Search results for: Cedillo Ortiz Cesar Isaac
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 237

Search results for: Cedillo Ortiz Cesar Isaac

117 Appliance of the Analytic Hierarchy Process Methodology for the Selection of a Small Modular Reactors to Enhance Maritime Traffic Decarbonisation

Authors: Sara Martín, Ying Jie Zheng, César Hueso

Abstract:

International shipping is considered one of the largest sources of pollution in the world, accounting for 812 million tons of CO2 emissions in the year 2018. Current maritime decarbonisation is based on the implementation of new fuel alternatives, such as LNG, biofuels, and methanol, among others, which are less polluting as well as less efficient. Despite being a carbon-free and highly-developed technology, nuclear propulsion is hardly discussed as an alternative. Scientifically, it is believed that Small Modular Reactors (SMR) could be a promising solution to decarbonized maritime traffic due to their small dimensions and safety capabilities. However, as of today, there are no merchant ships powered by nuclear systems. Therefore, this project aims to understand the challenges of the development of nuclear-fuelled vessels by analysing all SMR designs to choose the most suitable one. In order not to fall into subjectivities, the Analytic Hierarchy Process (AHP) will be used to make the selection. This multiple-criteria evaluation technique analyses complex decisions by pairwise comparison of a number of evaluation criteria that can be applied to each SMR. The state-of-the-art 72 SMRs presented by the International Atomic Energy Agency (IAEA) will be analysed and ranked by a global parameter, calculated by applying the AHP methodology. The main target of the work is to find an adequate SMR system to power a ship. Top designs will be described in detail, and conclusions will be drawn from the results. This project has been conceived as an effort to foster the near-term development of zero-emission maritime traffic.

Keywords: international shipping, decarbonization, SMR, AHP, nuclear-fuelled vessels

Procedia PDF Downloads 102
116 Smart Campus Digital Twin: Basic Framework - Current State, Trends and Challenges

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study presents an analysis of the Digital Twin concept applied to the academic environment, focusing on the development of a Digital Twin Smart Campus Framework. Using bibliometric analysis methodologies and literature review, the research investigates the evolution and applications of the Digital Twin in educational contexts, comparing these findings with the advances of Industry 4.0. It was identified gaps in the existing literature and highlighted the need to adapt Digital Twin principles to meet the specific demands of a smart campus. By integrating Industry 4.0 concepts such as automation, Internet of Things, and real-time data analytics, we propose an innovative framework for the successful implementation of the Digital Twin in academic settings. The results of this study provide valuable insights for university campus managers, allowing for a better understanding of the potential applications of the Digital Twin for operations, security, and user experience optimization. In addition, our framework offers practical guidance for transitioning from a digital campus to a digital twin smart campus, promoting innovation and efficiency in the educational environment. This work contributes to the growing literature on Digital Twins and Industry 4.0, while offering a specific and tailored approach to transforming university campuses into smart and connected spaces, high demanded by Society 5.0 trends. It is hoped that this framework will serve as a basis for future research and practical implementations in the field of higher education and educational technology.

Keywords: smart campus, digital twin, industry 4.0, education trends, society 5.0

Procedia PDF Downloads 31
115 Ghanaian Men and the Performance of Masculinity: Negotiating Gender-Based Violence in Contemporary Ghana

Authors: Isaac Dery

Abstract:

Masculinity studies have gained much purchase globally in recent decades, especially the sense in which they have produced discursive space for interdisciplinary investigations. In the light of this, there is increasing consensus among commentators that different masculinities co-exist within a particular social space. There is also a growing recognition and awareness of the merits in examining the conceptual underpinnings of masculinity (especially hegemonic masculinity) its variously contested meanings, and values, and how it contributes to violent behaviours by men. The consequences of hegemonic masculinity and its violent and traumatic impacts on men and women have been evident. The emerging call to imagine more egalitarian and complex masculinities among men has been at the centre of various discussions on the fight against violence. Some theorists argue that this violence emanates from men’s drive to live up to impossible ideals of “masculinity.” Seeking to make the connections between masculinity and gender-based violence, this paper discusses the imperative and possibilities of engaging men/boys as key actors in the campaign against violence. It is worth re-examining the ways in which men’s embodiment and performance of dangerous masculinities contribute towards violence. This paper therefore argues that empowering men to understand the implications of certain behaviours is the key in an attempt to arrest violence and its traumatic cost. This paper is situated within the thesis that there is a relationship between men’s embodiment and performance of dominant forms of masculinities, on the one hand, and violence against women and other men, on the other. Based on research conducted in northern Ghana on domestic violence, it is the argument of this paper that in order to contain violence against women, conditions of gender construction need to be problematized in a manner that will transform fundamental understandings of gender relations in society.

