Search results for: clinical decision support
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13204

Search results for: clinical decision support

13084 Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms

Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal

Abstract:

Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers.

Keywords: mixed integer problem, fresh fruit production, support decision model, agricultural and biosystems engineering

Procedia PDF Downloads 436
13083 Neural Correlates of Decision-Making Under Ambiguity and Conflict

Authors: Helen Pushkarskaya, Michael Smithson, Jane E. Joseph, Christine Corbly, Ifat Levy

Abstract:

Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional Magnetic Resonance Imaging (fMRI) and a simple gamble design to study this question. In this design, the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on both expected value and variance. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across subjects. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. This novel double dissociation indicates that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.

Keywords: decision making, uncertainty, ambiguity, conflict, fMRI

Procedia PDF Downloads 563
13082 Aircraft Line Maintenance Equipped with Decision Support System

Authors: B. Sudarsan Baskar, S. Pooja Pragati, S. Raj Kumar

Abstract:

The cost effectiveness in aircraft maintenance is of high privilege in the recent days. The cost effectiveness can be effectively made when line maintenance activities are incorporated at airports during Turn around time (TAT). The present work outcomes the shortcomings that affect the dispatching of the aircrafts, aiming at high fleet operability and low maintenance cost. The operational and cost constraints have been discussed and a suggestive alternative mechanism is proposed. The possible allocation of all deferred maintenance tasks to a set of all deferred maintenance tasks to a set of suitable airport resources have termed as alternative and is discussed in this paper from the data’s collected from the kingfisher airlines.

Keywords: decision support system, aircraft maintenance planning, maintenance-cost, RUL(remaining useful life), logistics, supply chain management

Procedia PDF Downloads 500
13081 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis

Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga

Abstract:

Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.

Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree

Procedia PDF Downloads 253
13080 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 371
13079 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer

Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner

Abstract:

Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.

Keywords: calculation of risk factor, fuzzy logic, fuzzy programming for ship, safety navigation of ships

Procedia PDF Downloads 188
13078 Developing Telehealth-Focused Advanced Practice Nurse Educational Partnerships

Authors: Shelley Y. Hawkins

Abstract:

Introduction/Background: As technology has grown exponentially in healthcare, nurse educators must prepare Advanced Practice Registered Nurse (APRN) graduates with the knowledge and skills in information systems/technology to support and improve patient care and health care systems. APRN’s are expected to lead in caring for populations who lack accessibility and availability through the use of technology, specifically telehealth. The capacity to effectively and efficiently use technology in patient care delivery is clearly delineated in the American Association of Colleges of Nursing (AACN) Doctor of Nursing Practice (DNP) and Master of Science in Nursing (MSN) Essentials. However, APRN’s have minimal, or no, exposure to formalized telehealth education and lack necessary technical skills needed to incorporate telehealth into their patient care. APRN’s must successfully master the technology using telehealth/telemedicine, electronic health records, health information technology, and clinical decision support systems to advance health. Furthermore, APRN’s must be prepared to lead the coordination and collaboration with other healthcare providers in their use and application. Aim/Goal/Purpose: The purpose of this presentation is to establish and operationalize telehealth-focused educational partnerships between one University School of Nursing and two health care systems in order to enhance the preparation of APRN NP students for practice, teaching, and/or scholarly endeavors. Methods: The proposed project was initially presented by the project director to selected multidisciplinary stakeholders including leadership, home telehealth personnel, primary care providers, and decision support systems within two major health care systems to garner their support for acceptance and implementation. Concurrently, backing was obtained from key university-affiliated colleagues including the Director of Simulation and Innovative Learning Lab and Coordinator of the Health Care Informatics Program. Technology experts skilled in design and production in web applications and electronic modules were secured from two local based technology companies. Results: Two telehealth-focused APRN Program academic/practice partnerships have been established. Students have opportunities to engage in clinically based telehealth experiences focused on: (1) providing patient care while incorporating various technology with a specific emphasis on telehealth; (2) conducting research and/or evidence-based practice projects in order to further develop the scientific foundation regarding incorporation of telehealth with patient care; and (3) participating in the production of patient-level educational materials related to specific topical areas. Conclusions: Evidence-based APRN student telehealth clinical experiences will assist in preparing graduates who can effectively incorporate telehealth into their clinical practice. Greater access for diverse populations will be available as a result of the telehealth service model as well as better care and better outcomes at lower costs. Furthermore, APRN’s will provide the necessary leadership and coordination through interprofessional practice by transforming health care through new innovative care models using information systems and technology.

