Search results for: future energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14871

Search results for: future energy

141 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement

Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas

Abstract:

The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.

Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor

Procedia PDF Downloads 91
140 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 160
139 Health and Greenhouse Gas Emission Implications of Reducing Meat Intakes in Hong Kong

Authors: Cynthia Sau Chun Yip, Richard Fielding

Abstract:

High meat and especially red meat intakes are significantly and positively associated with a multiple burden of diseases and also high greenhouse gas (GHG) emissions. This study investigated population meat intake patterns in Hong Kong. It quantified the burden of disease and GHG emission outcomes by modeling to adjust Hong Kong population meat intakes to recommended healthy levels. It compared age- and sex-specific population meat, fruit and vegetable intakes obtained from a population survey among adults aged 20 years and over in Hong Kong in 2005-2007, against intake recommendations suggested in the Modelling System to Inform the Revision of the Australian Guide to Healthy Eating (AGHE-2011-MS) technical document. This study found that meat and meat alternatives, especially red meat intakes among Hong Kong males aged 20+ years and over are significantly higher than recommended. Red meat intakes among females aged 50-69 years and other meat and alternatives intakes among aged 20-59 years are also higher than recommended. Taking the 2005-07 age- and sex-specific population meat intake as baselines, three counterfactual scenarios of adjusting Hong Kong adult population meat intakes to AGHE-2011-MS and Pre-2011 AGHE recommendations by the year 2030 were established. Consequent energy intake gaps were substituted with additional legume, fruit and vegetable intakes. To quantify the consequent GHG emission outcomes associated with Hong Kong meat intakes, Cradle-to-ready-to-eat lifecycle assessment emission outcome modelling was used. Comparative risk assessment of burden of disease model was used to quantify the health outcomes. This study found adjusting meat intakes to recommended levels could reduce Hong Kong GHG emission by 17%-44% when compared against baseline meat intake emissions, and prevent 2,519 to 7,012 premature deaths in males and 53 to 1,342 in females, as well as multiple burden of diseases when compared to the baseline meat intake scenario. Comparing lump sum meat intake reduction and outcome measures across the entire population, and using emission factors, and relative risks from individual studies in previous co-benefit studies, this study used age- and sex-specific input and output measures, emission factors and relative risks obtained from high quality meta-analysis and meta-review respectively, and has taken government dietary recommendations into account. Hence evaluations in this study are of better quality and more reflective of real life practices. Further to previous co-benefit studies, this study pinpointed age- and sex-specific population and meat-type-specific intervention points and leverages. When compared with similar studies in Australia, this study also showed that intervention points and leverages among populations in different geographic and cultural background could be different, and that globalization also globalizes meat consumption emission effects. More regional and cultural specific evaluations are recommended to promote more sustainable meat consumption and enhance global food security.

Keywords: burden of diseases, greenhouse gas emissions, Hong Kong diet, sustainable meat consumption

Procedia PDF Downloads 311
138 Negative Environmental Impacts on Marine Seismic Survey Activities

Authors: Katherine Del Carmen Camacho Zorogastua, Victor Hugo Gallo Ramos, Jhon Walter Gomez Lora

Abstract:

Marine hydrocarbon exploration (oil and natural gas) activities are developed using 2D, 3D and 4D seismic prospecting techniques where sound waves are directed from a seismic vessel emitted every few seconds depending on the variety of air compressors, which cross the layers of rock at the bottom of the sea and are reflected to the surface of the water. Hydrophones receive and record the reflected energy signals for cross-sectional mapping of the lithological profile in order to identify possible areas where hydrocarbon deposits can be formed. However, they produce several significant negative environmental impacts on the marine ecosystem and in the social and economic sectors. Therefore, the objective of the research is to publicize the negative impacts and environmental measures that must be carried out during the development of these activities to prevent and mitigate water quality, the population involved (fishermen) and the marine biota (e.g., Cetaceans, fish) that are the most vulnerable. The research contains technical environmental aspects based on bibliographic sources of environmental studies approved by the Peruvian authority, research articles, undergraduate and postgraduate theses, books, guides, and manuals from Spain, Australia, Canada, Brazil, and Mexico. It describes the negative impacts on the environment and population (fishing sector), environmental prevention, mitigation, recovery and compensation measures that must be properly implemented and the cases of global sea species stranding, for which international experiences from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru were referenced. Negative impacts on marine fauna, seawater quality, and the socioeconomic sector (fishermen) were identified. Omission or inadequate biological monitoring in mammals could alter their ability to communicate, feed, and displacement resulting in their stranding and death. In fish, they cause deadly damage to physical-physiological type and in their behavior. Inadequate wastewater treatment and waste management could increase the organic load and oily waste on seawater quality in violation of marine flora and fauna. The possible estrangement of marine resources (fish) affects the economic sector as they carry out their fishing activity for consumption or sale. Finally, it is concluded from the experiences gathered from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru that there is a cause and effect relationship between the inadequate development of seismic exploration activities (cause) and marine species strandings (effect) since over the years, stranded or dead marine mammals have been detected on the shores of the sea in areas of seismic acquisition of hydrocarbons. In this regard, it is recommended to establish technical procedures, guidelines, and protocols for the monitoring of marine species in order to contribute to the conservation of hydrobiological resources.

Keywords: 3D seismic prospecting, cetaceans, significant environmental impacts, prevention, mitigation, recovery, environmental compensation

Procedia PDF Downloads 185
137 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 62
136 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 166
135 Dietary Intakes and Associated Demographic, Behavioural and Other Health-Related Factors in Mexican College Students

Authors: Laura E. Hall, Joel Monárrez-Espino, Luz María Tejada Tayabas

Abstract:

