Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42380

Search results for: panel data analysis

40940 Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time

Authors: M. Wigwe, M. Y Soloman, E. Pirayesh, R. Eghorieta, N. Stegent

Abstract:

The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds.

Keywords: shale, fracturing, reservoir, simulation, frac-length, moving-reference-point

Procedia PDF Downloads 754
40939 A Comparative Analysis of the Application and Use of Information and Communication Technologies (ICTS) in Selected Manufacturing Industries for Development in Nigeria

Authors: Kolawole Taiwo Olabode

Abstract:

This is a comparative study of ICTs adoption and use in selected manufacturing industries in for development. This study was carried out 2004 and was repeated 2013 (nine years after) using the same selected manufacturing industries to assess the level, improvement and extent ICT facilities used in these companies. The theory of modernization was explored to explain some developmental issues in this study. The same semi-structured questionnaire and IDI were used to elicit data on the subject matter. About 24.9% of the total workers (1,247) were sampled for this study using quota sampling technique. SPSS was used to analysis the quantitative data. The qualitative data was used to buttress the quantitative data. Findings indicated that Seven-Up Bottling Company and Frigoglass Glass Industry still remained Intensive ICT Users while only Niger Match Nigeria Limited still remained Non-Intensive ICT User while unfortunately, Askar Paint Nigeria Limited has gone liquidated. It is also important to discover that only the Intensive ICT users improved on relevant ICT facilities. The existing problems of ICT adoption and used in these companies remained the same in Niger Match Limited. The study concluded that for a society to be developed, management and government at all levels must do all things necessary to ensure that all existing organisations must be ICT compliance for workers and organisational performance and to enhance nation’s development in order to compete with other companies for global standard or recognition.

Keywords: ICT, intensive ICT-users, entrepreneurial, manufacturing industries, industries and development

Procedia PDF Downloads 302
40938 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts

Authors: Sombol Mokhles

Abstract:

This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.

Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities

Procedia PDF Downloads 99
40937 The Impact of Motivation on Employee Performance in South Korea

Authors: Atabong Awung Lekeazem

Abstract:

The purpose of this paper is to identify the impact or role of incentives on employee’s performance with a particular emphasis on Korean workers. The process involves defining and explaining the different types of motivation. In defining them, we also bring out the difference between the two major types of motivations. The second phase of the paper shall involve gathering data/information from a sample population and then analyzing the data. In the analysis, we shall get to see the almost similar mentality or value which Koreans attach to motivation, which a slide different view coming only from top management personnel. The last phase shall have us presenting the data and coming to a conclusion from which possible knowledge on how managers and potential managers can ignite the best out of their employees.

Keywords: motivation, employee’s performance, Korean workers, business information systems

Procedia PDF Downloads 414
40936 Revealing the Potential of Geotourism and Geoheritage of Gedangsari Area, Yogyakarta

Authors: Cecilia Jatu, Adventino

Abstract:

Gedangsari is located in Gunungkidul, Yogyakarta Province, which has several criteria to be used as a new geosite object. The research area is located in the southern mountain zone of Java, composed of 5 rock formations with Oligocene up to Middle Miocene age. The purpose of this study is to reveal the potential of geotourism and the geoheritage to be proposed as a new geosite and to make a geosite map of Gedangsari. The research method used is descriptive data collection and which includes quantitative geological data collection, geotourism, and heritage sites, then supported by petrographic analysis, geological structure, geological mapping, and SWOT analysis. The geological data proved that Gedangsari consists of igneous rock (intrusion), pyroclastic rock, and sediment rock. This condition caused many varieties and particular geomorphological platform. Geotourism that include in Gedangsari are Luweng Sampang Canyon, Gedangsari Bouma Sequence, Watugajah Columnar Joint, Gedangsari Marine Fan Sediment, and Tegalrejo Waterfall. There is also Tegalrejo Village, which can be considered as geoheritage site because of its culture and batik traditional cloth. The results of the SWOT analysis, Gedangsari geosite must be developed and appropriately promoted in order to improve the existence. The development of geosite area will have a significant impact that improve the economic growth of the surrounding community and can be used by the government as base information for sustainable development. In addition, the making of an educational map about the geological conditions and geotourism location of the Gedangsari geosite can increase the people's knowledge about Gedangsari.