Keywords: academic/practice partnerships, advanced practice nursing, nursing education, telehealth

Procedia PDF Downloads 240
13077 Digital Platform of Crops for Smart Agriculture

Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye

Abstract:

In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.

Keywords: prediction, machine learning, artificial intelligence, digital agriculture

Procedia PDF Downloads 79
13076 Decision Traps of Military Leaders

Authors: Ahmet Ali Turk, Muhterem Bayram

Abstract:

In this study, it is intended to determine that what kind of traps military leaders fall into during the decision making and how they make take a measure against them. In the study, the domestic and foreign literature on the military leadership has been reviewed and military decision-making process of the different countries has been introduced and study has been designed by making interviews as a sample with 50 people who had made military leadership. The issues resulting from the literature review that led to wrong decisions of military leaders and the points obtained as a result of interview have been evaluated by comparing. As a result, it has been emerged that the personnel who have made especially military leadership are in tendency of making the wrong decision due to decision traps such as excessive self-confidence, lack of experience, unplanned movement, hasty decision making and prohibitive conditions and also the need for increased situational awareness about this condition has been emerged.

Keywords: military leadership, decision making, military decision making, military decision making traps

Procedia PDF Downloads 352
13075 Knowledge Management in the Interactive Portal for Decision Makers on InKOM Example

Authors: K. Marciniak, M. Owoc

Abstract:

Managers as decision-makers present in different sectors should be supported in efficient and more and more sophisticated way. There are huge number of software tools developed for such users starting from simple registering data from business area – typical for operational level of management – up to intelligent techniques with delivering knowledge - for tactical and strategic levels of management. There is a big challenge for software developers to create intelligent management dashboards allowing to support different decisions. In more advanced solutions there is even an option for selection of intelligent techniques useful for managers in particular decision-making phase in order to deliver valid knowledge-base. Such a tool (called Intelligent Dashboard for SME Managers–InKOM) is prepared in the Business Intelligent framework of Teta products. The aim of the paper is to present solutions assumed for InKOM concerning on management of stored knowledge bases offering for business managers. The paper is managed as follows. After short introduction concerning research context the discussed supporting managers via information systems the InKOM platform is presented. In the crucial part of paper a process of knowledge transformation and validation is demonstrated. We will focus on potential and real ways of knowledge-bases acquiring, storing and validation. It allows for formulation conclusions interesting from knowledge engineering point of view.

Keywords: business intelligence, decision support systems, knowledge management, knowledge transformation, knowledge validation, managerial systems

Procedia PDF Downloads 510
13074 Review of Life-Cycle Analysis Applications on Sustainable Building and Construction Sector as Decision Support Tools

Authors: Liying Li, Han Guo

Abstract:

Considering the environmental issues generated by the building sector for its energy consumption, solid waste generation, water use, land use, and global greenhouse gas (GHG) emissions, this review pointed out to LCA as a decision-support tool to substantially improve the sustainability in the building and construction industry. The comprehensiveness and simplicity of LCA make it one of the most promising decision support tools for the sustainable design and construction of future buildings. This paper contains a comprehensive review of existing studies related to LCAs with a focus on their advantages and limitations when applied in the building sector. The aim of this paper is to enhance the understanding of a building life-cycle analysis, thus promoting its application for effective, sustainable building design and construction in the future. Comparisons and discussions are carried out between four categories of LCA methods: building material and component combinations (BMCC) vs. the whole process of construction (WPC) LCA,attributional vs. consequential LCA, process-based LCA vs. input-output (I-O) LCA, traditional vs. hybrid LCA. Classical case studies are presented, which illustrate the effectiveness of LCA as a tool to support the decisions of practitioners in the design and construction of sustainable buildings. (i) BMCC and WPC categories of LCA researches tend to overlap with each other, as majority WPC LCAs are actually developed based on a bottom-up approach BMCC LCAs use. (ii) When considering the influence of social and economic factors outside the proposed system by research, a consequential LCA could provide a more reliable result than an attributional LCA. (iii) I-O LCA is complementary to process-based LCA in order to address the social and economic problems generated by building projects. (iv) Hybrid LCA provides a more superior dynamic perspective than a traditional LCA that is criticized for its static view of the changing processes within the building’s life cycle. LCAs are still being developed to overcome their limitations and data shortage (especially data on the developing world), and the unification of LCA methods and data can make the results of building LCA more comparable and consistent across different studies or even countries.

