Search results for: alkaline phosphatase (ALP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 510

Search results for: alkaline phosphatase (ALP)

390 Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer

Authors: Aparna M. Joshi

Abstract:

Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties.

Keywords: doped aluminium oxide, methyl vinyl silicone polymer, microwave synthesis, static dissipation

Procedia PDF Downloads 557
389 Levels of CTX1 in Premenopausal Osteoporotic Women Study Conducted in Khyberpuktoonkhwa Province, Pakistan

Authors: Mehwish Durrani, Rubina Nazli, Muhammad Abubakr, Muhammad Shafiq

Abstract:

Objectives: To evaluate the high socio-economic status, urbanization, and decrease ambulation can lead to early osteoporosis in women reporting from Peshawar region. Study Design: Descriptive cross-sectional study was done. Sample size was 100 subjects, using 30% proportion of osteoporosis, 95% confidence level, and 9% margin of error under WHO software for sample size determination. Place and Duration of study: This study was carried out in the tertiary referral health care facilities of Peshawar viz PGMI Hayatabad Medical Complex, Peshawar, Khyber Pakhtunkhwa Province, Pakistan. Ethical approval for the study was taken from the Institutional Ethical Research board (IERD) at Post Graduate Medical Institute, Hayatabad Medical Complex, and Peshawar.The study was done in six months time period. Patients and Methods: Levels of CTX1 as a marker of bone degradation in radiographically assessed perimenopausal women was determined. These females were randomly selected and screened for osteoporosis. Hemoglobin in gm/dl, ESR by Westergren method as millimeter in 1 hour, Serum Ca mg/dl, Serum alkaline Phosphatase international units per liter radiographic grade of osteoporosis according to Singh index as 1-6 and CTX 1 level in pg/ml. Results: High levels of CTX1 was observed in perimenopausal osteoporotic women which were radiographically diagnosed as osteoporotic patients. The High socio-economic class also predispose to osteoporosis. Decrease ambulation another risk factor showed significant association with the increased levels of CTX1. Conclusion: The results of this study propose that minimum ambulation and high socioeconomic class both had significance association with the increase levels of serum CTX1, which in turn will lead to osteoporosis and to its complications.

Keywords: osteoporosis, CTX1, perimenopausal women, Hayatabad Medical Complex, Khyberpuktoonkhwa

Procedia PDF Downloads 331
388 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite

Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan

Abstract:

This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.

Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material

Procedia PDF Downloads 420
387 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature

Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah

Abstract:

The continuous increase in vehicle uptake escalates the number of rubber tyre waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of rubber crumbs in clay roof tiles. The properties of roof tiles composed of clay, rubber crumbs, NaOH, and Na₂SiO₃ with a 10% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50°C for 72 hours, followed by a higher heating temperature of 200°C for 24 hours. The effect of rubber crumbs aggregates as a substitution for the raw clay materials was investigated by varying their concentration from 0% to 2.5%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5% and 1%, while cracks and larger porosity were found at higher crumbs concentrations. Water absorption and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.

Keywords: rubber crumbs, clay, roof tiles, alkaline activators

Procedia PDF Downloads 104
386 Palliative Orthovoltage Radiotherapy and Subcutaneous Infusion of Carboplatin for Treatment of Appendicular Osteosarcoma in Dogs

Authors: Kathryn L. Duncan, Charles A. Kuntz, Alessandra C. Santamaria, James O. Simcock

Abstract:

Access to megavoltage radiation therapy for small animals is limited in many locations around the world. This can preclude the use of palliative radiation therapy for the treatment of appendicular osteosarcoma in dogs. The objective of this study was to retrospectively assess the adverse effects and survival times of dogs with appendicular osteosarcoma that were treated with hypofractionated orthovoltage radiation therapy and adjunctive carboplatin chemotherapy administered via a single subcutaneous infusion. Medical records were reviewed retrospectively to identify client-owned dogs with spontaneously occurring appendicular osteosarcoma that was treated with palliative orthovoltage radiation therapy and a single subcutaneous infusion of carboplatin. Data recorded included signalment, tumour location, results of diagnostic imaging, haematologic and serum biochemical analyses, adverse effects of radiation therapy and chemotherapy, and survival times. Kaplan-Meier survival analysis was performed, and log-rank analysis was used to determine the impact of specific patient variables on survival time. Twenty-three dogs were identified that met the inclusion criteria. Median survival time for dogs was 182 days. Eleven dogs had adverse haematologic effects, 3 had adverse gastrointestinal effects, 6 had adverse effects at the radiation site and 7 developed infections at the carboplatin infusion site. No statistically significant differences were identified in survival times based on sex, tumour location, development of infection, or pretreatment serum alkaline phosphatase. Median survival time and incidence of adverse effects were comparable to those previously reported in dogs undergoing palliative radiation therapy with megavoltage or cobalt radiation sources and conventional intravenous carboplatin chemotherapy. The use of orthovoltage palliative radiation therapy may be a reasonable alternative to megavoltage radiation in locations where access is limited.