Keywords: violence against women, masculinities, Ghana, gender

Procedia PDF Downloads 469
114 Saponins from the Fruits of Solanum anguivi Reverse Hyperglycemia, Hyperlipidemia and Increase Antioxidant Status in Stretozotocin Induced Diabetic Rats

Authors: Isaac Gbadura Adanlawo, Olusola Olalekan Elekofehinti

Abstract:

This work investigated the antihyperglycemic, antioxidant and antihyperlipidemic effects of saponins from the fruit of Solanum anguivi, a plant generally used in folk medicine to treat diabetes and hypertension and to compare its effect with metformin in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in albino rats by administration of STZ (65 mg/kg) intraperitoneally. Saponin (40 and 100 mg/kg) was administered by oral gavage once daily for 21 days. Metformin (200 mg/kg b.w.) was administered as the positive control. The effect of saponin on blood glucose, serum lipids and enzymatic antioxidants defense systems, like superoxide dismutase (SOD), catalase (CAT), as well as MDA levels in serum, liver and pancreas were studied. Saponins from S. anguivi fruits reduced the blood glucose, total cholesterol (TC), triglycerides (TG) and low-density lipoprotein (LDL) levels in STZ-diabetic rats. They also significantly abolished the increase in MDA level in serum, liver and pancreas of diabetic rats. The activities of SOD and CAT in serum, liver and pancreas were significantly increased as well as concentration of HDL in the serum. Metformin had the same effect as saponin but saponins seems to be more potent in reducing serum TC, TG, LDL, and MDA, and increasing SOD and CAT. Conclusions: These results suggest that saponins from S. anguivi fruits have anti-diabetic and antihypercholesterolemic, antihypertriglyceridemic antiperoxidative activities mediated through their antioxidant properties. Also, saponins appeared to have more hypolipidemic, antiperoxidative and antioxidant activity than metformin.

Keywords: saponin, diabetes, metformin, streptozotocin, Solanum anguivi

Procedia PDF Downloads 456
113 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism

Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun

Abstract:

The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorism

Keywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution

Procedia PDF Downloads 74
112 Design of a Thrust Vectoring System for an Underwater ROV

Authors: Isaac Laryea

Abstract:

Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.

Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control

Procedia PDF Downloads 49
111 Antiproliferative Effect of Polyphenols from Crocus sativus L. Leaves on Human Colon Adenocarcinoma Cells (Caco-2)

Authors: Gonzalo Ortiz de Elguea-Culebras, Raúl Sánchez-Vioquea, Adela Mena-Morales, Manuel Alaiz, Enrique Melero-Bravo, Esteban García-Romero, Javier Vioque, Lourdes Marchante-Cuevas, Julio Girón-Calle

Abstract:

Saffron (Crocus sativus L.) is a highly valued crop for the manufacture of spice that consists of the dried stigma of the flowers. This is in contrast to other underutilized parts of the saffron plant as leaves, which represent abundant biomass whose use might help to enhance the sustainability of the saffron crop. Saffron leaves contain significant amounts of phenolic compounds, 7.8 equivalent grams of gallic acid per 100g of extract, and are very promising compounds in terms of exploring novel uses of saffron leaves. Given that phenolic compounds have numerous effects on cancer-related biological pathways, we have investigated the in vitro antiproliferative effect of saffron leaf polyphenols against human colon adenocarcinoma cells (Caco-2). Polyphenols were extracted from leaves with 70% ethanol, defatted with hexane, and purified by solid phase extraction using C18 silica gel and then silica gel 60. Analysis of polyphenols was performed by HPLC-ESI-MS. Di-, tri-, and tetrahexosides of quercetin, kaempferol, and isorhamnetin, as well as C-hexosides like isoorientin and vitexin, were tentatively identified. Polyphenols strongly inhibited the proliferation of Caco-2 cells, which is consistent with model studies in which several of the polyphenols identified in saffron leaves have demonstrated their potential as chemopreventive agents in cancer. Due to the low profitability that saffron leaf currently represents, we consider these results very encouraging and that this by-product deserves further investigation as a potential source of active molecules against colorectal cancer.

Keywords: saffron leaves, agricultural by-products, polyphenols, antiproliferative effect, human colon adenocarcinoma cells

Procedia PDF Downloads 68
110 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: bioheat transfer, electrode, neuroprosthetics, TENS, transcutaneous stimulation

Procedia PDF Downloads 214
109 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses

Authors: Cesar Torres, Robert Briber, Nam Sun Wang

Abstract:

Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.

Keywords: contact lenses, drug delivery, controlled release, ionic surfactant

Procedia PDF Downloads 126
108 Efficiency on the Enteric Viral Removal in Four Potable Water Treatment Plants in Northeastern Colombia

Authors: Raquel Amanda Villamizar Gallardo, Oscar Orlando Ortíz Rodríguez

Abstract:

Enteric viruses are cosmopolitan agents present in several environments including water. These viruses can cause different diseases including gastroenteritis, hepatitis, conjunctivitis, respiratory problems among others. Although in Colombia there are not regulations concerning to routine viral analysis of drinking water, an enhanced understanding of viral pollution and resistance to treatments is desired in order to assure pure water to the population. Viral detection is often complex due to the need of specialized and time-consuming procedures. In addition, viruses are highly diluted in water which is a drawback from the analytical point of view. To this end, a fast and selective detection method for detection enteric viruses (i.e. Hepatitis A and Rotavirus) were applied. Micro- magnetic particles were functionalized with monoclonal antibodies anti-Hepatitis and anti-Rotavirus and they were used to capture, concentrate and separate whole viral particles in raw water and drinking water samples from four treatment plants identified as CAR-01, MON-02, POR-03, TON-04 and located in the Northeastern Colombia. Viruses were molecularly by using RT-PCR One Step Superscript III. Each plant was analyzed at the entry and exit points, in order to determine the initial presence and eventual reduction of Hepatitis A and Rotavirus after disinfection. The results revealed the presence of both enteric viruses in a 100 % of raw water analyzed in all plants. This represents a potential health hazard, especially for those people whose use this water for agricultural purposes. However, in drinking water analysis, enteric viruses was only positive in CAR-01, where was found the presence of Rotavirus. As a conclusion, the results confirm Rotavirus as the best indicator to evaluate the efficacy of potable treatment plant in eliminating viruses. CAR potable water plant should improve their disinfection process in order to remove efficiently enteric viruses.

Keywords: drinking water, hepatitis A, rotavirus, virus removal

Procedia PDF Downloads 204
107 The Post-Colonial Yoruba Poets as Agents of Political and Economic Emancipation in Nigeria

Authors: Isaac Alonge Olusola

Abstract:

One of the major peculiarities of man is the ability to communicate and interact with language. The original Yoruba society, before the advent of the Europeans, was purely oral. That is the major means of inter- personal communication was through speaking. The abolition of slave trade by Britain marked the beginning of development of Yoruba alphabet and introduction of writing around 1800. However, most of the writing was Christian religion-focused. Later, the introduction of British colonial rule led to the introduction of writing that dwelt on political and economic emancipation. On October 1, 1960, Nigeria was granted independence by the British colonial masters and self-rule started in Nigeria. Unfortunately, the military and civilian administrations brought about political and economic oppression instead of comfort. The discomfort brought about by Nigerian political and military rulers turned the Yoruba poets to activists, reactionaries and critics. This paper will give a brief preamble on the history of Nigeria and how she got her political independence from the British in 1960. It will thereafter go further to mention some political and economic hardship brought about by Nigerian leaders. Using literary theories called semiotics and structuralism, the reactions and criticisms of some Yoruba poets will be mentioned and analyzed vis-à-vis the counter reactions of the governments in power. Moreover, the paper will bring about a conclusion on how to create a conducive atmosphere for the Yoruba poets to operate in Nigeria. Finally, suggestions will be offered on how the Nigerian government and Yoruba poets can co-exist positively to bring about a better standard of living to Nigerians and also promote good governance