Keywords: decision support tool, life-cycle analysis, LCA tools and data, sustainable building design

Procedia PDF Downloads 120
13073 Decision-Making Under Uncertainty in Obsessive-Compulsive Disorder

Authors: Helen Pushkarskaya, David Tolin, Lital Ruderman, Ariel Kirshenbaum, J. MacLaren Kelly, Christopher Pittenger, Ifat Levy

Abstract:

Obsessive-Compulsive Disorder (OCD) produces profound morbidity. Difficulties with decision making and intolerance of uncertainty are prominent clinical features of OCD. The nature and etiology of these deficits are poorly understood. We used a well-validated choice task, grounded in behavioral economic theory, to investigate differences in valuation and value-based choice during decision making under uncertainty in 20 unmedicated participants with OCD and 20 matched healthy controls. Participants’ choices were used to assess individual decision-making characteristics. Compared to controls, individuals with OCD were less consistent in their choices and less able to identify options that were unambiguously preferable. These differences correlated with symptom severity. OCD participants did not differ from controls in how they valued uncertain options when outcome probabilities were known (risk) but were more likely than controls to avoid uncertain options when these probabilities were imprecisely specified (ambiguity). These results suggest that the underlying neural mechanisms of valuation and value-based choices during decision-making are abnormal in OCD. Individuals with OCD show elevated intolerance of uncertainty, but only when outcome probabilities are themselves uncertain. Future research focused on the neural valuation network, which is implicated in value-based computations, may provide new neurocognitive insights into the pathophysiology of OCD. Deficits in decision-making processes may represent a target for therapeutic intervention.

Keywords: obsessive compulsive disorder, decision-making, uncertainty intolerance, risk aversion, ambiguity aversion, valuation

Procedia PDF Downloads 614
13072 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class

Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha

Abstract:

This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.

Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting

Procedia PDF Downloads 428
13071 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification

Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike

Abstract:

Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.

Keywords: data mining, decision tree, classification, imbalance dataset

Procedia PDF Downloads 133
13070 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 81
13069 A Model Outlining Feelings vs. Emotions and Why Distinction is Critical

Authors: Brendan Mooney

Abstract:

Context: Feelings and emotions are commonly misunderstood and the terms often used interchangeably, leading to potential negative impacts on individuals' mental well-being and relationships. The distinction between these two fundamentally different experiences of human life is crucial for effective psychological practice and communication. Research Aim: The aim of this study is to outline the disparities between feelings and emotions, emphasising the significance of this differentiation in psychological practice to enhance clients' observation, decision-making, problem-solving, and communication skills. Methodology: This research utilises a conceptual model developed by the author in 2017 based on clinical experience, client observations, and feedback. The model serves to guide effective clinical practice by providing clear definitions and understanding of feelings versus emotions. Case study examples were utilised to support the efficacy of the model. Findings: The study highlights that recognising and expressing feelings rather than emotions is more empowering and conducive to resolving unresolved issues, thereby fostering better psychological well-being and interpersonal relationships. Theoretical Importance: This research underscores the importance of clarifying fundamental definitions related to feelings and emotions in enhancing psychological interventions and preventing various relationship conflicts and individual issues. Data Collection and Analysis Procedures: Data was collected through the author's clinical experience and interactions with clients, informing the development of the Feeling Emotions Mental (FEM) model. Analysis involved synthesising observations and feedback to elucidate the distinctions between feelings and emotions. Questions Addressed: What are the disparities between feelings and emotions? How does the confusion between these two fundamentally different experiences of human life impact individuals' mental well-being and relationships? Why is it essential to differentiate between feelings and emotions in psychological practice? Conclusion: The study advocates for a clear understanding of feelings versus emotions to support clients in addressing unresolved issues and improving their overall psychological functioning and communication skills, thereby preventing potential conflicts and relationship challenges.