Keywords: Gedangsari, geoheritage, geotourism, geosite

Procedia PDF Downloads 122
40935 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 220
40934 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 6
40933 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability

Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola

Abstract:

Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.

Keywords: data, employee, malware, work place

Procedia PDF Downloads 383
40932 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data

Authors: Rana Rimawi, Ayman Baklizi

Abstract:

Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.

Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation

Procedia PDF Downloads 198
40931 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm

Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder

Abstract:

Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA Data Envelopment Analysis is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.

Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding

Procedia PDF Downloads 639
40930 Student Perceptions of Defense Acquisition University Courses: An Explanatory Data Collection Approach

Authors: Melissa C. LaDuke

Abstract:

The overarching purpose of this study was to determine the relationship between the current format of online delivery for Defense Acquisition University (DAU) courses and Air Force Acquisition (AFA) personnel participation. AFA personnel (hereafter named “student”) were particularly of interest, as they have been mandated to take anywhere from 3 to 30 online courses to earn various DAU specialization certifications. Participants in this qualitative case study were AFA personnel who pursued DAU certifications in science and technology management, program/contract management, and other related fields. Air Force personnel were interviewed about their experiences with online courses. The data gathered were analyzed and grouped into 12 major themes. The themes tied into the theoretical framework and spoke to either teacher-centered or student-centered educational practices within Defense Acquisitions University. Based on the results of the data analysis, various factors contributed to student perceptions of DAU courses, including the online course construct and relevance to their job. The analysis also found students want to learn the information presented but would like to be able to apply the information learned in meaningful ways.

Keywords: educational theory, computer-based training, interview, student perceptions, online course design, teacher positionality

Procedia PDF Downloads 104
40929 Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance

Authors: Jia Yi Yap, Angela S. H. Lee

Abstract:

With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables.

Keywords: big data technologies, employee, job performance, questionnaire

Procedia PDF Downloads 298
40928 Analysis of Patient No-Shows According to Health Conditions

Authors: Sangbok Lee

Abstract:

There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.

Keywords: healthcare system, no show analysis, process improvment, statistical data analysis

Procedia PDF Downloads 233
40927 Data-Focused Digital Transformation for Smart Net-Zero Cities: A Systems Thinking Approach

Authors: Farzaneh Mohammadi Jouzdani, Vahid Javidroozi, Monica Mateo Garcia, Hanifa Shah

Abstract:

The emergence of developing smart net-zero cities in recent years has attracted significant attention and interest from worldwide communities and scholars as a potential solution to the critical requirement for urban sustainability. This research-in-progress paper aims to investigate the development of smart net-zero cities to propose a digital transformation roadmap for smart net-zero cities with a primary focus on data. Employing systems thinking as an underpinning theory, the study advocates for the necessity of utilising a holistic strategy for understanding the complex interdependencies and interrelationships that characterise urban systems. The proposed methodology will involve an in-depth investigation of current data-driven approaches in the smart net-zero city. This is followed by utilising predictive analysis methods to evaluate the holistic impact of the approaches on moving toward a Smart net-zero city. It is expected to achieve systemic intervention followed by a data-focused and systemic digital transformation roadmap for smart net-zero, contributing to a more holistic understanding of urban sustainability.

Keywords: smart city, net-zero city, digital transformation, systems thinking, data integration, data-driven approach

Procedia PDF Downloads 23
40926 Effect of Diamagnetic Additives on Defects Level of Soft LiTiZn Ferrite Ceramics

Authors: Andrey V. Malyshev, Anna B. Petrova, Anatoly P. Surzhikov

Abstract:

The article presents the results of the influence of diamagnetic additives on the defects level of ferrite ceramics. For this purpose, we use a previously developed method based on the mathematical analysis of experimental temperature dependences of the initial permeability. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is the relation of two parameters correlating with elastic stress value in a material. Model samples containing a controlled number of intergranular phase inclusions served to prove the validity of the proposed method, as well as to assess its sensitivity in comparison with the traditional XRD (X-ray diffraction) analysis. The broadening data of diffraction reflexes of model samples have served for such comparison. The defects level data obtained by the proposed method are in good agreement with the X-ray data. The method showed high sensitivity. Therefore, the legitimacy of the selection relationship β/α parameters of phenomenological expression as a characteristic of the elastic state of the ferrite ceramics confirmed. In addition, the obtained data can be used in the detection of non-magnetic phases and testing the optimal sintering production technology of soft magnetic ferrites.