Keywords: radiotherapy, veterinary oncology, chemotherapy, osteosarcoma

Procedia PDF Downloads 73
385 Derivation of Human NK Cells from T Cell-Derived Induced Pluripotent Stem Cells Using Xenogeneic Serum-Free and Feeder Cell-Free Culture System

Authors: Aliya Sekenova, Vyacheslav Ogay

Abstract:

The derivation of human induced pluripotent stem cells (iPSCs) from somatic cells by direct reprogramming opens wide perspectives in the regenerative medicine. It means the possibility to develop the personal and, consequently, any immunologically compatible cells for applications in cell-based therapy. The purpose of our study was to develop the technology for the production of NK cells from T cell-derived induced pluripotent stem cells (TiPSCs) for subsequent application in adoptive cancer immunotherapy. Methods: In this study iPSCs were derived from peripheral blood T cells using Sendai virus vectors expressing Oct4, Sox2, Klf4 and c-Myc. Pluripotent characteristics of TiPSCs were examined and confirmed with alkaline phosphatase staining, immunocytochemistry and RT-PCR analysis. For NK cell differentiation, embryoid bodies (EB) formed from (TiPSCs) were cultured in xenogeneic serum-free medium containing human serum, IL-3, IL-7, IL-15, SCF, FLT3L without using M210-B4 and AFT-024 stromal feeder cells. After differentiation, NK cells were characterized with immunofluorescence analysis, flow cytometry and cytotoxicity assay. Results: Here, we for the first time demonstrate that TiPSCs can effectively differentiate into functionally active NK cells without M210-B4 and AFT-024 xenogeneic stroma cells. Immunofluorescence and flow cytometry analysis showed that EB-derived cells can differentiate into a homogeneous population of NK cell expressing high levels of CD56, CD45 and CD16 specific markers. Moreover, these cells significantly express killing activation receptors such as NKp44 and NKp46. In the comparative analysis, we observed that NK cells derived using feeder-free culture system have more high killing activity against K-562 tumor cells, than NK cells derived by feeder-dependent method. Thus, we think that our obtained data will be useful for the development of large-scale production of NK cells for translation into cancer immunotherapy.

Keywords: induced pluripotent stem cells, NK cells, T cells, cell diffentiation, feeder cell-free culture system

Procedia PDF Downloads 326
384 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis

Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo

Abstract:

Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.

Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine

Procedia PDF Downloads 173
383 Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt

Authors: O. M. Omar, G. D. Abd Elhameed, A. M. Heniegal, H. A. Mohamadien

Abstract:

Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60 ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study the Local Alkaline Activator in Egypt and dolomite as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa.

Keywords: geopolymer, molarity, sodium hydroxide, sodium silicate

Procedia PDF Downloads 291
382 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards

Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah

Abstract:

Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.

Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation

Procedia PDF Downloads 376
381 Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst

Authors: Kun-Ting Song, Christian Schott, Peter Schneider, Sebastian Watzele, Regina Kluge, Elena Gubanova, Aliaksandr S. Bandarenka

Abstract:

The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work.

Keywords: hydrogen evolution reaction, electrochemical impedance spectroscopy, hydrodynamic methods, electrocatalysis, electrochemical interface

Procedia PDF Downloads 83
380 Effect of Collection Technique of Blood on Clinical Pathology

Authors: Marwa Elkalla, E. Ali Abdelfadil, Ali. Mohamed. M. Sami, Ali M. Abdel-Monem

Abstract:

To assess the impact of the blood collection technique on clinical pathology markers and to establish reference intervals, a study was performed using normal, healthy C57BL/6 mice. Both sexes were employed, and they were randomly assigned to different groups depending on the phlebotomy technique used. The blood was drawn in one of four ways: intracardiac (IC), caudal vena cava (VC), caudal vena cava (VC) plus a peritoneal collection of any extravasated blood, or retroorbital phlebotomy (RO). Several serum biochemistries, such as a liver function test, a complete blood count with differentials, and a platelet count, were analysed from the blood and serum samples analysed. Red blood cell count, haemoglobin (p >0.002), hematocrit, alkaline phosphatase, albumin, total protein, and creatinine were all significantly greater in female mice. Platelet counts, specific white blood cell numbers (total, neutrophil, lymphocyte, and eosinophil counts), globulin, amylase, and the BUN/creatinine ratio were all greater in males. The VC approach seemed marginally superior to the IC approach for the characteristics under consideration and was linked to the least variation among both sexes. Transaminase levels showed the greatest variation between study groups. The aspartate aminotransferase (AST) values were linked with decreased fluctuation for the VC approach, but the alanine aminotransferase (ALT) values were similar between the IC and VC groups. There was a lot of diversity and range in transaminase levels between the MC and RO groups. We found that the RO approach, the only one tested that allowed for repeated sample collection, yielded acceptable ALT readings. The findings show that the test results are significantly affected by the phlebotomy technique and that the VC or IC techniques provide the most reliable data. When organising a study and comparing data to reference ranges, the ranges supplied here by collection method and sex can be utilised to determine the best approach to data collection. The authors suggest establishing norms based on the procedures used by each individual researcher in his or her own lab.