Keywords: couples, mental, misinformation, misunderstanding, relationships

Procedia PDF Downloads 39
13068 Evidence Based Medicine: Going beyond Improving Physicians Viewpoints, Usage and Challenges Upcoming

Authors: Peyman Rezaei Hachesu, Vahideh Zareh Gavgani, Zahra Salahzadeh

Abstract:

To survey the attitudes, awareness, and practice of Evidence Based Medicine (EBM), and to determine the barriers that influence apply’ EBM in therapeutic process among clinical residents in Iran.We conducted a cross sectional survey during September to December 2012 at the teaching hospitals of Tehran University of Medical Sciences among 79 clinical residents from different medical specialties. A valid and reliable questionnaire consisted of five sections and 27 statements were used in this research. We applied Spearman and Mann Whitney test for correlation between variables. Findings showed that the knowledge of residents about EBM is low. Their attitude towards EBM was positive but their knowledge and skills in regard with the evidence based medical information resources were mostly limited to PubMed and Google scholar. The main barrier was the lack of enough time to practicing EBM. There was no significant correlation between residency grade and familiarity and use of electronic EBM resources (Spearman, P = 0.138). Integration of training approaches like journal clubs or workshops with clinical practice is suggested.

Keywords: evidence-based medicine, clinical residents, decision-making, attitude, questionnaire

Procedia PDF Downloads 374
13067 Possibilistic Aggregations in the Investment Decision Making

Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze

Abstract:

This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.

Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty

Procedia PDF Downloads 556
13066 Social Support in the Tradition for Pregnant Mother Care In East Nusa Tenggara

Authors: Sri Widati, Ira Nurmala

Abstract:

The Se’i Tradition was considered to contribute highly to the high maternal mortality rate in South Amanuban, East Nusa Tenggara. This tradition is still preserved due to the social support that has influenced the decision to carry out the Se’i to pregnant women and post-partum women. The purpose of this study is to analyze this social support towards the Se’i Tradition on pregnant women in East Nusa Tenggara. This research was an explorative study with in-depth interviews, observations, and focus group discussions (FGD) in collecting the data. This study showed that emotional support towards Se’i was commonly given by families, specifically by the mother-in laws. Instrumental support was shown by the husbands and the traditional midwives who helped delivered the babies. Informational support was found on the pregnant women and their mother-in laws. Appraisal support was given by all the neighbors and relatives of the pregnant women by telling how comfortable it was to go through this tradition which eventually affected those women to carry it out themselves. The Se’i Tradition is still carried out and mostly supported by the relatives of the pregnant women. The first recommendation of this study is to suggest people to only follow the suggestions from the local health staff to give birth in the local health centers and not to do the tradition anymore. The second recommendation is to urge the government to give support in the form of transportation facilities for pregnant women to reach the local health staff.

Keywords: the Se’i tradition, social support, pregnant women, maternal mortality, post-partum women

Procedia PDF Downloads 528
13065 Neighbourhood Design for Independent Living of Adults with Intellectual Disability

Authors: Cate MacMillan, Nicholas J. Stevens, Johanna Rosier, Steven Boyd

Abstract:

Choosing where to live is an important decision for anybody, however, this decision is more complex if you are an adult with intellectual disability. Our research asked adults with intellectual disability, parents and carers and disability, housing and built environment decision makers what they considered important in deciding where to live. If medical advances continue to improve the longevity of adults with intellectual disability, many of these adults will outlive their parents. With appropriate community support, and in appropriately designed neighbourhoods, many will be able to live independently. Our research suggests that the key to achieving independent living as an adult with intellectual disability is not so much about the house but the type of neighbourhood and its design. This paper presents the results of interviews and details a practical approach which will better inform urban development decision-makers in establishing safe, inclusive and accessible neighbourhood design.