College students are at risk of weight gain and poor dietary habits, and health behaviours established during this period have been shown to track into midlife. They may therefore be an important target group for health promotion strategies, yet there is a lack of literature regarding dietary intakes and associated factors in this group, particularly in middle-income countries such as Mexico. The aim of this exploratory research was to describe and compare reported dietary intakes among nursing and nutrition college students at two public universities in Mexico, and to explore the relationship between demographic, behavioural and other health-related factors and the risk of low diet quality. Mexican college students (n=444) majoring in nutrition or nursing at two urban universities completed questionnaires regarding dietary and health-related behaviours and risks. Dietary intake was assessed via 24-hour recall. Weight, height and abdominal circumference were measured. Descriptive statistics were reported and nutrient intakes were compared between colleges and study tracks using Student’s t tests, odds ratios and Pearson chi square tests. Two dietary quality scores were constructed to explore the relationship between demographic, behavioural and other health-related factors and the diet quality scores using binary logistic regression. Analysis was performed using SPSS statistics, with differences considered statistically significant at p<0.05. The response rate to the survey was 91%. When macronutrients were considered as a percentage of total energy, the majority of students had protein intakes within recommended ranges, however one quarter of students had carbohydrate and fat intakes exceeding recommended levels. Three quarters had fibre intakes that were below recommendations. More than half of the students reported intakes of magnesium, zinc, vitamin A, folate and vitamin E that were below estimated average requirements. Students studying nutrition reported macronutrient and micronutrient intakes that were more compliant with recommendations compared to nursing students, and students studying in central-north Mexico were more compliant than those studying in southeast Mexico. Breakfast skipping (Adjusted Odds Ratio (OR) = 5.3; 95% Confidence Interval (CI) = 1.2-22.7), risk of anxiety (OR = 2.3; CI = 1.3-4.4), and university location (OR = 1.6; CI = 1.03-2.6) were associated with a greater risk of having a low macronutrient score. Caloric intakes <1800kcal (OR = 5.8; CI = 3.5-9.7), breakfast skipping (OR = 3.7; CI = 1.4-10.3), vigorous exercise ≤1h/week (OR = 2.6; CI = 1.3-5.2), soda consumption >250mls/day (OR = 2.0; CI = 1.2-3.3), unhealthy diet perception (OR = 1.9; CI = 1.2-3.0), and university location (OR = 1.8; CI = 1.1-2.8) were significantly associated with greater odds of having a low micronutrient score. College students studying nursing and nutrition did not report ideal diets, and these students should not be overlooked in public health interventions. Differences in dietary intakes between universities and study tracks were evident, with more favourable profiles evident in nutrition compared to nursing, and North-central compared to Southeast students. Further, demographic, behavioural and other health-related factors were associated with diet quality scores, warranting further research.

Keywords: college student, diet quality, nutrient intake, young adult

Procedia PDF Downloads 452
134 Adapting Inclusive Residential Models to Match Universal Accessibility and Fire Protection

Authors: Patricia Huedo, Maria José Ruá, Raquel Agost-Felip

Abstract:

Ensuring sustainable development of urban environments means guaranteeing adequate environmental conditions, being resilient and meeting conditions of safety and inclusion for all people, regardless of their condition. All existing buildings should meet basic safety conditions and be equipped with safe and accessible routes, along with visual, acoustic and tactile signals to protect their users or potential visitors, and regardless of whether they undergo rehabilitation or change of use processes. Moreover, from a social perspective, we consider the need to prioritize buildings occupied by the most vulnerable groups of people that currently do not have specific regulations tailored to their needs. Some residential models in operation are not only outside the scope of application of the regulations in force; they also lack a project or technical data that would allow knowing the fire behavior of the construction materials. However, the difficulty and cost involved in adapting the entire building stock to current regulations can never justify the lack of safety for people. Hence, this work develops a simplified model to assess compliance with the basic safety conditions in case of fire and its compatibility with the specific accessibility needs of each user. The purpose is to support the designer in decision making, as well as to contribute to the development of a basic fire safety certification tool to be applied in inclusive residential models. This work has developed a methodology to support designers in adapting Social Services Centers, usually intended to vulnerable people. It incorporates a checklist of 9 items and information from sources or standards that designers can use to justify compliance or propose solutions. For each item, the verification system is justified, and possible sources of consultation are provided, considering the possibility of lacking technical documentation of construction systems or building materials. The procedure is based on diagnosing the degree of compliance with fire conditions of residential models used by vulnerable groups, considering the special accessibility conditions required by each user group. Through visual inspection and site surveying, the verification model can serve as a support tool, significantly streamlining the diagnostic phase and reducing the number of tests to be requested by over 75%. This speeds up and simplifies the diagnostic phase. To illustrate the methodology, two different buildings in the Valencian Region (Spain) have been selected. One case study is a mental health facility for residential purposes, located in a rural area, on the outskirts of a small town; the other one, is a day care facility for individuals with intellectual disabilities, located in a medium-sized city. The comparison between the case studies allow to validate the model in distinct conditions. Verifying compliance with a basic security level can allow a quality seal and a public register of buildings adapted to fire regulations to be established, similarly to what is being done with other types of attributes such as energy performance.

Keywords: fire safety, inclusive housing, universal accessibility, vulnerable people

Procedia PDF Downloads 22
133 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 410
132 Characterization of Platelet Mitochondrial Metabolism in COVID-19 Caused Acute Respiratory Distress Syndrome (ARDS)

Authors: Anna Höfer, Johannes Herrmann, Patrick Meybohm, Christopher Lotz

Abstract:

Mitochondria are pivotal for energy supply and regulation of cellular functions. Deficiencies of mitochondrial metabolism have been implicated in diverse stressful conditions including infections. Platelets are key mediators for thrombo-inflammation during development and resolution of acute respiratory distress syndrome (ARDS). Previous data point to an exhausted platelet phenotype in critically-ill patients with coronavirus 19 disease (COVID-19) impacting the course of disease. The objective of this work was to characterize platelet mitochondrial metabolism in patients suffering from COVID-19 ARDSA longitudinal analysis of platelet mitochondrial metabolism in 24 patients with COVID-19 induced ARDS compared to 35 healthy controls (ctrl) was performed. Blood samples were analyzed at two time points (t1=day 1; t2=day 5-7 after study inclusion). The activity of mitochondrial citrate synthase was photometrically measured. The impact of oxidative stress on mitochondrial permeability was assessed by a photometric calcium-induced swelling assay and the activity of superoxide dismutase (SOD) by a SOD assay kit. The amount of protein carbonylation and the activity of mitochondria complexes I-IV were photometrically determined. Levels of interleukins (IL)-1α, IL-1β and tumor necrosis factor (TNF-) α were measured by a Multiplex assay kit. Median age was 54 years, 63 % were male and BMI was 29.8 kg/m2. SOFA (12; IQR: 10-15) and APACHE II (27; IQR: 24-30) indicated critical illness. Median Murray Score was 3.4 (IQR: 2.8-3.4), 21/24 (88%) required mechanical ventilation and V-V ECMO support in 14/24 (58%). Platelet counts in ARDS did not change during ICU stay (t1: 212 vs. t2: 209 x109/L). However, mean platelet volume (MPV) significantly increased (t1: 10.6 vs. t2: 11.9 fL; p<0.0001). Citrate synthase activity showed no significant differences between ctrl and ARDS patients. Calcium induced swelling was more pronounced in patients at t1 compared to t2 and to ctrl (50µM; t1: 0.006 vs. ctrl: 0.016 ΔOD; p=0.001). The amount of protein carbonylation as marker for irreversible proteomic modification constantly increased during ICU stay and compared to ctrl., without reaching significance. In parallel, superoxid dismutase activity gradually declined during ICU treatment vs. ctrl (t2: - 29 vs. ctrl.: - 17 %; p=0.0464). Complex I analysis revealed significantly stronger activity in ARDS vs. ctrl. (t1: 0.633 vs. ctrl.: 0.415 ΔOD; p=0.0086). There were no significant differences in complex II, III or IV activity in platelets from ARDS patients compared to ctrl. IL-18 constantly increased during the observation period without reaching significance. IL-1α and TNF-α did not differ from ctrl. However, IL-1β levels were significantly elevated in ARDS (t1: 16.8; t2: 16.6 vs. ctrl.: 12.4 pg/mL; p1=0.0335, p2=0.0032). This study reveals new insights in platelet mitochondrial metabolism during COVID-19 caused ARDS. it data point towards enhanced platelet activity with a pronounced turnover rate. We found increased activity of mitochondria complex I and evidence for enhanced oxidative stress. In parallel, protective mechanisms against oxidative stress were narrowed with elevated levels of IL-1β likely causing a pro-apoptotic environment. These mechanisms may contribute to platelet exhaustion in ARDS.