Keywords: Yoruba, Yoruba language, Yoruba poets, political leaders

Procedia PDF Downloads 116
106 Digital Twin Smart Hospital: A Guide for Implementation and Improvements

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study investigates the application of Digital Twins (DT) in Smart Hospital Environments (SHE), through a bibliometric study and literature review, including comparison with the principles of Industry 4.0. It aims to analyze the current state of the implementation of digital twins in clinical and non-clinical operations in healthcare settings, identifying trends and challenges, comparing these practices with Industry 4.0 concepts and technologies, in order to present a basic framework including stages and maturity levels. The bibliometric methodology will allow mapping the existing scientific production on the theme, while the literature review will synthesize and critically analyze the relevant studies, highlighting pertinent methodologies and results, additionally the comparison with Industry 4.0 will provide insights on how the principles of automation, interconnectivity and digitalization can be applied in healthcare environments/operations, aiming at improvements in operational efficiency and quality of care. The results of this study will contribute to a deeper understanding of the potential of Digital Twins in Smart Hospitals, in addition to the future potential from the effective integration of Industry 4.0 concepts in this specific environment, presented through the practical framework, after all, the urgent need for changes addressed in this article is undeniable, as well as all their value contribution to human sustainability, designed in SDG3 – Health and well-being: ensuring that all citizens have a healthy life and well-being, at all ages and in all situations. We know that the validity of these relationships will be constantly discussed, and technology can always change the rules of the game.

Keywords: digital twin, smart hospital, healthcare operations, industry 4.0, SDG3, technology

Procedia PDF Downloads 34
105 Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases

Authors: Bright Kwakye-Awuah, Elizabeth Von-Kiti, Isaac Nkrumah, Baah Sefa-Ntiri, Craig D. Williams

Abstract:

Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents.

Keywords: bauxite, kaolin, aging, crystallization, zeolites

Procedia PDF Downloads 199
104 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant

Authors: Lucero Luciano, Cesar Celis, Jose Ramos

Abstract:

Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.

Keywords: desalination, design and integration, polygeneration systems, renewable energy

Procedia PDF Downloads 106
103 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 127
102 Modelling Exchange-Rate Pass-Through: A Model of Oil Prices and Asymmetric Exchange Rate Fluctuations in Selected African Countries

Authors: Fajana Sola Isaac

Abstract:

In the last two decades, we have witnessed an increased interest in exchange rate pass-through (ERPT) in developing economies and emerging markets. This is perhaps due to the acknowledged significance of the pattern of exchange rate pass-through as a key instrument in monetary policy design, principally in retort to a shock in exchange rate in literature. This paper analyzed Exchange Rate Pass-Through by A Model of Oil Prices and Asymmetric Exchange Rate Fluctuations in Selected African Countries. The study adopted A Non-Linear Autoregressive Distributed Lag approach using yearly data on Algeria, Burundi, Nigeria and South Africa from 1986 to 2022. The paper found asymmetry in exchange rate pass-through in net oil-importing and net oil-exporting countries in the short run during the period under review. An ERPT exhibited a complete pass-through in the short run in the case of net oil-importing countries but an incomplete pass-through in the case of the net oil-exporting countries that were examined. An extended result revealed a significant impact of oil price shock on exchange rate pass-through to domestic price in the long run only for net oil importing countries. The Wald restriction test also confirms the evidence of asymmetric with the role of oil price acting as an accelerator to exchange rate pass-through to domestic price in the countries examined. The study found the outcome to be very useful for gaining expansive knowledge on the external shock impact on ERPT and could be of critical value for national monetary policy decisions on inflation targeting, especially for countries examined and other developing net oil importers and exporters.