Keywords: clinical, pathology, blood, effect

Procedia PDF Downloads 96
379 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 287
378 Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration

Authors: Vera Lukasova, Eva Filova, Jana Dankova, Vera Sovkova, Matej Daniel, Michala Rampichova

Abstract:

Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S.

Keywords: beta titanium alloy, biocompatibility, differentiation, mesenchymal stem cells

Procedia PDF Downloads 494
377 Hepatoprotective Effect of Ethyl Acetate Fraction of Ficus carica L. Leaves against Carbon Tetrachloride-Induced Toxicity in vitro and in vivo

Authors: Syeda Hira, Muhammad Gulfraz

Abstract:

Background: Liver diseases cause serious health issues. Plants contain active compounds that significantly help in the treatment of various diseases. Ficus carica is traditionally used for the treatment of liver diseases. The purpose of the present study was the isolation and identification of active components from F.carica leaves which are responsible for hepatoprotective activity. Methods: The study was designed to identify the most active hepatoprotective sub-fraction from ethyl acetate fraction of Ficus carica by in vitro study and evaluation of its in vivo hepatoprotective effect in animal models. Ethyl acetate fraction was subjected to column, and a total of eight sub-fractions were obtained. In vitro, the hepatoprotective effect of all sub-fractions was determined on HepG2 cell lines. Toxicity was induced by CCl₄ (Carbon tetrachloride), and silymarin was used as a positive control. On the basis of the results, the most active sub-fraction was subjected to LC-MS and FT-IR analysis for the identification of bioactive compounds. In vivo, the hepatoprotective effect was determined in mice. Toxicity was induced by CCl₄; at the end of the experiment, biochemical parameters such as ALT, AST, ALP, bilirubin, and total protein were estimated in serum. Histopathology of liver tissues was also done. Results: Sub-fraction FVI exhibited significant (P<0.05) hepatoprotective activity as compared to other sub-fractions, which was almost similar to the standard drug silymarin. Six known bioactive compounds were identified from this sub-fraction after LC-MS analysis. In vivo, the hepatoprotective activity of sub-fraction FVI was evaluated in CCl₄-induced toxicated mice. Administration of CCl₄ significantly increased level of ALT (Alanine transaminase), AST (Aspartate aminotransferase), ALP (Alkaline phosphatase), and bilirubin and decreased the total protein. Treatment with sub-fraction FVI significantly (p<0.05) reversed the level of these biomarkers toward normal at both doses of 25 mg/kg and 50 mg/kg. Conclusion: Our findings confirmed the hepatoprotective effect of ethyl acetate fraction of F.carica. It could be a good candidate for the development of a natural hepatoprotective drug; pre-clinical investigation on ethyl acetate fraction is recommended.

Keywords: Ficus carica, hepatoprotective, CCl₄, bioactive compounds, liver markers

Procedia PDF Downloads 62
376 Effect of Concentration of Alkaline and Curing Temperature on Compressive Strength of Geopolymer Concert

Authors: Nursah Kutuk, Sevil Cetinkaya

Abstract:

Geopolymers are becoming new concrete materials to use alongside cement, which are formed due to reaction between alumino-silicates and oxides with alkaline media. Silicates obtained from natural minerals or industrial wastes are used for geopolymer synthesis. Geopolymers have recently received wide attention because of their advantages over other cementitious material like Portland cement. Some of the advantages are high compressive strength, low environmental impact, chemical and fire resistance and thermal stability. In this study, geopolymers were prepared by using inorganic materials such as kaolinite and calcite. The experiments were carried out by varying the concentration of NaOH as 5, 10, 15 and 20 M, and at cure temperature of 22, 45 and 65 °C. Compressive strengths for each mixes at each cure temperature were measured. Results of the analyses indicated that the compressive strength of geopolymers did not increase steadily with increasing concentration of NaOH, but did increase steadily with increasing cure temperature. We examined the effect Na2SiO3/NaOH weight ratio on the properties of the geopolymers, too. It was seen that Na2SiO3/NaOH weight ratio was also important to prepare geopolymers that can be applied to construction industry.

Keywords: geopolymers, compressive strength, kaolinite, calcite

Procedia PDF Downloads 301
375 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish

Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb

Abstract:

This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.

Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters

Procedia PDF Downloads 312
374 Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete

Authors: Ezgi Yurdakul, Klaus-Alexander Rieder, Richard Sibbick

Abstract:

Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators.