Keywords: acute respiratory distress syndrome (ARDS), coronavirus 19 disease (COVID-19), oxidative stress, platelet mitochondrial metabolism

Procedia PDF Downloads 59
131 Sustainable Design Criteria for Beach Resorts to Enhance Physical Activity That Helps Improve Health and Well-being for Adults in Saudi Arabia

Authors: Noorh Albadi, Salha Khayyat

Abstract:

People's moods and well-being are affected by their environment. The built environment impacts one's level of activity and health. In order to enhance users' physical health, sustainable design strategies have been developed for the physical environment to improve users' health. This study aimed to determine whether adult resorts in Saudi Arabia meet standards that ensure physical wellness to identify the needed requirements. It will be significant to the Ministry of Tourism, Sports, developers, and designers. Physical activity affects human health physically and mentally. In Saudi Arabia, the percentage of people who practiced sports in the Kingdom in 2019 was 20.04% - males and females older than 15. On the other hand, there is a lack of physical activity in Saudi Arabia; 90% of the Kingdom's population spends more than two hours sitting down without moving, which puts them at risk of contracting a non-communicable disease. The lack of physical activity and movement led to an increase in the rate of obesity among Saudis by 59% in 2020 and consequently could cause chronic diseases or death. The literature generally endorses that leading an active lifestyle improves physical health and affects mental health. Therefore, the United Nations has set 17 sustainable development goals (SDGs) to ensure healthy lives and promote well-being for all ages. One of SDG3's targets is reducing mortality, which can be achieved by raising physical activity. In order to support sustainable design, many rating systems and strategies have been developed, such as WELL building, Leadership in Energy and Environmental Design, (LEED), Active design strategies, and RIPA plan of work. The survey was used to gather qualitative and quantitative information. It was designed based on the Active Design and WELL building theories targeting beach resorts visitors, professional and beginner athletes, and non-athletics to ask them about the beach resorts they visited in the Kingdom and whether they met the criteria of sports resorts and healthy and active design theories, in addition to gathering information about the preferences of physical activities in the Saudi society in terms of the type of activities that young people prefer, where they prefer to engage in and under any thermal and light conditions. The final section asks about the design of residential units in beach sports resorts, the data collected from 127 participants. Findings revealed that participants prefer outdoor activities in moderate weather and sunlight or the evening with moderate and sufficient lighting and that no beach sports resorts in the country are constructed to support sustainable design criteria for physical activity. Participants agreed that several measures that lessen tension at beach resorts and enhance movement and activity are needed by Saudi society. The study recommends designing resorts that meet the sustainable design criteria regarding physical activity in Saudi Arabia to increase physical activity to achieve psychological and physical benefits and avoid psychological and physical diseases related to physical inactivity.

Keywords: sustainable design, SDGs, active design strategies, well building, beach resort design

Procedia PDF Downloads 120
130 Collagen/Hydroxyapatite Compositions Doped with Transitional Metals for Bone Tissue Engineering Applications

Authors: D. Ficai, A. Ficai, D. Gudovan, I. A. Gudovan, I. Ardelean, R. Trusca, E. Andronescu, V. Mitran, A. Cimpean

Abstract:

In the last years, scientists struggled hardly to mimic bone structures to develop implants and biostructures which present higher biocompatibility and reduced rejection rate. One way to obtain this goal is to use similar materials as that of bone, namely collagen/hydroxyapatite composite materials. However, it is very important to tailor both compositions but also the microstructure of the bone that would ensure both the optimal osteointegartion and the mechanical properties required by the application. In this study, new collagen/hydroxyapatites composite materials doped with Cu, Li, Mn, Zn were successfully prepared. The synthesis method is described below: weight the Ca(OH)₂ mass, i.e., 7,3067g, and ZnCl₂ (0.134g), CuSO₄ (0.159g), LiCO₃ (0.133g), MnCl₂.4H₂O (0.1971g), and suspend in 100ml distilled water under magnetic stirring. The solution thus obtained is added a solution of NaH₂PO₄*H2O (8.247g dissolved in 50ml distilled water) under slow dropping of 1 ml/min followed by adjusting the pH to 9.5 with HCl and finally filter and wash until neutral pH. The as-obtained slurry was dried in the oven at 80°C and then calcined at 600°C in order to ensure a proper purification of the final product of organic phases, also inducing a proper sterilization of the mixture before insertion into the collagen matrix. The collagen/hydroxyapatite composite materials are tailored from morphological point of view to optimize their biocompatibility and bio-integration against mechanical properties whereas the addition of the dopants is aimed to improve the biological activity of the samples. The addition of transitional metals can improve the biocompatibility and especially the osteoblasts adhesion (Mn²⁺) or to induce slightly better osteoblast differentiation of the osteoblast, Zn²⁺ being a cofactor for many enzymes including those responsible for cell differentiation. If the amount is too high, the final material can become toxic and lose all of its biocompatibility. In order to achieve a good biocompatibility and not reach the cytotoxic effect, the amount of transitional metals added has to be maintained at low levels (0.5% molar). The amount of transitional metals entering into the elemental cell of HA will be verified using inductively-coupled plasma mass spectrometric system. This highly sensitive technique is necessary, because, at such low levels of transitional metals, the difference between biocompatible and cytotoxic is a very thin line, thus requiring proper and thorough investigation using a precise technique. In order to determine the structure and morphology of the obtained composite materials, IR spectroscopy, X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-Ray Spectrometry (EDS) were used. Acknowledgment: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project “Biomimetic porous structures obtained by 3D printing developed for bone tissue engineering (BIOGRAFTPRINT), No. 127PED/2017 is also highly acknowledged.