Keywords: cure point, initial permeability, integral defects level, homogeneity

Procedia PDF Downloads 134
40925 The Effect of Transactional Analysis Group Training on Self-Knowledge and Its Ego States (The Child, Parent, and Adult): A Quasi-Experimental Study Applied to Counselors of Tehran

Authors: Mehravar Javid, Sadrieh Khajavi Mazanderani, Kelly Gleischman, Zoe Andris

Abstract:

The present study was conducted with the aim of investigating the effectiveness of transactional analysis group training on self-knowledge and Its dimensions (self, child, and adult) in counselors working in public and private high schools in Tehran. Counseling has become an important job for society, and there is a need for consultants in organizations. Providing better and more efficient counseling is one of the goals of the education system. The personal characteristics of counselors are important for the success of the therapy. In TA, humans have three ego states, which are named parent, adult, and child, and the main concept in the transactional analysis is self-state, which means a stable feeling and pattern of thinking related to behavioral patterns. Self-knowledge, considered a prerequisite to effective communication, fosters psychological growth, and recognizing it, is pivotal for emotional development, leading to profound insights. The research sample included 30 working counselors (22 women and 8 men) in the academic year 2019-2020 who achieved the lowest scores on the self-knowledge questionnaire. The research method was quasi-experimental with a control group (15 people in the experimental group and 15 people in the control group). The research tool was a self-awareness questionnaire with 29 questions and three subscales (child, parent, and adult Ego state). The experimental group was exposed to transactional analysis training for 10 once-weekly 2-hour sessions; the questionnaire was implemented in both groups (post-test). Multivariate covariance analysis was used to analyze the data. The data showed that the level of self-awareness of counselors who received transactional analysis training is higher than that of counselors who did not receive any training (p<0.01). The result obtained from this analysis shows that transactional analysis training is an effective therapy for enhancing self-knowledge and its subscales (Adult ego state, Parent ego state, and Child ego state). Teaching transactional analysis increases self-knowledge, and self-realization and helps people to achieve independence and remove irresponsibility to improve intra-personal and interpersonal relationships.

Keywords: ego state, group, transactional analysis, self-knowledge

Procedia PDF Downloads 76
40924 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
40923 Value Chain Analysis of Melon “Egusi” (Citrullus lanatus Thunb. Mansf) among Rural Farm Enterprises in South East, Nigeria

Authors: Chigozirim Onwusiribe, Jude Mbanasor

Abstract:

Egusi Melon (Citrullus Lanatus Thunb. Mansf ) is a very important oil seed that serves a major ingredient in the diet of most of the households in Nigeria. Egusi Melon is very nutritious and very important in meeting the food security needs of Nigerians. Egusi Melon is cultivated in most farm enterprise in South East Nigeria but the profitability of its value chain needs to be investigated. This study analyzed the profitability of the Egusi Melon value chain. Specifically this study developed a value chain map for Egusi Melon, analysed the profitability of each stage of the Egusi Melon Value chain and analysed the determinants of the profitability of the Egusi Melon at each stage of the value chain. Multi stage sampling technique was used to select 125 farm enterprises with similar capacity and characteristics. Questionnaire and interview were used to elicit the required data while descriptive statistics, Food and Agriculture Organization Value Chain Analysis Tool, profitability ratios and multiple regression analysis were used for the data analysis. One of the findings showed that the stages of the Egusi Melon value chain are very profitable. Based on the findings, we recommend the provision of grants by government and donor agencies to the farm enterprises through their cooperative societies, this will provide the necessary funds for the local fabrication of value addition and processing equipment to suit their unique value addition needs not met by the imported equipment.