Keywords: accelerators, chemical admixtures, shotcrete, sprayed concrete

Procedia PDF Downloads 170
373 Synthesis and Characterization of Cobalt Oxide and Cu-Doped Cobalt Oxide as Photocatalyst for Model Dye Degradation

Authors: Vrinda P. S. Borker

Abstract:

Major water pollutants are dyes from effluents of industries. Different methods have been tried to degrade or treat the effluent before it is left to the environment. In order to understand the degradation process and later apply it to effluents, solar degradation study of methylene blue (MB) and methyl red (MR), the model dyes was carried out in the presence of photo-catalysts, the oxides of cobalt oxide Co₃O₄, and copper doped cobalt oxides (Co₀.₉Cu₀.₁)₃O₄ and (Co₀.₉₅Cu₀.₀₅)₃O₄. They were prepared from oxalate complex and hydrazinated oxalate complex of cobalt as well as mix metals, copper, and cobalt. The complexes were synthesized and characterized by FTIR. Complexes were decomposed to form oxides and were characterized by XRD. They were found to be monophasic. Solar degradation of MR and MB was carried out in presence of these oxides in acidic and basic medium. Degradation was faster in alkaline medium in the presence of Co₃O₄ obtained from hydrazinated oxalate. Doping of nanomaterial oxides modifies their characteristics. Doped cobalt oxides are found to photo-decolourise MR in alkaline media efficiently. In the absence of photocatalyst, solar degradation of alkaline MR does not occur. In acidic medium, MR is minimally decolorized even in the presence of photocatalysts. The industrial textile effluent contains chemicals like NaCl and Na₂CO₃ along with the unabsorbed dye. It is reported that these two chemicals hamper the degradation of dye. The chemicals like K₂S₂O₈ and H₂O₂ are reported to enhance degradation. The solar degradation study of MB in presence of photocatalyst (Co₀.₉Cu₀.₁)₃O₄ and these four chemicals reveals that presence of K₂S₂O₈ and H₂O₂ enhances degradation. It proves that H₂O₂ generates hydroxyl ions required for degradation of dye and the sulphate anion radical being strong oxidant attacks dye molecules leading to its fragmentation rapidly. Thus addition of K₂S₂O₈ and H₂O₂ during solar degradation in presence of (Co₀.₉Cu₀.₁)₃O₄ helps to break the organic moiety efficiently.

Keywords: cobalt oxides, Cu-doped cobalt oxides, H₂O₂ in dye degradation, photo-catalyst, solar dye degradation

Procedia PDF Downloads 178
372 Proprotein Convertase Subtilisin/Kexin Type 9 Enhances Arterial Medial Calcification in a Uremic Rat Model of Chronic Kidney Disease

Authors: Maria Giovanna Lupo, Marina Camera, Marcello Rattazzi, Nicola Ferri

Abstract:

A complex interplay among chronic kidney disease, lipid metabolism and aortic calcification has been recognized starting from results of many clinical and experimental studies. Here we investigated the influence of kidney function on PCSK9 levels, both in uremic rats and in clinical observation study, and its potential direct action on cultured smooth muscle cells (SMCs) calcification. In a cohort of 594 subjects enrolled in a single centre, observational, cross-sectional and longitudinal study, a negative association between GFR and plasma PCSK9 was found. Atherosclerotic cardiovascular disease (ASCVD), as co-morbidity, further increased PCSK9 plasma levels. Diet-induced uremic condition in rats, induced aortic calcification and increased total cholesterol and PCSK9 levels in plasma, livers and kidneys. Immunohistochemical analysis confirmed PCSK9 expression in aortic SMCs. SMCs overexpressing PCSK9 (SMCsPCSK9), cultured for 7-days in a pro-calcification environment (2.0mM or 2.4mM inorganic phosphate, Pi) showed a significantly higher extracellular calcium (Ca2+) deposition compared to mocked SMCs. Under the same experimental conditions, the addition of exogenous recombinant PCSK9 did not increase the extracellular calcification of SMCs. By flow cytometry analysis we showed that SMCsPCSK9, in response to 2.4mM Pi, released higher number of extracellular vesicles (EVs) positive for three tetraspanin molecules, such as CD63, CD9, and CD81. EVs derived from SMCsPCSK9 tended to be more enriched in calcium and alkaline phosphatase (ALPL), compared to EVs from mocks SMCs. In conclusion, our study reveals a direct role of PCSK9 on vascular calcification induced by higher inorganic phosphate levels associated to CKD condition. This effect appears to be mediated by a positive effect of endogenous PCSK9 on the release of EVs containing Ca2+ and ALP, which facilitate the deposition inorganic calcium phosphate crystals.

Keywords: PCSK9, calcification, extracellular vesicles, chronic kidney disease

Procedia PDF Downloads 114
371 A Novel Application of CORDYCEPIN (Cordycepssinensis Extract): Maintaining Stem Cell Pluripotency and Improving iPS Generation Efficiency

Authors: Shih-Ping Liu, Cheng-Hsuan Chang, Yu-Chuen Huang, Shih-Yin Chen, Woei-Cherng Shyu

Abstract:

Embryonic stem cells (ES) and induced pluripotnet stem cells (iPS) are both pluripotent stem cells. For mouse stem cells culture technology, leukemia inhibitory factor (LIF) was used to maintain the pluripotency of stem cells in vitro. However, LIF is an expensive reagent. The goal of this study was to find out a pure compound extracted from Chinese herbal medicine that could maintain stem cells pluripotency to replace LIF and improve the iPS generation efficiency. From 20 candidates traditional Chinese medicine we found that Cordycepsmilitaris triggered the up-regulation of stem cells activating genes (Oct4 and Sox2) expression levels in MEF cells. Cordycepin, a major active component of Cordycepsmilitaris, also could up-regulate Oct4 and Sox2 gene expression. Furthermore, we used ES and iPS cells and treated them with different concentrations of Cordycepin (replaced LIF in the culture medium) to test whether it was useful to maintain the pluripotency. The results showed higher expression levels of several stem cells markers in 10 μM Cordycepin-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryonic body formation and differentiation confirmed that 10 μM Cordycepin-containing medium was capable to maintain stem cells pluripotency after four times passages. For mechanism analysis, microarray analysis indicated extracellular matrix and Jak/Stat signaling pathway as the top two deregulated pathways. In ECM pathway, we determined that the integrin αVβ5 expression levels and phosphorylated Src levels increased after Cordycepin treatment. In addition, the phosphorylated Jak2 and phosphorylated Sat3 protein levels were increased after Cordycepin treatment and suppressed with the Jak2 inhibitor, AG490. The expression of cytokines associated with Jak2/Stat3 signaling pathway were also up-regulated by Q-PCR and ELISA assay. Lastly, we used Oct4-GFP MEF cells to test iPS generation efficiency following Cordycepin treatment. We observed that 10 Μm Cordycepin significantly increased the iPS generation efficiency in day 21. In conclusion, we demonstrated Cordycepin could maintain the pluripotency of stem cells through both of ECM and Jak2/Stat3 signaling pathway and improved iPS generation efficiency.

Keywords: cordycepin, iPS cells, Jak2/Stat3 signaling pathway, molecular biology

Procedia PDF Downloads 438
370 A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification

Authors: Ebrahim Tilahun, Erkan Sahinkaya, Bariş Calli̇

Abstract:

Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications.

Keywords: biogas, bioscrubber, desulfurization, PDMS membrane

Procedia PDF Downloads 226
369 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 128
368 Improving Alkaline Water Electrolysis by Using an Asymmetrical Electrode Cell Design

Authors: Gabriel Wosiak, Felipe Staciaki, Eryka Nobrega, Ernesto Pereira

Abstract:

Hydrogen is an energy carrier with potential applications in various industries. Alkaline electrolysis is a commonly used method for hydrogen production; however, its energy cost remains relatively high compared to other methods. This is due in part to interfacial pH changes that occur during the electrolysis process. Interfacial pH changes refer to the changes in pH that occur at the interface between the cathode electrode and the electrolyte solution. These changes are caused by the electrochemical reactions at both electrodes, which consume or produces hydroxide ions (OH-) from the electrolyte solution. This results in an important change in the local pH at the electrode surface, which can have several impacts on the energy consumption and durability of electrolysers. One impact of interfacial pH changes is an increase in the overpotential required for hydrogen production. Overpotential is the difference between the theoretical potential required for a reaction to occur and the actual potential that is applied to the electrodes. In the case of water electrolysis, the overpotential is caused by a number of factors, including the mass transport of reactants and products to and from the electrodes, the kinetics of the electrochemical reactions, and the interfacial pH. An increase in the interfacial pH at the anode surface in alkaline conditions can lead to an increase in the overpotential for hydrogen production. This is because the lower local pH makes it more difficult for the hydroxide ions to be oxidized. As a result, there is an increase in the required energy to the process occur. In addition to increasing the overpotential, interfacial pH changes can also lead to the degradation of the electrodes. This is because the lower pH can make the electrode more susceptible to corrosion. As a result, the electrodes may need to be replaced more frequently, which can increase the overall cost of water electrolysis. The method presented in the paper addresses the issue of interfacial pH changes by using a cell design with a different cell design, introducing the electrode asymmetry. This design helps to mitigate the pH gradient at the anode/electrolyte interface, which reduces the overpotential and improves the energy efficiency of the electrolyser. The method was tested using a multivariate approach in both laboratory and industrial current density conditions and validated the results with numerical simulations. The results demonstrated a clear improvement (11.6%) in energy efficiency, providing an important contribution to the field of sustainable energy production. The findings of the paper have important implications for the development of cost-effective and sustainable hydrogen production methods. By mitigating interfacial pH changes, it is possible to improve the energy efficiency of alkaline electrolysis and make it a more competitive option for hydrogen production.