Keywords: collagen, composite materials, hydroxyapatite, bone tissue engineering

Procedia PDF Downloads 206
129 The Provisional National Defense Council cum National Democratic Congress Government and Tourism Development in Ghana: A Reflection

Authors: Yobo Opare-Addo

Abstract:

Ghana came under a military and democratic rule of the same leadership from 1981-2000. These were the Provisional National Defense Council (PNDC), a military government and a democratic government, the National Democratic Congress (NDC) both under the leadership of Flt. Lt. J.J. Rawlings. Meanwhile the year 1985 marked a turning point in the development of the tourism industry in Ghana. Interest in tourism among African governments and for that matter the ‘PNDC cum NDC Government’ (PNDC/NDC) arose because of adverse developments in intangible exports and a corresponding decline in commodity export earnings. The ‘PNDC/NDC Government’ undertook measures and policies to improve the tourism industry and at the same time embarked on export diversification to reap the foreign exchange that the industry could generate in Ghana. The objective of this paper is to examine the measures and policies of the PNDC/NDC to improve the tourism industry in order to reap the foreign exchange. It specifically interrogates the role of the government as an agent of tourism development, through its deliberate creation of a conducive environment for tourism to flourish, the involvement of the private sector both foreign and local and the provision of tourism facilities and infrastructure and how these factors impacted on the tourism industry in Ghana. In the final analysis it evaluates the degree of success of the PNDC/NDC Government in this arena of Ghana’s socio-cultural and economic development. Introduction The Provisional National Defense Council (PNDC), a military government under the leadership of Flt. Lt J.J. Rawlings overthrew a constitutionally elected government of People’s National Party in 1981. In 1992, the National Democratic Congress (NDC) won the general election conducted in December. Flt. Lt. J.J. Rawlings, the party’s leader became the President of the Fourth Republic from January 1993 to December 2000. It was refreshing to see Ghanaians embrace democracy with renewed energy, zeal, and enthusiasm. This paper takes a critical look at the efforts of the PNDC cum NDC Government (PNDC/NDC) to develop tourism in Ghana during the period from 1981-2000 Methodology: Qualitative method of research was adopted for the study. Data was collected from both primary and secondary sources, and analysis was done using descriptive analysis because descriptive analysis made it possible to describe or summarize the statistical data in the research. To gather data from primary sources, questionnaires, oral interviews, and semi-structured discussions were conducted. Respondents included public officials from Ghana Tourist Board, Ministry of Tourism, Hoteliers, restaurant operators and travel and tour operators in Accra. Secondary data sources included articles in journals, reports, magazines, bulletins, and books. The major findings included statistical data for tourism arrivals and receipts during the period and the status of the industry by the year 2000. Conclusion: The paper contributes to knowledge on political and historical aspects of tourism development in Ghana, which is almost non-existent, attitudes of the PNDC cum NDC government towards tourism development and the debates on the generation of foreign exchange to Ghana and third world countries.

Keywords: ghana, infrastructure, policies, privatization, tourism facilities

Procedia PDF Downloads 85
128 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy

Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini

Abstract:

The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.

Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering

Procedia PDF Downloads 223
127 Non-Time and Non-Sense: Temporalities of Addiction for Heroin Users in Scotland

Authors: Laura Roe

Abstract:

This study draws on twelve months of ethnographic fieldwork conducted in 2017 with heroin and poly-substance users in Scotland and explores experiences of time and temporality as factors in continuing drug use. The research largely took place over the year in which drug-related deaths in Scotland reached a record high, and were statistically recorded as the highest in Europe. This qualitative research is therefore significant in understanding both evolving patterns of drug use and the experiential lifeworlds of those who use heroin and other substances in high doses. Methodologies included participant observation, structured and semi-structured interviews, and unstructured conversations with twenty-two regular participants. The fieldwork was conducted in two needle exchanges, a community recovery group and in the community. The initial aim of the study was to assess evolving patterns of drug preferences in order to explore a clinical and user-reported rise in the use of novel psychoactive substances (NPS), which are typically considered to be highly potent, synthetic substances, often available at a low cost. It was found, however, that while most research participants had experimented with NPS with varying intensity, those who used every day regularly consumed heroin, methadone, and alcohol with benzodiazepines such as diazepam or anticonvulsants such as gabapentin. The research found that many participants deliberately pursued the non-fatal effects of overdose, aiming to induce states of dissociation, detachment and uneven consciousness, and did so by both mixing substances and experimenting with novel modes of consumption. Temporality was significant in the decision to consume cocktails of substances, as users described wishing to sever themselves from time; entering into states of ‘non-time’ and insensibility through specific modes of intoxication. Time and temporality similarly impacted other aspects of addicted life. Periods of attempted abstinence witnessed a slowing of time’s passage that was tied to affective states of boredom and melancholy, in addition to a disruptive return of distressing and difficult memories. Abject past memories frequently dominated and disrupted the present, which otherwise could be highly immersive due to the time and energy-consuming nature of seeking drugs while in financial difficulty. There was furthermore a discordance between individual user temporalities and the strict time-based regimes of recovery services and institutional bodies, and the study aims to highlight the impact of such a disjuncture on the efficacy of treatment programs. Many participants had difficulty in adhering to set appointments or temporal frameworks due to their specific temporal situatedness. Overall, exploring increasing tendencies of heroin users in Scotland towards poly-substance use, this study draws on experiences and perceptions of time, analysing how temporality comes to bear on the ways drugs are sought and consumed, and how recovery is imagined and enacted. The study attempts to outline the experiential, intimate and subjective worlds of heroin and poly-substance users while explicating the structural and historical factors that shape them.

Keywords: addiction, poly-substance use, temporality, timelessness

Procedia PDF Downloads 118
126 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 73
125 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells

Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo

Abstract:

Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.