Keywords: pass through, exchange rate, ARDL, monetary policy

Procedia PDF Downloads 54
101 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling

Authors: Ali Ashtiani, Cesar Carrasco

Abstract:

Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.

Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement

Procedia PDF Downloads 132
100 Mapping Environmental Complexity: A Strategic Tool for Sustainable Development of Road Infrastructure in Santa Catarina, Brazil

Authors: Edinei Coser, Cátia Regina Silva de Carvalho Pinto, Kleber Isaac Silva de Souza

Abstract:

The road transportation system is an integral part of the Brazilian economy, so investing in this sector is paramount. Despite being a significant contributor to national and regional development, implementing road infrastructures brings about significant environmental changes, resulting in negative impacts that need to be mitigated through environmental licensing. However, by considering potential environmental impacts from a strategic perspective earlier, we can ensure that the sustainable development resulting from investments in this sector is more efficient. Therefore, this work aims to incorporate strategic environmental assessment into the road transportation system in the state of Santa Catarina using a tool that evaluates the entire territory. This tool analyzes 15 qualitative socio-environmental factors that may complicate environmental licensing and project implementation, with the help of multi-criteria analysis based on AHP and geographic information systems with Python, which presents a surface map of environmental cost for Santa Catarina state in Brazil. This map represents how environmental restrictions are spatially distributed in the territory and can be used for governments and decision-makers to assess potential areas for road implementation or paving, evaluate and propose road corridors, propose, promote, and evaluate risks for governmental programs and investments, set environmental management guidelines and enhance contracting and environmental assessment processes.

Keywords: environmental impact assessment., GIS, highways, multi-criteria analysis, strategic environmental assessment

Procedia PDF Downloads 35
99 Valorization of the Waste Generated in Building Energy-Efficiency Rehabilitation Works as Raw Materials for Gypsum Composites

Authors: Paola Villoria Saez, Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Cesar Porras Amores

Abstract:

In construction the Circular Economy covers the whole cycle of the building construction: from production and consumption to waste management and the market for secondary raw materials. The circular economy will definitely contribute to 'closing the loop' of construction product lifecycles through greater recycling and re-use, helping to build a market for reused construction materials salvaged from demolition sites, boosting global competitiveness and fostering sustainable economic growth. In this context, this paper presents the latest research of 'Waste to resources (W2R)' project funded by the Spanish Government, which seeks new solutions to improve energy efficiency in buildings by developing new building materials and products that are less expensive, more durable, with higher quality and more environmentally friendly. This project differs from others as its main objective is to reduce to almost zero the Construction and Demolition Waste (CDW) generated in building rehabilitation works. In order to achieve this objective, the group is looking for new ways of CDW recycling as raw materials for new conglomerate materials. With these new materials, construction elements reducing building energy consumption will be proposed. In this paper, the results obtained in the project are presented. Several tests were performed to gypsum samples containing different percentages of CDW waste generated in Spanish building retroffiting works. Results were further analyzed and one of the gypsum composites was highlighted and discussed. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under 'Waste 2 Resources' Project (BIA2013-43061-R).

Keywords: building waste, CDW, gypsum, recycling, resources

Procedia PDF Downloads 310
98 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events

Procedia PDF Downloads 241
97 Bioethanol Production from Wild Sorghum (Sorghum arundinacieum) and Spear Grass (Heteropogon contortus)

Authors: Adeyinka Adesanya, Isaac Bamgboye

Abstract:

There is a growing need to develop the processes to produce renewable fuels and chemicals due to the economic, political, and environmental concerns associated with fossil fuels. Lignocellulosic biomass is an excellent renewable feedstock because it is both abundant and inexpensive. This project aims at producing bioethanol from lignocellulosic plants (Sorghum Arundinacieum and Heteropogon Contortus) by biochemical means, computing the energy audit of the process and determining the fuel properties of the produced ethanol. Acid pretreatment (0.5% H2SO4 solution) and enzymatic hydrolysis (using malted barley as enzyme source) were employed. The ethanol yield of wild sorghum was found to be 20% while that of spear grass was 15%. The fuel properties of the bioethanol from wild sorghum are 1.227 centipoise for viscosity, 1.10 g/cm3 for density, 0.90 for specific gravity, 78 °C for boiling point and the cloud point was found to be below -30 °C. That of spear grass was 1.206 centipoise for viscosity, 0.93 g/cm3 for density 1.08 specific gravity, 78 °C for boiling point and the cloud point was also found to be below -30 °C. The energy audit shows that about 64 % of the total energy was used up during pretreatment, while product recovery which was done manually demanded about 31 % of the total energy. Enzymatic hydrolysis, fermentation, and distillation total energy input were 1.95 %, 1.49 % and 1.04 % respectively, the alcoholometric strength of bioethanol from wild sorghum was found to be 47 % and the alcoholometric strength of bioethanol from spear grass was 72 %. Also, the energy efficiency of the bioethanol production for both grasses was 3.85 %.

Keywords: lignocellulosic biomass, wild sorghum, spear grass, biochemical conversion

Procedia PDF Downloads 212
96 Clinical and Epidemiological Profile of Patients with Chronic Obstructive Pulmonary Disease in a Medical Institution from the City of Medellin, Colombia

Authors: Camilo Andres Agudelo-Velez, Lina María Martinez-Sanchez, Natalia Perilla-Hernandez, Maria De Los Angeles Rodriguez-Gazquez, Felipe Hernandez-Restrepo, Dayana Andrea Quintero-Moreno, Camilo Ruiz-Mejia, Isabel Cristina Ortiz-Trujillo, Monica Maria Zuluaga-Quintero

Abstract:

Chronic obstructive pulmonary disease is common condition, characterized by a persistent blockage of airflow, partially reversible and progressive, that represents 5% of total deaths around the world, and it is expected to become the third leading cause of death by 2030. Objective: To establish the clinical and epidemiological profile of patients with chronic obstructive pulmonary disease in a medical institution from the city of Medellin, Colombia. Methods: A cross-sectional study was performed, with a sample of 50 patients with a diagnosis of chronic obstructive pulmonary disease in a private institution in Medellin, during 2015. The software SPSS vr. 20 was used for the statistical analysis. For the quantitative variables, averages, standard deviations, and maximun and minimun values were calculated, while for ordinal and nominal qualitative variables, proportions were estimated. Results: The average age was 73.5±9.3 years, 52% of the patients were women, 50% of them had retired, 46% ere married and 80% lived in the city of Medellín. The mean time of diagnosis was 7.8±1.3 years and 100% of the patients were treated at the internal medicine service. The most common clinical features were: 36% were classified as class D for the disease, 34% had a FEV1 <30%, 88% had a history of smoking and 52% had oxygen therapy at home. Conclusion: It was found that class D was the most common, and the majority of the patients had a history of smoking, indicating the need to strengthen promotion and prevention strategies in this regard.

Keywords: pulmonary disease, chronic obstructive, pulmonary medicine, oxygen inhalation therapy

Procedia PDF Downloads 426
95 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate

Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra

Abstract:

Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.

Keywords: convection, earth, geothermal energy, thermal comfort

Procedia PDF Downloads 53
94 Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method

Authors: Sandy J. M. Balla, Jerry J. Walker, Isaac K. Kyere

Abstract:

The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm.

Keywords: finite element method, convection, buried cables, steady-state rating

Procedia PDF Downloads 114
93 Phyllantus nuriri Protect against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Rich Fractions of Rats Brain

Authors: Olusola Olalekan Elekofehinti, Isaac Gbadura Adanlawo, Joao Batista Teixeira Rocha

Abstract:

We evaluated the potential neuroprotective effect of Phyllantus nuriri against Fe2+ and SNP induced oxidative stress in mitochondria of rats brain. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10µM) and SNP (5µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-100 µg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.54±0.01), caffeic acid (7.93±0.02), rutin (25.31±0.05), quercetin (31.28±0.03) and kaemferol (14.36±0.01). This result suggests that these phytochemicals account for the protective actions of Phyllantus nuriri against Fe2+ and SNP -induced oxidative stress. Our results show that Phyllantus nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.

