Search results for: healthcare analytics
490 Qualitative Study of Organizational Variables Affecting Nurses’ Resilience in Pandemic Condition
Authors: Zahra Soltani Shal
Abstract:
Introduction: The COVID-19 pandemic marks an extraordinary global public health crisis unseen in the last century, with its rapid spread worldwide and associated mortality burden. Healthcare resilience during a pandemic is crucial not only for continuous and safe patients care but also for control of any outbreak. Aim: The present study was conducted to discover the organizational variables effective in increasing resilience and continuing the work of nurses in critical and stressful pandemic conditions. Method: The study population is nurses working in hospitals for patients with coronavirus. Sampling was done purposefully and information was collected from 15 nurses through In-depth semi-structured interviews. The interview was conducted to analyze the data using the framework analysis method consisting of five steps and is classified in the table. Results: According to the findings through semi-structural interviews, among organizational variables, organizational commitment (Affective commitment, continuous commitment, normative commitment) has played a prominent role in nurses' resilience. Discussion: despite the non-withdrawal of nurses and their resilience, due to the negative quality of their working life, the mentioned variable has affected their level of performance and ability and leads to fatigue and physical and mental exhaustion. Implications for practice: By equipping hospitals and improving the facilities of nurses, their organizational commitment can be increased and lead to their resilience in critical situations. Supervisors and senior officials at the hospitals should be responsible for nurses' health and safety. A clear and codified program in critical situations and comprehensive management is effective in improving the quality of the work-life of nurses. Creating an empathetic and interactive environment can help promote nurses' mental health.Keywords: organizational commitment, quality of work life, nurses resilience, pandemic, coronavirus
Procedia PDF Downloads 162489 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 106488 Radiation Risks for Nurses: The Unrecognized Consequences of ERCP Procedures
Authors: Ava Zarif Sanayei, Sedigheh Sina
Abstract:
Despite the advancement of radiation-free interventions in the gastrointestinal and hepatobiliary fields, endoscopy and endoscopic retrograde cholangiopancreatography (ERCP) remain indispensable procedures that necessitate radiation exposure. ERCP, in particular, relies heavily on radiation-guided imaging to ensure precise delivery of therapy. Meanwhile, interventional radiology (IR) procedures also utilize imaging modalities like X-rays and CT scans to guide therapy, often under local anesthesia via small needle insertion. However, the complexity of these procedures raises concerns about radiation exposure to healthcare professionals, including nurses, who play a crucial role in these interventions. This study aims to assess the radiation exposure to the hands and fingers of nurses 1 and 2, who are directly involved in ERCP procedures utilizing (TLD-100) dosimeters at the Gastrointestinal Endoscopy department of a clinic in Shiraz, Iran. The dosimeters were initially calibrated using various phantoms and then a group was prepared and used over a two-month period. For personal equivalent dose measurement, two TLD chips were mounted on a finger ring to monitor exposure to the hands and fingers. Upon completion of the monitoring period, the TLDs were analyzed using a TLD reader, showing that Nurse 1 received an equivalent dose of 298.26 µSv and Nurse 2 received an equivalent dose of 195.39 µSv. The investigation revealed that the total radiation exposure to the nurses did not exceed the annual limit for occupational exposure. Nevertheless, it is essential to prioritize radiation protection measures to prevent potential harm. The study showed that positioning staff members and placing two nurses in a specific location contributed to somehow equal doses. To reduce exposure further, we suggest providing education and training on radiation safety principles, particularly for technologists.Keywords: dose measurement, ERCP, interventional radiology, medical imaging
Procedia PDF Downloads 34487 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique
Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki
Abstract:
Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector
Procedia PDF Downloads 335486 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 20485 Low Energy Mechanism in Pelvic Trauma at Elderly
Authors: Ravid Yinon
Abstract:
Introduction: Pelvic trauma causes high mortality, particularly among the elderly population. Pelvic injury ranges from low-energy incidents such as falls to high-energy trauma like motor vehicle accidents. The mortality rate among high-energy trauma patients is higher, as can be expected. The elderly population is more vulnerable to pelvic trauma even at low energy mechanisms due to the fragility and diminished physiological reserve of these patients. The aim of this study is to examine whether there is a higher long-term mortality in pelvic injuries in the elderly from the low-energy mechanism than those injured in high energy. Methods: A retrospective cohort study was conducted in a level 1 trauma center with injured patients aged 65 years and over with pelvic trauma. The patients were divided into two groups of low and high-energy mechanisms of injury. Multivariate analysis was conducted to characterize the differences between the groups. Results: There were 585 consecutive injured patients over the age of 65 with a documented pelvic injury who were treated at the primary trauma center between 2008-2020. The injured in the high energy group were younger (mean HE- 75.18, LE-80.73), with fewer comorbidities (mean 0.78 comorbidities at HE and 1.28 at LE), more men (52.6% at HE and 27.4% at LE), were consumed more treatments facilities such as angioembolization, ICU admission, emergency surgeries and blood products transfusion and higher mortality rate at admission (HE- 19/133, 14.28%, LE- 10/452, 2.21%) compared to the low energy group. However, in a long-term follow-up of one year after the injury, mortality in the low-energy group was significantly higher (HE- 14/114, 12.28%, LE- 155/442, 35.06%). Discussion: Although it can be expected that in the mechanism of high energy, the mortality rate in the long term would be higher, it was found that mortality at the low energy patient was higher. Apparently, low-energy pelvic injury in geriatric patients is a measure of frailty in these patients, causes injury to more frail and morbid patients, and is a predictor of mortality in this population in the long term. Conclusion: The long-term follow-up of injured elderly with pelvic trauma should be more intense, and the healthcare provider should put more emphasis on the rehabilitation of these special patient populations in an attempt to prevent long-term mortality.Keywords: pelvic trauma, elderly trauma, high energy trauma, low energy trauma
Procedia PDF Downloads 52484 Assessment of Maternal Satisfaction Regarding Quality of Care during Labor
Authors: Farida Habib, Haya Alfozan, Eman Miligi, Najla Alotaibi
Abstract:
Background: Women’s satisfaction with maternity services, especially care during labor and birth, has become highly significant to healthcare providers, administrators, and policymakers. Purpose: The aims of this study were to assess maternal satisfaction regarding the quality of care during labor and to compare the level of maternal satisfaction between women who delivered by physicians and those delivered by midwives. Methodology: A descriptive, cross-sectional, correlational design was used. A convenient sample of 180 low-risk cases of immediate postpartum women who delivered at King Abdul-Aziz medical city was recruited. Women whose babies were diagnosed with serious health problems were excluded from the study. Data were collected using a self-administered questionnaire. The validity and reliability of the questionnaire were ensured. The questionnaire included three parts, namely: demographics data, medical history, and obstetrical history, and the last part is the satisfaction assessment tool. Ethical confederations were ensured. Maternal satisfaction during labor was classified in terms of health care, health workers' communication, and the environment. Results: Regarding health care, women were highly satisfied with care received from nurse (M = 4.21 + 0.88), medical care received (M = 4.17 + 0.79), and comfort techniques (M = 4.04 + 0.91). Regarding health workers' communication, women were highly satisfied with the provider to treat with dignity and respect (M = 4.03 + 0.91) and orientation to the toilet, bathroom, washing area (M = 4.00 + 0.93). Regarding the environment, women were highly satisfied with the experience of their baby's birth (M = 4.18 + 0.98) and supplies with drugs and supplies (M = 4.09 + 0.97). There was no statistically significant difference in maternal satisfaction between women who delivered by physicians and those delivered by midwives. Conclusion: Women were generally satisfied with their labor and delivery experience. There was no difference in maternal satisfaction on the labor process between women who delivered by physicians and those delivered by midwives.Keywords: maternity, satisfaction, labor, delivery
Procedia PDF Downloads 190483 Community Pharmacist's Perceptions, Attitude and Role in Oral Health Promotion and Diseases Prevention
Authors: Bushra Alghamdi, Alla Alsharif, Hamzah Aljohani, Saba Kassim
Abstract:
Introduction: Collaborative work has always been acknowledged as a fundamental concept in delivering oral health care. Aim: This study aimed to assess the perception and attitude of pharmacists in oral health promotion and to determine the confident levels of pharmacists in delivering advice on oral health problems. Methods: An observational cross-sectional survey, using self-administered anonymous questionnaires, was conducted between March and April 2017. The study recruited a convenience sample of registered community pharmacists who were working in local private pharmaceutical stores in the urban area of Madinah, Kingdom of Saudi Arabia (KSA). A preliminary descriptive analysis was performed. Results: Thirty-five pharmacists have completed the surveys. All participants were males, with a mean age of 35.5 ( ± 6.92) years. Eighty-six percent of the participants reported that pharmacists should have a role in oral health promotion. Eighty percent have reported adequate level of confident when giving advice on most of the common oral health problems that include; oral health related risk behaviors such as tobacco cessation (46%), bleeding gums (63%) and sensitive teeth (60%). However, higher percentages of pharmacists have reported low confident levels when giving advice in relation to specific domain of dentistry, such as lost dental fillings (57%), loose crowns (60%), trauma to teeth (40%), denture-related problems (51%) and oral cancer (6.9%). Conclusion: Community pharmacists recognized their potential role in promoting oral health in KSA. Community pharmacists had varying levels of ability and confidence to offer support for oral health. The study highlighted that inner professional collaboration between pharmacists and dental care healthcare should be enhanced.Keywords: community, oral health, promotion, pharmacist