Keywords: biosensors, polymer, skin irritation, degradation products, cell viability

Procedia PDF Downloads 139
124 Bridging the Communication Gap in Emergency Care: How Informational Pamphlet Enhance Satisfaction for Patients with Distal Radius Fractures

Authors: Amr Mansour, Boaz Granot, Amani Tatar, Assil Mahamid, Mohammad Haj Yahia, Fairoz Jayyusi, Eyal Behrbalk

Abstract:

INTRODUCTION: Distal radius fractures are common orthopedic injuries often treated in the fast-paced, high-stress environment of emergency departments (EDs). In such settings, patient satisfaction can be significantly influenced by the clarity of communication and the accessibility of information This study explores the impact of providing an informational pamphlet that outlines ED processes, treatment expectations, and follow-up instructions on patient satisfaction across key domains, including trust, communication, organization, responsiveness, and overall experience. We hypothesize that a structured informational pamphlet will enhance patient satisfaction by fostering better understanding and aligning patient expectations with the realities of the ED visit. METHODS: A total of 100 adult patients treated for distal radius fractures between January and August 2024 participated in this survey-based study. Patients were randomized into two equal groups: one group received an informational pamphlet detailing their condition and treatment, while the other did not. Satisfaction levels were assessed using a structured questionnaire addressing five domains. Fisher's exact test was used to compare satisfaction measures between the two groups, and multivariate logistic regression analysis was conducted to evaluate the association between receiving an information sheet and high satisfaction. The study was approved by the Institutional Review Board. RESULTS SECTION: Patients who received an informational pamphlet reported significantly higher satisfaction across all five domains (p < .001). In Trust and Understanding, 82% of info-sheet recipients felt “in good hands,” compared to 10% of non-recipients. For Communication, 86% rated doctor explanations as “very clear,” versus 16% among non-recipients. Logistic regression showed that receiving an informational pamphlet was a significant predictor of high satisfaction with Discharge Explanation—clarity on condition, treatment, and follow-up (OR = 17.65, 95% CI: 4.74 - 65.77, p < .001) and Reasonable Solution—feeling their primary concern was resolved (OR = 37.82, 95% CI: 8.75 - 163.42, p < .001). Other predictors, including fracture reduction, gender, and age, were not significant. DISCUSSION: This study highlights the substantial role that simple, cost-effective interventions like informational pamphlets can play in enhancing patient satisfaction in emergency care. By improving communication, fostering trust, and promoting a patient-centered approach, informational pamphlets offer a valuable tool for healthcare providers seeking to enhance the quality of care and patient experience in high-pressure emergency environments. However, the study's limitations, including its single-center design and reliance on self-reported satisfaction scores, may affect the generalizability of the results. Future research should consider a multi-center approach and explore long-term outcomes to further validate the efficacy of informational pamphlets in diverse ED settings. Ultimately, sustained improvement in patient satisfaction is a complex and dynamic issue necessitating a multifactorial approach, and other methods should also be explored to complement this strategy. SIGNIFICANCE/CLINICAL RELEVANCE: This study demonstrates that providing an informational pamphlet in the ED setting can significantly improve patient satisfaction across multiple domains, emphasizing its potential as a simple, cost-effective tool to enhance communication, trust, and overall patient experience during emergency care for distal radius fractures. Integrating such interventions into standard ED protocols may foster a more patient-centered approach, improving both patient outcomes and healthcare efficiency.

Keywords: distal radius fracture, quality care, patient satisfaction, emergency medicine, patient-centered care, communication

Procedia PDF Downloads 17
123 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems

Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo

Abstract:

Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.

Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic

Procedia PDF Downloads 138
122 Unravelling Glyphosates Disruptive Effects on the Photochemical Efficiency of Amaranthus cruentus

Authors: Jacques M. Berner, Lehlogonolo Maloma

Abstract:

Context: Glyphosate, a widely used herbicide, has raised concerns about its impact on various crops. Amaranthus cruentus, an important grain crop species, is particularly susceptible to glyphosate. Understanding the specific disruptions caused by glyphosate on the photosynthetic process in Amaranthus cruentus is crucial for assessing its effects on crop productivity and ecological sustainability. Research Aim: This study aimed to investigate the dose-dependent impact of glyphosate on the photochemical efficiency of Amaranthus cruentus using the OJIP transient analysis. The goal was to assess the specific disruptions caused by glyphosate on key parameters of photosystem II. Methodology: The experiment was conducted in a controlled greenhouse environment. Amaranthus cruentus plants were exposed to different concentrations of glyphosate, including half, recommended, and double the recommended application rates. The photochemical efficiency of the plants was evaluated using non-invasive chlorophyll a fluorescence measurements and subsequent analysis of OJIP transients. Measurements were taken on 1-hour dark-adapted leaves using a Hansatech Handy PEA+ chlorophyll fluorimeter. Findings: The study's results demonstrated a significant reduction in the photochemical efficiency of Amaranthus cruentus following glyphosate treatment. The OJIP transients showed distinct alterations in the glyphosate-treated plants compared to the control group. These changes included a decrease in maximal fluorescence (FP) and a delay in the rise of the fluorescence signal, indicating impairment in the energy conversion process within the photosystem II. Glyphosate exposure also led to a substantial decrease in the maximum quantum yield efficiency of photosystem II (FV/FM) and the total performance index (PItotal), which reflects the overall photochemical efficiency of photosystem II. These reductions in photochemical efficiency were observed even at half the recommended dose of glyphosate. Theoretical Importance: The study provides valuable insights into the specific disruptions caused by glyphosate on the photochemical efficiency of Amaranthus cruentus. Data Collection and Analysis Procedures: Data collection involved non-invasive chlorophyll a fluorescence measurements using a chlorophyll fluorimeter on dark-adapted leaves. The OJIP transients were then analyzed to assess specific disruptions in key parameters of photosystem II. Statistical analysis was conducted to determine the significance of the differences observed between glyphosate-treated plants and the control group. Question Addressed: The study aimed to address the question of how glyphosate exposure affects the photochemical efficiency of Amaranthus cruentus, specifically examining disruptions in the photosynthetic electron transport chain and overall photochemical efficiency. Conclusion: The study demonstrates that glyphosate severely impairs the photochemical efficiency of Amaranthus cruentus, as indicated by the alterations in OJIP transients. Even at half the recommended dose, glyphosate caused significant reductions in photochemical efficiency. These findings highlight the detrimental effects of glyphosate on crop productivity and emphasize the need for further research to evaluate its long-term consequences and ecological implications in agriculture. The authors gratefully acknowledge the support from North-West University for making this research possible.