Keywords: inclusion, independent living, intellectual disability, neighbourhoods, systems thinking, urban design and planning

Procedia PDF Downloads 352
13064 Awareness about Authenticity of Health Care Information from Internet Sources among Health Care Students in Malaysia: A Teaching Hospital Study

Authors: Renjith George, Preethy Mary Donald

Abstract:

Use of internet sources to retrieve health care related information among health care professionals has increased tremendously as the accessibility to internet is made easier through smart phones and tablets. Though there are huge data available at a finger touch, it is doubtful whether all the sources providing health care information adhere to evidence based practice. The objective of this survey was to study the prevalence of use of internet sources to get health care information, to assess the mind-set towards the authenticity of health care information available via internet sources and to study the awareness about evidence based practice in health care among medical and dental students in Melaka-Manipal Medical College. The survey was proposed as there is limited number of studies reported in the literature and this is the first of its kind in Malaysia. A cross sectional survey was conducted among the medical and dental students of Melaka-Manipal Medical College. A total of 521 students including medical and dental students in their clinical years of undergraduate study participated in the survey. A questionnaire consisting of 14 questions were constructed based on data available from the published literature and focused group discussion and was pre-tested for validation. Data analysis was done using SPSS. The statistical analysis of the results of the survey proved that the use of internet resources for health care information are equally preferred over the conventional resources among health care students. Though majority of the participants verify the authenticity of information from internet sources, there was considerable percentage of candidates who feels that all the information from the internet can be utilised for clinical decision making or were not aware about the need of verification of authenticity of such information. 63.7 % of the participants rely on evidence based practice in health care for clinical decision making while 34.2 % were not aware about it. A minority of 2.1% did not agree with the concept of evidence based practice. The observations of the survey reveals the increasing use of internet resources for health care information among health care students. The results warrants the need to move towards evidence based practice in health care as all health care information available online may not be reliable. The health care person should be judicious while utilising the information from such resources for clinical decision making.

Keywords: authenticity, evidence based practice, health care information, internet

Procedia PDF Downloads 444
13063 Migration and Provision of Support to Left-Behind Parents in Rural Cambodia

Authors: Benjamas Penboon, Zachary Zimmer, Aree Jampaklay

Abstract:

Cambodia is a country where labor migration has been consistently high. Coupled with advancing labor opportunities in urban areas, a function partly of globalization, this is resulting in massive migration out of rural areas. This is particularly true in Cambodia where there are high migration and a very large proportion of adult children living some distant from their parents. This paper explores characteristics associated with migrant providing support to parents in rural Cambodia. With reference to perspectives of family altruism and solidarity, this analysis particularly focusses on how a series of variables representing family integration and residential location associates with intergenerational monetary and instrumental support from migrants. The study hypothesizes that migrants are more likely to provide support when parents are in need, and there are no alternative means of support. Data come from The Rural Household Survey (N=3,713), part of the 2011 Cambodian Rural Urban Migration Project (CRUMP). Multilevel multinomial models indicate international migrants are likely to give money, while internal migrants are likely to provide both money and instrumental support, especially when migrants have no sibling and their parent in poor health status. In addition, employed migrants are two times providing monetary compared to those unemployed. Findings elucidate the decision to which and why support occurs more often when no other source of support exists and also depends on the ability to provide of migrants themselves.