Keywords: electrolyser, interfacial pH, numerical simulation, optimization, asymmetric cell

Procedia PDF Downloads 70
367 Analytical Performance of Cobas C 8000 Analyzer Based on Sigma Metrics

Authors: Sairi Satari

Abstract:

Introduction: Six-sigma is a metric that quantifies the performance of processes as a rate of Defects-Per-Million Opportunities. Sigma methodology can be applied in chemical pathology laboratory for evaluating process performance with evidence for process improvement in quality assurance program. In the laboratory, these methods have been used to improve the timeliness of troubleshooting, reduce the cost and frequency of quality control and minimize pre and post-analytical errors. Aim: The aim of this study is to evaluate the sigma values of the Cobas 8000 analyzer based on the minimum requirement of the specification. Methodology: Twenty-one analytes were chosen in this study. The analytes were alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), Amylase, aspartate transaminase (AST), total bilirubin, calcium, chloride, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, lactate dehydrogenase (LDH), magnesium, potassium, protein, sodium, triglyceride, uric acid and urea. Total error was obtained from Clinical Laboratory Improvement Amendments (CLIA). The Bias was calculated from end cycle report of Royal College of Pathologists of Australasia (RCPA) cycle from July to December 2016 and coefficient variation (CV) from six-month internal quality control (IQC). The sigma was calculated based on the formula :Sigma = (Total Error - Bias) / CV. The analytical performance was evaluated based on the sigma, sigma > 6 is world class, sigma > 5 is excellent, sigma > 4 is good and sigma < 4 is satisfactory and sigma < 3 is poor performance. Results: Based on the calculation, we found that, 96% are world class (ALT, albumin, ALP, amylase, AST, total bilirubin, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, LDH, magnesium, potassium, triglyceride and uric acid. 14% are excellent (calcium, protein and urea), and 10% ( chloride and sodium) require more frequent IQC performed per day. Conclusion: Based on this study, we found that IQC should be performed frequently for only Chloride and Sodium to ensure accurate and reliable analysis for patient management.

Keywords: sigma matrics, analytical performance, total error, bias

Procedia PDF Downloads 171
366 Effect of Tissue Preservation Chemicals on Decomposition in Different Soil Types

Authors: Onyekachi Ogbonnaya Iroanya, Taiye Abdullahi Gegele, Frank Tochukwu Egwuatu

Abstract:

Introduction: Forensic taphonomy is a multifaceted area that incorporates decomposition, chemical and biological cadaver exposure in post-mortem event chronology and reconstruction to predict the Post Mortem Interval (PMI). The aim of this study was to evaluate the integrity of DNA extracted from the remains of embalmed decomposed Sus domesticus tissues buried in different soil types. Method: A total of 12 limbs of Sus domesticus weighing between 0.7-1.4 kg were used. Each of the samples across the groups was treated with 10% formaldehyde, absolute methanol and 50% Pine oil for 24 hours before burial except the control samples, which were buried immediately. All samples were buried in shallow simulated Clay, Sandy and Loamy soil graves for 12 months. The DNA for each sample was extracted and quantified with Nanodrop Spectrophotometer (6305 JENWAY spectrometers). The rate of decomposition was examined through the modified qualitative decomposition analysis. Extracted DNA was amplified through PCR and bands visualized via gel electrophoresis. A biochemical enzyme assay was done for each burial grave soil. Result: The limbs in all burial groups had lost weight over the burial period. There was a significant increase in the soil urease level in the samples preserved in formaldehyde across the 3 soil type groups (p≤0.01). Also, the control grave soils recorded significantly higher alkaline phosphatase, dehydrogenase and calcium carbonate values compared to experimental grave soils (p≤0.01). The experimental samples showed a significant decrease in DNA concentration and purity when compared to the control groups (p≤0.01). Obtained findings of the soil biochemical analysis showed the embalming treatment altered the relationship between organic matter decomposition and soil biochemical properties as observed in the fluctuations that were recorded in the soil biochemical parameters. The PCR amplified DNA showed no bands on the gel electrophoresis plates. Conclusion: In criminal investigations, factors such as burial grave soil, grave soil biochemical properties, antemortem exposure to embalming chemicals should be considered in post-mortem interval (PMI) determination.

Keywords: forensic taphonomy, post-mortem interval (PMI), embalmment, decomposition, grave soil

Procedia PDF Downloads 165
365 Assessment of Cattle Welfare Traveling Long Distance from Jessore (Indian Border) to Chittagong, Bangladesh

Authors: Mahabub Alam, Mohammad Mahmudul Hassan, M. Hasanuzzaman, M. Ahasanul Hoque

Abstract:

Animals are transported from one place to another for different purposes in Bangladesh. However, the potential effect of long-distance transport on cattle health has not frequently been studied. Therefore, this study was conducted to assess health conditions of cattle transported from a long distance to Chittagong in Bangladesh. A total of 100 adult cattle, regardless of breed and sex, were selected at Benapole live cattle market in Jessore between August and September 2015 for the study. Blood samples were taken from 50 randomly selected cattle at 0 hours before transportation, just after transportation, at 12-16 hours post-conclusion of transportation, and 24 hours after transportation. The external health conditions and injuries of the cattle were assessed by close inspection, and the trader was interviewed using the structured questionnaire. Images of cattle injuries were taken with a camera. The basic internal health of the cattle was evaluated using standard hemato-biochemical tests. Animals were fasted and remained standing within a small space allocation (8-10 sq feet/animal) in the vehicle during transportation. Animals were provided only with paddy straw and water prior to selling at the destination market. The overall frequency of cattle injuries varied significantly (26% before vs. 47% after transportation; p < 0.001). The frequency of different cattle injuries also significantly varied by types such as abrasion (11% vs. 21%; p < 0.05) and barbed wire injury (9% vs. 18%; p < 0.05). Single cattle injury differed significantly (21% vs. 36%; p < 0.001). Cattle health conditions varied significantly (nasal discharge: 15% vs. 28%; p < 0.05; diarrhea: 15% vs. 23%; p < 0.05 and severe dehydration: 8% vs. 20%; p < 0.001). The values of hemoglobin (Hb), total erythrocyte count (TEC), total leukocyte count (TLC), lymphocyte (L), neutrophil (N) and eosinophil (E) varied significantly (p ≤ 0.01) (Hb: 11.1mg/dl vs. 12.3mg/dl; TEC: 4.7 million/ml vs. 5.7million/ml; TLC: 6.2 thousand/ml vs. 7.3 thousand/ml; L: 61.7% vs. 58.1%; N: 29.7% vs. 32.8%; E: 3.8% vs. 4.7%). The values of serum total protein (TP), creatine kinase (CK), triglyceride (TG), calcium (Ca), phosphorus (P) and alkaline phosphatase (ALP) significantly differed (p ≤ 0.05) (TP: 6.8g/dl vs. 8.2g/dl; CK:574.9u/l vs. 1288u/l; TG: 104.7mg/dl vs. 127.7mg/dl; Ca: 11.3mg/dl vs. 13mg/dl; P: 7.3mg/dl vs. 7.6mg/dl; ALP: 303u/l vs. 363u/l). The identified status of external and internal health conditions of the cattle for trading purpose due to long-distance transportation in the present study indicates a high degree of transport stress and poor animal welfare.

Keywords: animal welfare, cattle, external and internal health conditions, transportation

Procedia PDF Downloads 181
364 Origin of the Eocene Volcanic Rocks in Muradlu Village, Azerbaijan Province, Northwest of Iran

Authors: A. Shahriari, M. Khalatbari Jafari, M. Faridi

Abstract:

Abstract The Muradlu volcanic area is located in Azerbaijan province, NW Iran. The studied area exposed in a vast region includes lesser Caucasus, Southeastern Turkey, and northwestern Iran, comprising Cenozoic volcanic and plutonic massifs. The geology of this extended region was under the influence of the Alpine-Himalayan orogeny. Cenozoic magmatic activities in this vast region evolved through the northward subduction of the Neotethyan subducted slab and subsequence collision of the Arabian and Eurasian plates. Based on stratigraphy and paleontology data, most of the volcanic activities in the Muradlu area occurred in the Eocene period. The Studied volcanic rocks overly late Cretaceous limestone with disconformity. The volcanic sequence includes thick epiclastic and hyaloclastite breccia at the base, laterally changed to pillow lava and continued by hyaloclastite and lave flows at the top of the series. The lava flows display different textures from megaporphyric-phyric to fluidal and microlithic textures. The studied samples comprise picrobasalt basalt, tephrite basanite, trachybasalt, basaltic trachyandesite, phonotephrite, tephrophonolite, trachyandesite, and trachyte in compositions. Some xenoliths with lherzolitic composition are found in picrobasalt. These xenoliths are made of olivine, cpx (diopside), and opx (enstatite), probably the remain of mantle origin. Some feldspathoid minerals such as sodalite presence in the phonotephrite confirm an alkaline trend. Two types of augite phenocrysts are found in picrobasalt, basalt and trachybasalt. The first types are shapeless, with disharmony zoning and sponge texture with reaction edges probably resulted from sodic magma, which is affected by a potassic magma. The second shows a glomerocryst shape. In discriminative diagrams, the volcanic rocks show alkaline-shoshonitic trends. They contain (0.5-7.7) k2O values and plot in the shoshonitic field. Most of the samples display transitional to potassic alkaline trends, and some samples reveal sodic alkaline trends. The transitional trend probably results from the mixing of the sodic alkaline and potassic magmas. The Rare Earth Elements (REE) patterns and spider diagrams indicate enrichment of Large-Ione Lithophile Element (LILE) and depletion of High Field Strength Elements (HFSE) relative to Heavy Rare Earth Elements (HREE). Enrichment of K, Rb, Sr, Ba, Zr, Th, and U and the enrichment of Light Rare Earth Elements (LREE) relative to Heavy Rare Earth Elements (HREE) indicate the effect of subduction-related fluids over the mantle source, which has been reported in the arc and continental collision zones. The studied samples show low Nb/La ratios. Our studied samples plot in the lithosphere and lithosphere-asthenosphere fields in the Nb/La versus La/Yb ratios diagram. These geochemical characters allow us to conclude that a lithospheric mantle source previously metasomatized by subduction components was the origin of the Muradlu volcanic rocks.