Keywords: glyphosate, amaranthus cruentus, ojip transient analysis, pitotal, photochemical efficiency, chlorophyll fluorescence, weeds

Procedia PDF Downloads 91
121 Hydro Solidarity and Turkey’s Role as a Waterpower in the Middle East: The Peace Water Pipeline Project

Authors: Filippo Verre

Abstract:

This paper explores Turkey’s role as an influential waterpower in the Middle East, emphasizing the Peace Water Pipeline Project (PWPP) as a paradigm of hydro solidarity rather than conventional water diplomacy. Hydro solidarity transcends the strategic and often competitive nature of water diplomacy, highlighting cooperative, inclusive, and mutually beneficial approaches to water resource management. The PWPP, which aimed to transport freshwater from Turkey’s Manavgat River to several water-scarce nations in the Middle East, exemplifies this ethos. By providing a reliable water supply to address the chronic shortages in the region, the project underscored Turkey’s commitment to fostering regional cooperation, stability, and collective well-being through shared water resources. This paper provides an in-depth analysis of the Peace Water Pipeline Project, examining its technical specifications, environmental impact, and political implications. It discusses how the project’s foundation on principles of hydro solidarity could facilitate stronger regional ties, mitigate water-related conflicts, and promote sustainable development. By prioritizing collective benefits over unilateral gains, Turkey’s approach exemplified a transformative model of resource sharing that could inspire similar initiatives globally. This paper argues that the Peace Water Pipeline Project serves as a crucial case study in demonstrating how shared natural resources can be leveraged to build trust, enhance cooperation, and achieve common goals in a geopolitically volatile region. The findings emphasize the importance of adopting hydro solidarity as a guiding principle for future transboundary water projects, showcasing how collaborative water management can play a pivotal role in fostering peace, security, and sustainable development in the Middle East and beyond. This research is based on a mixed methodological approach combining qualitative and quantitative methods. The most relevant qualitative methods will involve Case Studies and Content Analysis. Concretely, the Friendship Dam Project (FDP) between Turkey and Syria will be mentioned to underline the importance of hydro solidarity approaches as opposed to water diplomacy. Analyzing this case aims to identify factors that contribute to successful hydro solidarity agreements, such as effective communication channels, trust-building measures, and adaptive management practices. Concerning Content Analysis, reviewing and analyzing policy documents, treaties, media reports, and public statements will help identify the official narratives and discourses surrounding the PWPP. This method fully comprehends how different stakeholders frame the issues and what solutions they propose. The quantitative methodology used in this research, which complements the qualitative approaches, involves economic valuation, which quantifies the PWPP’s economic impacts on Turkey and the Middle Eastern region. This includes assessing the cost of construction and maintenance and the financial benefits derived from improved water access and reduced conflict. Hydrological modelling will also be used as a quantitative research method. Using hydrological models to simulate the water flow and distribution scenarios helps quantify the pipeline’s potential impacts on water resources. By assessing the sustainability of water extraction and predicting how changes in water availability might affect different regions, these models play a crucial role in this research, shedding light on the impact of transboundary infrastructures on water management.

Keywords: hydro-solidarity, Middle East, transboundary water management, peace water pipeline project, water scarcity

Procedia PDF Downloads 39
120 A Case Study on Utility of 18FDG-PET/CT Scan in Identifying Active Extra Lymph Nodes and Staging of Breast Cancer

Authors: Farid Risheq, M. Zaid Alrisheq, Shuaa Al-Sadoon, Karim Al-Faqih, Mays Abdulazeez

Abstract:

Breast cancer is the most frequently diagnosed cancer worldwide, and a common cause of death among women. Various conventional anatomical imaging tools are utilized for diagnosis, histological assessment and TNM (Tumor, Node, Metastases) staging of breast cancer. Biopsy of sentinel lymph node is becoming an alternative to the axillary lymph node dissection. Advances in 18-Fluoro-Deoxi-Glucose Positron Emission Tomography/Computed Tomography (18FDG-PET/CT) imaging have facilitated breast cancer diagnosis utilizing biological trapping of 18FDG inside lesion cells, expressed as Standardized Uptake Value (SUVmax). Objective: To present the utility of 18FDG uptake PET/CT scans in detecting active extra lymph nodes and distant occult metastases for breast cancer staging. Subjects and Methods: Four female patients were presented with initially classified TNM stages of breast cancer based on conventional anatomical diagnostic techniques. 18FDG-PET/CT scans were performed one hour post 18FDG intra-venous injection of (300-370) MBq, and (7-8) bed/130sec. Transverse, sagittal, and coronal views; fused PET/CT and MIP modality were reconstructed for each patient. Results: A total of twenty four lesions in breast, extended lesions to lung, liver, bone and active extra lymph nodes were detected among patients. The initial TNM stage was significantly changed post 18FDG-PET/CT scan for each patient, as follows: Patient-1: Initial TNM-stage: T1N1M0-(stage I). Finding: Two lesions in right breast (3.2cm2, SUVmax=10.2), (1.8cm2, SUVmax=6.7), associated with metastases to two right axillary lymph nodes. Final TNM-stage: T1N2M0-(stage II). Patient-2: Initial TNM-stage: T2N2M0-(stage III). Finding: Right breast lesion (6.1cm2, SUVmax=15.2), associated with metastases to right internal mammary lymph node, two right axillary lymph nodes, and sclerotic lesions in right scapula. Final TNM-stage: T2N3M1-(stage IV). Patient-3: Initial TNM-stage: T2N0M1-(stage III). Finding: Left breast lesion (11.1cm2, SUVmax=18.8), associated with metastases to two lymph nodes in left hilum, and three lesions in both lungs. Final TNM-stage: T2N2M1-(stage IV). Patient-4: Initial TNM-stage: T4N1M1-(stage III). Finding: Four lesions in upper outer quadrant area of right breast (largest: 12.7cm2, SUVmax=18.6), in addition to one lesion in left breast (4.8cm2, SUVmax=7.1), associated with metastases to multiple lesions in liver (largest: 11.4cm2, SUV=8.0), and two bony-lytic lesions in left scapula and cervicle-1. No evidence of regional or distant lymph node involvement. Final TNM-stage: T4N0M2-(stage IV). Conclusions: Our results demonstrated that 18FDG-PET/CT scans had significantly changed the TNM stages of breast cancer patients. While the T factor was unchanged, N and M factors showed significant variations. A single session of PET/CT scan was effective in detecting active extra lymph nodes and distant occult metastases, which were not identified by conventional diagnostic techniques, and might advantageously replace bone scan, and contrast enhanced CT of chest, abdomen and pelvis. Applying 18FDG-PET/CT scan early in the investigation, might shorten diagnosis time, helps deciding adequate treatment protocol, and could improve patients’ quality of life and survival. Trapping of 18FDG in malignant lesion cells, after a PET/CT scan, increases the retention index (RI%) for a considerable time, which might help localize sentinel lymph node for biopsy using a hand held gamma probe detector. Future work is required to demonstrate its utility.