Keywords: migration, left-behind parent, intergenerational relations, support, rural, Cambodia

Procedia PDF Downloads 162
13062 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: data mining, digital libraries, digital preservation, file format

Procedia PDF Downloads 497
13061 A Project Screening System for Energy Enterprise Based on Dempster-Shafer Theory

Authors: Woosik Jang, Seung Heon Han, Seung Won Baek

Abstract:

Natural gas (NG) is an energy resource in a few countries, and most NG producers do business in politically unstable countries. In addition, as 90% of the LNG market is controlled by a small number of international oil companies (IOCs) and national oil companies (NOCs), entry of latecomers into the market is extremely limited. To meet these challenges, project viability needs to be assessed based on limited information from a project screening perspective. However, the early stages of the project have the following difficulties: (1) What are the factors to consider? (2) How many professionals do you need to decide? (3) How to make the best decision with limited information? To address this problem, this study proposes a model for evaluating LNG project viability based on the Dempster-Shafer theory (DST). A total of 11 indicators for analyzing the gas field, reflecting the characteristics of the LNG industry, and 23 indicators for analyzing the market environment, were identified. The proposed model also evaluates the LNG project based on the survey and provides uncertainty of the results based on DST as well as quantified results. Thus, the proposed model is expected to be able to support the decision-making process of the gas field project using quantitative results as a systematic framework, and it was developed as a stand-alone system to improve its usefulness in practice. Consequently, the amount of information and the mathematical approach are expected to improve the quality and opportunity of decision making for LNG projects for enterprises.

Keywords: project screen, energy enterprise, decision support system, Dempster-Shafer theory

Procedia PDF Downloads 340
13060 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 149
13059 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: data mining, knowledge discovery in databases, prediction models, student success

Procedia PDF Downloads 405
13058 Adolescents’ Role in Family Buying Decision Making

Authors: Harleen Kaur, Deepika Jindal Singla

Abstract:

Buying decision making is a complicated process, in which consumer’s decision is under the impact of others. The buying decision making is directed in a way that they have to act as customers in the society. Media and family are key socialising agents for adolescents’. Moreover, changes in the socio-cultural environment in India necessitate that adolescents’ influence in family’s buying decision-making should be investigated. In comparison to Western society, Indian is quite different, when compared in terms of family composition and structure, behaviour, values and norms which effect adolescents’ buying decision-making.

Keywords: adolescents, buying behavior, Indian urban families, consumer socialization

Procedia PDF Downloads 476
13057 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya

Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia

Abstract:

Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.

Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service

Procedia PDF Downloads 158
13056 Strategic Decision Making Practice in Croatia: Which Decision Making Style is More Effective?

Authors: Ivana Bulog

Abstract:

Decision making is a vital part of the business world and any other field of human endeavor. Which way a business organization will take, and where that way will lead it, depends on broad range of decisions made by managers in the managerial structure. Strategic decisions are of the greatest importance for organizational success. Although much empirical research has been done trying to describe and explain its nature and effectiveness, knowledge about strategic decision making is still incomplete. This paper explores the nature of strategic decision making in particular setting - in Croatian companies. The main focus of this research is on the style that decision makers on strategic management level are following when making decisions of life importance for their companies. Two main decision making style that explain the way decision maker collects and processes available information and performs all the activities in strategic decision making process were empirical tested: rational and intuitive one. Besides analyzing their existence on strategic management level in Croatian companies, their effectiveness is analyzed as well. Results showed that decision makers at strategic management level are following both styles somewhat equally in order to function effectively, and that intuitive style is more effective when considering decisions outcomes.

Keywords: decision making style, decision making effectiveness, strategic decisions, management sciences

Procedia PDF Downloads 377
13055 Carrying Out the Steps of Decision Making Process in Concrete Organization

Authors: Eva Štěpánková

Abstract:

The decision-making process is theoretically clearly defined. Generally, it includes the problem identification and analysis, data gathering, goals and criteria setting, alternatives development and optimal alternative choice and its implementation. In practice however, various modifications of the theoretical decision-making process can occur. The managers can consider some of the phases to be too complicated or unfeasible and thus they do not carry them out and conversely some of the steps can be overestimated. The aim of the paper is to reveal and characterize the perception of the individual phases of decision-making process by the managers. The research is concerned with managers in the military environment–commanders. Quantitative survey is focused cross-sectionally in the individual levels of management of the Ministry of Defence of the Czech Republic. On the total number of 135 respondents the analysis focuses on which of the decision-making process phases are problematic or not carried out in practice and which are again perceived to be the easiest. Then it is examined the reasons of the findings.

Keywords: decision making, decision making process, decision problems, concrete organization

Procedia PDF Downloads 472