Keywords: alkaline, asthenosphere, lherzolite, lithosphere, Muradlu, potassic, shoshonitic, sodic, volcanism

Procedia PDF Downloads 170
363 Rhizosphere Microbial Communities in Fynbos Endemic Legumes during Wet and Dry Seasons

Authors: Tiisetso Mpai, Sanjay K. Jaiswal, Felix D. Dakora

Abstract:

The South African Cape fynbos biome is a global biodiversity hotspot. This biome contains a diversity of endemic shrub legumes, including Polhillia, Wiborgia, and Wiborgiella species, which are important for ecotourism as well as for improving soil fertility status. This is due to their proven N₂-fixing abilities when in association with compatible soil bacteria. In fact, Polhillia, Wiborgia, and Wiborgiella species have been reported to derive over 61% of their needed nitrogen through biological nitrogen fixation and to exhibit acid and alkaline phosphatase activity in their rhizospheres. Thus, their interactions with soil microbes may explain their survival mechanisms under the continued summer droughts and acidic, nutrient-poor soils in this region. However, information regarding their rhizosphere microbiome is still unavailable, yet it is important for Fynbos biodiversity management. Therefore, the aim of this study was to assess the microbial community structures associated with rhizosphere soils of Polhillia pallens, Polhillia brevicalyx, Wiborgia obcordata, Wiborgia sericea, and Wiborgiella sessilifolia growing at different locations of the South African Cape fynbos, during the wet and dry seasons. The hypothesis is that the microbial communities in these legume rhizospheres are the same type and are not affected by the growing season due to the restricted habitat of these wild fynbos legumes. To obtain the results, DNA was extracted from 0.5 g of each rhizosphere soil using PowerSoil™ DNA Isolation Kit, and sequences were obtained using the 16S rDNA Miseq Illumina technology. The results showed that in both seasons, bacteria were the most abundant microbial taxa in the rhizosphere soils of all five legume species, with Actinobacteria showing the highest number of sequences (about 30%). However, over 19.91% of the inhabitants in all five legume rhizospheres were unclassified. In terms of genera, Mycobacterium and Conexibacter were common in rhizosphere soils of all legumes in both seasons except for W. obcordata soils sampled during the dry season, which had Dehalogenimonas as the major inhabitant (6.08%). In conclusion, plant species and season were found to be the main drivers of microbial community structure in Cape fynbos, with the wet season being more dominant in shaping microbial diversity relative to the dry season. Wiborgia obcordata had a greater influence on microbial community structure than the other four legume species.

Keywords: 16S rDNA, Cape fynbos, endemic legumes, microbiome, rhizosphere

Procedia PDF Downloads 151
362 Effect of Alkalinity of Water on the Aggregation of Colloidal Silver Nanoparticles

Authors: Fedda Y. Alzoubi, Ihsan A. Aljarrah

Abstract:

Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in different applications, especially in biomedical applications. Samples of different alkaline water were prepared in order to study the effect of alkalinity of water on the optical properties, size, and morphology of colloidal AgNPs prepared according to the chemical reduction method using the prepared water samples. Ultraviolet-Visible spectrophotometer, Zeta-sizer, and Scanning electron microscope (SEM) have been utilized to carry out this study. Absorption spectra AgNPs in different alkaline water show a surface Plasmon resonance (SPR) peak at the wavelength of 420 nm. The position of this peak is sensitive to the shape of the particles, and in our case, it indicates that the particles are spherical. As the alkalinity increases, the intensity of the SPR peak decreases, indicating the aggregation of particles. Zeta-sizer measurements show that the average diameter for AgNPs in pure water is found to be 53.51 nm, and this value increases as the alkalinity increases. Zeta potential values of samples show that the negatively coated particles are stable in the solution. SEM images insure the spherical shape of the prepared nanoparticles and show that as the alkalinity increases the particles aggregate into larger particles.

Keywords: aggregation, alkalinity, colloid, nanoparticle

Procedia PDF Downloads 126
361 Assessment of Genotoxic Effects of a Fungicide (Propiconazole) in Freshwater Fish Gambusia Affinis Using Alkaline Single-Cell Gel Electrophoresis (Comet Essay)

Authors: Bourenane Bouhafs Naziha

Abstract:

ARTEA330EC is a fungicide used to inhibit the growth of many types of fungi on and cereals and rice, it is the single largest selling agrochemical that has been widely detected in surface waters in our area (Northeast Algerian). The studies on long-term genotoxic effects of fugicides in different tissues of fish using genotoxic biomarkers are limited. Therefore, in the present study DNA damage by propiconazole in freshwater fish Gambusia affinis by comet assays was investigated. The LC(50)- 96 h of the fungicide was estimated for the fish in a semi-static system. On this basis of LC(50) value sublethal and nonlethal concentrations were determined (25; 50; 75; and 100 ppm). The DNA damage was measured in erythrocytes as the percentage of DNA in comet tails of fishes exposed to above concentrations the fungicide. In general,non significant effects for both the concentrations and time of exposure were observed in treated fish compared with the controls. However It was found that the highest DNA damage was observed at the highest concentration and the longest time of exposure (day 12). The study indicated comet assay to be sensitive and rapid method to detect genotoxicity of propiconasol and other pesticides in fishes.

Keywords: genotoxicity, fungicide, propiconazole, freshwater, Gambusia affinis, alkaline single-cell gel electrophoresis

Procedia PDF Downloads 298