Keywords: axillary lymph nodes, breast cancer staging, fluorodeoxyglucose positron emission tomography/computed tomography, lymph nodes

Procedia PDF Downloads 313
119 Large-scale GWAS Investigating Genetic Contributions to Queerness Will Decrease Stigma Against LGBTQ+ Communities

Authors: Paul J. McKay

Abstract:

Large-scale genome-wide association studies (GWAS) investigating genetic contributions to sexual orientation and gender identity are largely lacking and may reduce stigma experienced in the LGBTQ+ community by providing an underlying biological explanation for queerness. While there is a growing consensus within the scientific community that genetic makeup contributes – at least in part – to sexual orientation and gender identity, there is a marked lack of genomics research exploring polygenic contributions to queerness. Based on recent (2019) findings from a large-scale GWAS investigating the genetic architecture of same-sex sexual behavior, and various additional peer-reviewed publications detailing novel insights into the molecular mechanisms of sexual orientation and gender identity, we hypothesize that sexual orientation and gender identity are complex, multifactorial, and polygenic; meaning that many genetic factors contribute to these phenomena, and environmental factors play a possible role through epigenetic modulation. In recent years, large-scale GWAS studies have been paramount to our modern understanding of many other complex human traits, such as in the case of autism spectrum disorder (ASD). Despite possible benefits of such research, including reduced stigma towards queer people, improved outcomes for LGBTQ+ in familial, socio-cultural, and political contexts, and improved access to healthcare (particularly for trans populations); important risks and considerations remain surrounding this type of research. To mitigate possibilities such as invalidation of the queer identities of existing LGBTQ+ individuals, genetic discrimination, or the possibility of euthanasia of embryos with a genetic predisposition to queerness (through reproductive technologies like IVF and/or gene-editing in utero), we propose a community-engaged research (CER) framework which emphasizes the privacy and confidentiality of research participants. Importantly, the historical legacy of scientific research attempting to pathologize queerness (in particular, falsely equating gender variance to mental illness) must be acknowledged to ensure any future research conducted in this realm does not propagate notions of homophobia, transphobia or stigma against queer people. Ultimately, in a world where same-sex sexual activity is criminalized in 69 UN member states, with 67 of these states imposing imprisonment, 8 imposing public flogging, 6 (Brunei, Iran, Mauritania, Nigeria, Saudi Arabia, Yemen) invoking the death penalty, and another 5 (Afghanistan, Pakistan, Qatar, Somalia, United Arab Emirates) possibly invoking the death penalty, the importance of this research cannot be understated, as finding a biological basis for queerness would directly oppose the harmful rhetoric that “being LGBTQ+ is a choice.” Anti-trans legislation is similarly widespread: In the United States in 2022 alone (as of Oct. 13), 155 anti-trans bills have been introduced preventing trans girls and women from playing on female sports teams, barring trans youth from using bathrooms and locker rooms that align with their gender identity, banning access to gender affirming medical care (e.g., hormone-replacement therapy, gender-affirming surgeries), and imposing legal restrictions on name changes. Understanding that a general lack of knowledge about the biological basis of queerness may be a contributing factor to the societal stigma faced by gender and sexual orientation minorities, we propose the initiation of large-scale GWAS studies investigating the genetic basis of gender identity and sexual orientation.

Keywords: genome-wide association studies (GWAS), sexual and gender minorities (SGM), polygenicity, community-engaged research (CER)

Procedia PDF Downloads 69
118 A Study on the Chemical Composition of Kolkheti's Sphagnum Peat Peloids to Evaluate the Perspective of Use in Medical Practice

Authors: Al. Tsertsvadze. L. Ebralidze, I. Matchutadze. D. Berashvili, A. Bakuridze

Abstract:

Peatlands are landscape elements, they are formed over a very long period by physical, chemical, biologic, and geologic processes. In the moderate zone of Caucasus, the Kolkheti lowlands are distinguished by the diversity of relictual plants, a high degree of endemism, orographic, climate, landscape, and other characteristics of high levels of biodiversity. The unique properties of the Kolkheti region lead to the formation of special, so-called, endemic peat peloids. The composition and properties of peloids strongly depend on peat-forming plants. Peat is considered a unique complex of raw materials, which can be used in different fields of the industry: agriculture, metallurgy, energy, biotechnology, chemical industry, health care. They are formed in permanent wetland areas. As a result of decay, higher plants remain in the anaerobic area, with the participation of microorganisms. Peat mass absorbs soil and groundwater. Peloids are predominantly rich with humic substances, which are characterized by high biological activity. Humic acids stimulate enzymatic activity, regenerative processes, and have anti-inflammatory activity. Objects of the research were Kolkheti peat peloids (Ispani, Anaklia, Churia, Chirukhi, Peranga) possessing different formation phases. Due to specific physical and chemical properties of research objects, the aim of the research was to develop analytical methods in order to study the chemical composition of the objects. The research was held using modern instrumental methods of analysis: Ultraviolet-visible spectroscopy and Infrared spectroscopy, Scanning Electron Microscopy, Centrifuge, dry oven, Ultraturax, pH meter, fluorescence spectrometer, Gas chromatography-mass spectrometry (GC-MS/MS), Gas chromatography. Based on the research ration between organic and inorganic substances, the spectrum of micro and macro elements, also the content of minerals was determined. The content of organic nitrogen was determined using the Kjeldahl method. The total composition of amino acids was studied by a spectrophotometric method using standard solutions of glutamic and aspartic acids. Fatty acid was determined using GC (Gas chromatography). Based on the obtained results, we can conclude that the method is valid to identify fatty acids in the research objects. The content of organic substances in the research objects was held using GC-MS. Using modern instrumental methods of analysis, the chemical composition of research objects was studied. Each research object is predominantly reached with a broad spectrum of organic (fatty acids, amino acids, carbocyclic and heterocyclic compounds, organic acids and their esters, steroids) and inorganic (micro and macro elements, minerals) substances. Modified methods used in the presented research may be utilized for the evaluation of cosmetological balneological and pharmaceutical means prepared on the base of Kolkheti's Sphagnum Peat Peloids.