Keywords: Phyllantus niruri, neuroprotection, oxidative stress, mitochondria, synaptosome

Procedia PDF Downloads 335
92 Clinical and Epidemiological Profile in Patients with Preeclampsia in a Private Institution in Medellin, Colombia 2015

Authors: Camilo Andrés Agudelo Vélez, Lina María Martínez Sánchez, Isabel Cristina Ortiz Trujillo, Evert Armando Jiménez Cotes, Natalia Perilla Hernández, María de los Ángeles Rodríguez Gázquez, Daniel Duque Restrepo, Felipe Hernández Restrepo, Dayana Andrea Quintero Moreno, Juan José Builes Gómez, Camilo Ruiz Mejía, Ana Lucia Arango Gómez

Abstract:

Preeclampsia is a clinical complication during pregnancy with high incidence in Colombia; therefore, it is important to evaluate the influence of external conditions and medical interventions, in order to promote measures that encourage improvements in the quality of life. Objective: Determine clinical and sociodemographic variables in women with preeclampsia. Methods: This cross-sectional study enrolled 50 patients with the diagnosis of preeclampsia, from a private institution in Medellin, during 2015. We used the software SPSS ver.20 for statistical analysis. For the qualitative variables, we calculated the mean and standard deviation, while, for ordinal and nominal levels of quantitative variables, ratios were estimated. Results: The average age was 26.8±5.9 years. The predominant characteristics were socioeconomic stratum 2 (48%), students (55%), mixed race (46%) and middle school as level of education (38%). As for clinical features, 72% of the cases were mild preeclampsia, and 22% were severe forms. The most common clinical manifestations were edema (46%), headache (62%), and proteinuria (55%). As for the Gyneco-obstetric history, 8% reported previous episodes of this disease and it was the first pregnancy for 60% of the patients. Conclusions: Preeclampsia is a frequent condition in young women; on the other hand, headache and edema were the most common reasons for consultation, therefore, doctors need to be aware of these symptoms in pregnant women.

Keywords: pre-eclampsia, hypertension, pregnancy complications, pregnancy, abdominal, edema

Procedia PDF Downloads 339
91 Evaluation of the Cytotoxicity and Genotoxicity of Chemical Material in Filters PM2.5 of the Monitoring Stations of the Network of Air Quality in the Valle De Aburrá, Colombia

Authors: Alejandra Betancur Sánchez, Carmen Elena Zapata Sánchez, Juan Bautista López Ortiz

Abstract:

Adverse effects and increased air pollution has raised concerns about regulatory policies and has fostered the development of new air quality standards; this is due to the complexity of the composition and the poorly understood reactions in the atmospheric environment. Toxic compounds act as environmental agents having various effects, from irritation to death of cells and tissues. A toxic agent is defined an adverse response in a biological system. There is a particular class that produces some kind of alteration in the genetic material or associated components, so they are recognized as genotoxic agents. Within cells, they interact directly or indirectly with DNA, causing mutations or interfere with some enzymatic repair processes or in the genesis or polymerization of proteinaceous material involved in chromosome segregation. An air pollutant may cause or contribute to increased mortality or serious illness and even pose a potential danger to human health. The aim of this study was to evaluate the effect on the viability and the genotoxic potential on the cell lines CHO-K1 and Jurkat and peripheral blood of particulate matter PM T lymphocytes 2.5 obtained from filters collected three monitoring stations network air quality Aburrá Valley. Tests, reduction of MTT, trypan blue, NRU, comet assay, sister chromatid exchange (SCE) and chromosomal aberrations allowed evidence reduction in cell viability in cell lines CHO-K1 and Jurkat and damage to the DNA from cell line CHOK1, however, no significant effects were observed in the number of SCEs and chromosomal aberrations. The results suggest that PM2.5 material has genotoxic potential and can induce cancer development, as has been suggested in other studies.