Keywords: value, chain, melon, farm, enterprises

Procedia PDF Downloads 134
40922 Assessment of the Knowledge and Practices of Healthcare Workers and Patients Regarding Prevention of Tuberculosis at a Tertiary Care Hospital of Southern Punjab

Authors: Muhammad Shahbaz Akhtar

Abstract:

Background; Tuberculosis remains a significant public health challenge in Pakistan, with high incidence and prevalence rates, particularly among vulnerable populations. Addressing the TB burden requires comprehensive efforts to improve healthcare infrastructure, increase access to quality diagnosis and treatment services, raise public awareness, and address socioeconomic determinants of health. Objective; To assess the knowledge and practices of healthcare workers and patients regarding prevention of tuberculosis at a tertiary care hospital of Southern Punjab.Material and methods; Data will be collected from 135 healthcare workers and 135 TB patients visiting Nishtar Hospital, Multan in this descriptive cross – sectional study using non – probability consecutive sampling technique. Proper approval will be taken from Hospital authorities to conduct this study. Study participants will be recruited after taking informed written consent, describing them objectives of this study. The study participants will be ensured of their confidentiality of the data and interviewed to assess their knowledge and practices regarding prevention of tuberculosis. Data Analysis Procedure; Data will be entered and analyzed by using SPSS version 25 to calculated mean and standard deviation for the numerical data such as age, duration of disease and duration of experience. Frequencies and percentages will be calculated for gender, age groups, level of knowledge, qualification, designation and practices. Impact of confounders like gender, age groups, duration of experience, disease duration, years of experience and designation will be assessed by stratification. Post stratification chi – square test will be applied at 0.05 level of significance at 95 % CI.

Keywords: tuberculosis, data analysis, HIV/AIDS, preventable

Procedia PDF Downloads 20
40921 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 44
40920 Use of Life Cycle Data for State-Oriented Maintenance

Authors: Maximilian Winkens, Matthias Goerke

Abstract:

The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.

Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention

Procedia PDF Downloads 495
40919 The Reflection of Greek Reality Concerning Taxation from the Perspective of Both Tax Payers and Taxmen

Authors: Evagelia Makri, Maria Tsourela, Dimitris Paschaloudis, Dafni M. Nerantzaki

Abstract:

One of the biggest financial and social problems, which at the same time constitute one of the greater challenges that Greek society faces today, is the illegal avoidance of tax payments. Tax evasion may negate financial data and community budgets, as well as breed financial chaos. This research seeks to reflect Greek reality concerning tax measures. Also, there will be an effort to record the factors surrounding tax evasion. Greek tax system’s data will be rendered in financial terms. Questionnaires will be handed out to tax payers, and interviews will be conducted to taxmen. The quantitative analysis of the questionnaire answers will define the tax payers’ opinion towards the existence of tax evasion. The qualitative analysis of the interviews will reveal the main reason that boosts tax evasion. At the end, there will be some realistic proposals about how to better collect taxes, through the creation of a strong regulatory mechanism.

Keywords: tax evasion, tax collection measures, insurance recovery measures, Greek tax system

Procedia PDF Downloads 363
40918 Analysis of the Social Problems of the Early Adolescents in Northeast China

Authors: Zhidong Zhang, Zhi-Chao Zhang, Georgianna Duarte

Abstract:

The social problems of early adolescents in Northeast China were examined with the instrument of Achenbach System of Empirically Based Assessment (ASEBA). In this study, the data consisted of 2532 early adolescents. The relevant variables such as sports activities, hobbies, chores and the number of close friends, as independent variables have been included in this study. The stratified sampling method was used to collect data from 2532 participants. The analysis results indicated that sports activities, hobbies, chores and the number of close friends, as predictors can be used in a predictive model, which significantly predict the social problem T-score.