Keywords: modern analytical methods, natural resources, peat, chemistry

Procedia PDF Downloads 127
117 Usability Assessment of a Bluetooth-Enabled Resistance Exercise Band among Young Adults

Authors: Lillian M. Seo, Curtis L. Petersen, Ryan J. Halter, David Kotz, John A. Batsis

Abstract:

Background: Resistance-based exercises effectively enhance muscle strength, which is especially important in older populations as it reduces the risk of disability. Our group developed a Bluetooth-enabled handle for resistance exercise bands that wirelessly transmits relative force data through low-energy Bluetooth to a local smartphone or similar device. The system has the potential to measure home-based exercise interventions, allowing health professionals to monitor compliance. Its feasibility has already been demonstrated in both clinical and field-based settings, but it remained unclear whether the system’s usability persisted upon repeated use. The current study sought to assess the usability of this system and its users’ satisfaction with repeated use by deploying the device among younger adults to gather formative information that can ultimately improve the device’s design for older adults. Methods: A usability study was conducted in which 32 participants used the above system. Participants executed 10 repetitions of four commonly performed exercises: bicep flexion, shoulder abduction, elbow extension, and triceps extension. Each completed three exercise sessions, separated by at least 24 hours to minimize muscle fatigue. At its conclusion, subjects completed an adapted version of the usefulness, satisfaction, and ease (USE) questionnaire – assessing the system across four domains: usability, satisfaction, ease of use, and ease of learning. The 20-item questionnaire examined how strongly a participant agrees with positive statements about the device on a seven-point Likert scale, with one representing ‘strongly disagree’ and seven representing ‘strongly agree.’ Participants’ data were aggregated to calculate mean response values for each question and domain, effectively assessing the device’s performance across different facets of the user experience. Summary force data were visualized using a custom web application. Finally, an optional prompt at the end of the questionnaire allowed for written comments and feedback from participants to elicit qualitative indicators of usability. Results: Of the n=32 participants, 13 (41%) were female; their mean age was 32.4 ± 11.8 years, and no participants had a physical impairment. No usability questions received a mean score < 5 of seven. The four domains’ mean scores were: usefulness 5.66 ± 0.35; satisfaction 6.23 ± 0.06; ease of use 6.25 ± 0.43; and ease of learning 6.50 ± 0.19. Representative quotes of the open-ended feedback include: ‘A non-rigid strap-style handle might be useful for some exercises,’ and, ‘Would need different bands for each exercise as they use different muscle groups with different strength levels.’ General impressions were favorable, supporting the expectation that the device would be a useful tool in exercise interventions. Conclusions: A simple usability assessment of a Bluetooth-enabled resistance exercise band supports a consistent and positive user experience among young adults. This study provides adequate formative data, assuring the next steps can be taken to continue testing and development for the target population of older adults.

Keywords: Bluetooth, exercise, mobile health, mHealth, usability

Procedia PDF Downloads 117
116 Effect of Rapeseed Press Cake on Extrusion System Parameters and Physical Pellet Quality of Fish Feed

Authors: Anna Martin, Raffael Osen

Abstract:

The demand for fish from aquaculture is constantly growing. Concurrently, due to a shortage of fishmeal caused by extensive overfishing, fishmeal substitution by plant proteins is getting increasingly important for the production of sustainable aquafeed. Several research studies evaluated the impact of plant protein meals, concentrates or isolates on fish health and fish feed quality. However, these protein raw materials often require elaborate and expensive manufacturing and their availability is limited. Rapeseed press cake (RPC) – a side product of de-oiling processes – exhibits a high potential as a plant-based fishmeal alternative in fish feed for carnivorous species due to its availability, low costs and protein content. In order to produce aquafeed with RPC, it is important to systematically assess i) inclusion levels of RPC with similar pellet qualities compared to fishmeal containing formulations and ii) how extrusion parameters can be adjusted to achieve targeted pellet qualities. However, the effect of RPC on extrusion system parameters and pellet quality has only scarcely been investigated. Therefore, the aim of this study was to evaluate the impact of feed formulation, extruder barrel temperature (90, 100, 110 °C) and screw speed (200, 300, 400 rpm) on extrusion system parameters and the physical properties of fish feed pellets. A co-rotating pilot-scale twin screw extruder was used to produce five iso-nitrogenous feed formulations: a fish meal based reference formulation including 16 g/100g fishmeal and four formulations in which fishmeal was substituted by RPC to 25, 50, 75 or 100 %. Extrusion system parameters, being product temperature, pressure at the die, specific mechanical energy (SME) and torque, were monitored while samples were taken. After drying, pellets were analyzed regarding to optical appearance, sectional and longitudinal expansion, sinking velocity, bulk density, water stability, durability and specific hardness. In our study, the addition of minor amounts of RPC already had high impact on pellet quality parameters, especially on expansion but only marginally affected extrusion system parameters. Increasing amounts of RPC reduced sectional expansion, sinking velocity, bulk density and specific hardness and increased longitudinal expansion compared to a reference formulation without RPC. Water stability and durability were almost not affected by RPC addition. Moreover, pellets with rapeseed components showed a more coarse structure than pellets containing only fishmeal. When the adjustment of barrel temperature and screw speed was investigated, it could be seen that the increase of extruder barrel temperature led to a slight decrease of SME and die pressure and an increased sectional expansion of the reference pellets but did almost not affect rapeseed containing fish feed pellets. Also changes in screw speed had little effects on the physical properties of pellets however with raised screw speed the SME and the product temperature increased. In summary, a one-to-one substitution of fishmeal with RPC without the adjustment of extrusion process parameters does not result in fish feed of a designated quality. Therefore, a deeper knowledge of raw materials and their behavior under thermal and mechanical stresses as applied during extrusion is required.

Keywords: extrusion, fish feed, press cake, rapeseed

Procedia PDF Downloads 148
115 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 132
114 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine

Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski

Abstract:

The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization

Procedia PDF Downloads 386
113 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 215
112 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island

Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari

Abstract:

Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.

Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area

Procedia PDF Downloads 407