Keywords: PM2.5, cell line Jurkat, cell line CHO-K1, cytotoxicity, genotoxicity

Procedia PDF Downloads 243
90 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India

Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan

Abstract:

The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.

Keywords: data sharing, collaboration, public health research, chronic disease

Procedia PDF Downloads 425
89 Rescaled Range Analysis of Seismic Time-Series: Example of the Recent Seismic Crisis of Alhoceima

Authors: Marina Benito-Parejo, Raul Perez-Lopez, Miguel Herraiz, Carolina Guardiola-Albert, Cesar Martinez

Abstract:

Persistency, long-term memory and randomness are intrinsic properties of time-series of earthquakes. The Rescaled Range Analysis (RS-Analysis) was introduced by Hurst in 1956 and modified by Mandelbrot and Wallis in 1964. This method represents a simple and elegant analysis which determines the range of variation of one natural property (the seismic energy released in this case) in a time interval. Despite the simplicity, there is complexity inherent in the property measured. The cumulative curve of the energy released in time is the well-known fractal geometry of a devil’s staircase. This geometry is used for determining the maximum and minimum value of the range, which is normalized by the standard deviation. The rescaled range obtained obeys a power-law with the time, and the exponent is the Hurst value. Depending on this value, time-series can be classified in long-term or short-term memory. Hence, an algorithm has been developed for compiling the RS-Analysis for time series of earthquakes by days. Completeness time distribution and locally stationarity of the time series are required. The interest of this analysis is their application for a complex seismic crisis where different earthquakes take place in clusters in a short period. Therefore, the Hurst exponent has been obtained for the seismic crisis of Alhoceima (Mediterranean Sea) of January-March, 2016, where at least five medium-sized earthquakes were triggered. According to the values obtained from the Hurst exponent for each cluster, a different mechanical origin can be detected, corroborated by the focal mechanisms calculated by the official institutions. Therefore, this type of analysis not only allows an approach to a greater understanding of a seismic series but also makes possible to discern different types of seismic origins.

Keywords: Alhoceima crisis, earthquake time series, Hurst exponent, rescaled range analysis

Procedia PDF Downloads 297
88 Stroke Rehabilitation via Electroencephalogram Sensors and an Articulated Robot

Authors: Winncy Du, Jeremy Nguyen, Harpinder Dhillon, Reinardus Justin Halim, Clayton Haske, Trent Hughes, Marissa Ortiz, Rozy Saini

Abstract:

Stroke often causes death or cerebro-vascular (CV) brain damage. Most patients with CV brain damage lost their motor control on their limbs. This paper focuses on developing a reliable, safe, and non-invasive EEG-based robot-assistant stroke rehabilitation system to help stroke survivors to rapidly restore their motor control functions for their limbs. An electroencephalogram (EEG) recording device (EPOC Headset) and was used to detect a patient’s brain activities. The EEG signals were then processed, classified, and interpreted to the motion intentions, and then converted to a series of robot motion commands. A six-axis articulated robot (AdeptSix 300) was employed to provide the intended motions based on these commends. To ensure the EEG device, the computer, and the robot can communicate to each other, an Arduino microcontroller is used to physically execute the programming codes to a series output pins’ status (HIGH or LOW). Then these “hardware” commends were sent to a 24 V relay to trigger the robot’s motion. A lookup table for various motion intensions and the associated EEG signal patterns were created (through training) and installed in the microcontroller. Thus, the motion intention can be direct determined by comparing the EEG patterns obtaibed from the patient with the look-up table’s EEG patterns; and the corresponding motion commends are sent to the robot to provide the intended motion without going through feature extraction and interpretation each time (a time-consuming process). For safety sake, an extender was designed and attached to the robot’s end effector to ensure the patient is beyond the robot’s workspace. The gripper is also designed to hold the patient’s limb. The test results of this rehabilitation system show that it can accurately interpret the patient’s motion intension and move the patient’s arm to the intended position.

Keywords: brain waves, EEG sensor, motion control, robot-assistant stroke rehabilitation

Procedia PDF Downloads 363