment.

Keywords: vocational rehabilitation, disability, speech language pathologist, cognitive, linguistics

Procedia PDF Downloads 135
5482 Automatic Assignment of Geminate and Epenthetic Vowel for Amharic Text-to-Speech System

Authors: Tadesse Anberbir, Felix Bankole, Tomio Takara, Girma Mamo

Abstract:

In the development of a text-to-speech synthesizer, automatic derivation of correct pronunciation from the grapheme form of a text is a central problem. Particularly deriving phonological features which are not shown in orthography is challenging. In the Amharic language, geminates and epenthetic vowels are very crucial for proper pronunciation but neither is shown in orthography. In this paper, we proposed and integrated a morphological analyzer into an Amharic Text-to-Speech system, mainly to predict geminates and epenthetic vowel positions, and prepared a duration modeling method. Amharic Text-to-Speech system (AmhTTS) is a parametric and rule-based system that adopts a cepstral method and uses a source filter model for speech production and a Log Magnitude Approximation (LMA) filter as the vocal tract filter. The naturalness of the system after employing the duration modeling was evaluated by sentence listening test and we achieved an average Mean Opinion Score (MOS) 3.4 (68%) which is moderate. By modeling the duration of geminates and controlling the locations of epenthetic vowel, we are able to synthesize good quality speech. Our system is mainly suitable to be customized for other Ethiopian languages with limited resources.

Keywords: Amharic, gemination, speech synthesis, morphology, epenthesis

Procedia PDF Downloads 87
5481 Systemic Functional Grammar Analysis of Barack Obama's Second Term Inaugural Speech

Authors: Sadiq Aminu, Ahmed Lamido

Abstract:

This research studies Barack Obama’s second inaugural speech using Halliday’s Systemic Functional Grammar (SFG). SFG is a text grammar which describes how language is used, so that the meaning of the text can be better understood. The primary source of data in this research work is Barack Obama’s second inaugural speech which was obtained from the internet. The analysis of the speech was based on the ideational and textual metafunctions of Systemic Functional Grammar. Specifically, the researcher analyses the Process Types and Participants (ideational) and the Theme/Rheme (textual). It was found that material process (process of doing) was the most frequently used ‘Process type’ and ‘We’ which refers to the people of America was the frequently used ‘Theme’. Application of the SFG theory, therefore, gives a better meaning to Barack Obama’s speech.

Keywords: ideational, metafunction, rheme, textual, theme

Procedia PDF Downloads 159
5480 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 480
5479 Improvement of Piezoresistive Pressure Sensor Accuracy by Means of Current Loop Circuit Using Optimal Digital Signal Processing

Authors: Peter A. L’vov, Roman S. Konovalov, Alexey A. L’vov

Abstract:

The paper presents the advanced digital modification of the conventional current loop circuit for pressure piezoelectric transducers. The optimal DSP algorithms of current loop responses by the maximum likelihood method are applied for diminishing of measurement errors. The loop circuit has some additional advantages such as the possibility to operate with any type of resistance or reactance sensors, and a considerable increase in accuracy and quality of measurements to be compared with AC bridges. The results obtained are dedicated to replace high-accuracy and expensive measuring bridges with current loop circuits.

Keywords: current loop, maximum likelihood method, optimal digital signal processing, precise pressure measurement

Procedia PDF Downloads 529
5478 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal

Authors: Han Xue, Zhang Lanyue

Abstract:

In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.

Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network

Procedia PDF Downloads 529
5477 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method

Authors: João Rato, Nuno Costa

Abstract:

The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.

Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate

Procedia PDF Downloads 322