Keywords: social problems, ASEBA, early adolescents, predictive Model

Procedia PDF Downloads 349
40917 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
40916 Discrimination in Insurance Pricing: A Textual-Analysis Perspective

Authors: Ruijuan Bi

Abstract:

Discrimination in insurance pricing is a topic of increasing concern, particularly in the context of the rapid development of big data and artificial intelligence. There is a need to explore the various forms of discrimination, such as direct and indirect discrimination, proxy discrimination, algorithmic discrimination, and unfair discrimination, and understand their implications in insurance pricing models. This paper aims to analyze and interpret the definitions of discrimination in insurance pricing and explore measures to reduce discrimination. It utilizes a textual analysis methodology, which involves gathering qualitative data from relevant literature on definitions of discrimination. The research methodology focuses on exploring the various forms of discrimination and their implications in insurance pricing models. Through textual analysis, this paper identifies the specific characteristics and implications of each form of discrimination in the general insurance industry. This research contributes to the theoretical understanding of discrimination in insurance pricing. By analyzing and interpreting relevant literature, this paper provides insights into the definitions of discrimination and the laws and regulations surrounding it. This theoretical foundation can inform future empirical research on discrimination in insurance pricing using relevant theories of probability theory.

Keywords: algorithmic discrimination, direct and indirect discrimination, proxy discrimination, unfair discrimination, insurance pricing

Procedia PDF Downloads 73
40915 A Comprehensive Framework to Ensure Data Security in Cloud Computing: Analysis, Solutions, and Approaches

Authors: Loh Fu Quan, Fong Zi Heng, Burra Venkata Durga Kumar

Abstract:

Cloud computing has completely transformed the way many businesses operate. Traditionally, confidential data of a business is stored in computers located within the premise of the business. Therefore, a lot of business capital is put towards maintaining computing resources and hiring IT teams to manage them. The advent of cloud computing changes everything. Instead of purchasing and managing their infrastructure, many businesses have started to shift towards working with the cloud with the help of a cloud service provider (CSP), leading to cost savings. However, it also introduces security risks. This research paper focuses on the security risks that arise during data migration and user authentication in cloud computing. To overcome this problem, this paper provides a comprehensive framework that includes Transport Layer Security (TLS), user authentication, security tokens and multi-level data encryption. This framework aims to prevent authorized access to cloud resources and data leakage, ensuring the confidentiality of sensitive information. This framework can be used by cloud service providers to strengthen the security of their cloud and instil confidence in their users.

Keywords: Cloud computing, Cloud security, Cloud security issues, Cloud security framework

Procedia PDF Downloads 121
40914 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 285
40913 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis

Authors: Elcin Timur Cakmak, Ayse Oguzlar

Abstract:

This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.

Keywords: classification algorithms, machine learning, sentiment analysis, Twitter

Procedia PDF Downloads 73
40912 Field Production Data Collection, Analysis and Reporting Using Automated System

Authors: Amir AlAmeeri, Mohamed Ibrahim

Abstract:

Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.

Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast

Procedia PDF Downloads 156
40911 Testing Causal Model of Depression Based on the Components of Subscales Lifestyle with Mediation of Social Health

Authors: Abdolamir Gatezadeh, Jamal Daghaleh

Abstract:

The lifestyle of individuals is important and determinant for the status of psychological and social health. Recently, especially in developed countries, the relationship between lifestyle and mental illnesses, including depression, has attracted the attention of many people. In order to test the causal model of depression based on lifestyle with mediation of social health in the study, basic and applied methods were used in terms of objective and descriptive-field as well as the data collection. Methods: This study is a basic research type and is in the framework of correlational plans. In this study, the population includes all adults in Ahwaz city. A randomized, multistage sampling of 384 subjects was selected as the subjects. Accordingly, the data was collected and analyzed using structural equation modeling. Results: In data analysis, path analysis indicated the confirmation of the assumed model fit of research. This means that subscales lifestyle has a direct effect on depression and subscales lifestyle through the mediation of social health which in turn has an indirect effect on depression. Discussion and conclusion: According to the results of the research, the depression can be used to explain the components of the lifestyle and social health.

Keywords: depression, subscales lifestyle, social health, causal model

Procedia PDF Downloads 163