Procedia PDF Downloads 197482 A Multi-Site Knowledge Attitude and Practice Survey of Ebola Virus Disease (EVD) in Nigeria
Authors: Ilyasu G., Ogoina D., Otu AA, Muhammed FD, Ebenso B., Otokpa D., Rotifa S., Tuduo-Wisdom O., Habib AG
Abstract:
Background: The 2014 Ebola Virus Disease (EVD) outbreak was characterized by fear, misconceptions and irrational behaviors. We conducted a knowledge attitude and practice survey of EVD in Nigeria to inform the institution of effective control measures. Methods: Between July 30th and September 30th 2014, a cross-sectional study on knowledge, attitude and practice (KAP) of Ebola Virus Disease (EVD) was undertaken among adults of the general population and healthcare workers (HCW) in three states of Nigeria, including Kano, Cross River and Bayelsa states. Demographic information and data on KAP were obtained using a self-administered standardized questionnaire. The percentage KAP scores were categorized as good and poor. Independent predictors of good knowledge of EVD were ascertained using a binary logistic regression model. Results: Out of 1035 study participants with a median age of 32 years, 648 (62.6%) were males, 846 (81.7%) had tertiary education and 441 (42.6%) were HCW. There were 218, 239 and 578 respondents from Bayelsa, Cross Rivers, and Kano states, respectively. The overall median percentage KAP scores and interquartile ranges (IQR) were 79.46% (15.07%), 95.0% (33.33%), and 49.95% (37.50%), respectively. Out of the 1035 respondents, 470 (45.4%), 544(52.56%), and 252 (24.35%) had good KAP of EVD defined using 80%, 90%, and 70% score cut-offs, respectively. Independent predictors of good knowledge of EVD were a HCW (Odds Ratio-OR-2.89, 95% Confidence interval-CI of 1.41-5.90), reporting ‘moderate to high fear of EVD’ (OR-2.15, 95% CI-1.47-3.13) and ‘willingness to modify habit’ (OR-1.68, 95% CI-1.23-2.30). Conclusion: Our results reveal suboptimal EVD-related knowledge, attitude and practice among adults in Nigeria. To effectively control future outbreaks of EVD in Nigeria, there is a need to institute public sensitization programs that improve understanding of EVD and address EVD-related myths and misconceptions, especially among the general population.Keywords: Ebola, health care worker, knowledge, attitude
Procedia PDF Downloads 284481 Leisure Time Physical Activity during Pregnancy and the Associated Factors Based on Health Belief Model: A Cross Sectional Study
Authors: Xin Chen, Xiao Yang, Rongrong Han, Lu Chen, Lingling Gao
Abstract:
Background: Leisure time physical activity (LTPA) benefits both pregnant women and their fetuses. The guidelines recommended that pregnant women should do at least 150 minutes of moderate-intensity aerobic physical activity throughout the week. The aim of this study was to investigate the rate of LTPA participation among Chinese pregnant women and to identify its predictors based on the health belief model. Methods: A cross-sectional study was conducted from June 2019 to September 2019 in Changchun, China. A total of 225 pregnant women aged 18 years or older with no severe physical or mental disease were recruited in the obstetric clinic. Self-administered questionnaires were used to collect data. LTPA was assessed by a pregnant physical activity questionnaire (PPAQ). A revised pregnancy physical activity health belief scale and social-demographic and perinatal characteristics factors were collected and used to predict LTPA participation. Data were analyzed using descriptive statistics and multivariate logistic regression. Results: The participants had a high level of perceived susceptibility, perceived severity, perceived benefits, and action clues, with mean item scores above 3.5. The predictors of LTPA in Chinese pregnant women were pre-pregnancy exercise habits [OR 3.236 (95% CI:1.632, 6.416)], perceived susceptibility score [OR 2.083 (95% CI:1.002, 4.331)], and perceived barriers score [OR 3.113 (95%CI:1.462, 6.626)]. Conclusions: The results of this study will lead to better identification of pregnant women who may not participate in LTPA. Healthcare professionals should be cognizant of issues that may affect LTPA participation among pregnant women, including pre-pregnancy exercise habits, perceived susceptibility, and perceived barriers.Keywords: pregnancy, health belief model., leisure time physical activity, factors
Procedia PDF Downloads 79480 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 285479 Aging and Falls Profile from Hospital Databases
Authors: Nino Chikhladze, Tamar Dochviri, Nato Pitskhelauri, Maia Bitskhinashvili
Abstract:
Population aging is a key social and demographic trend of the 21st century. Falls represent a prevalent geriatric syndrome that poses significant risks to the health and independence of older adults. The World Health Organization notes a lack of comprehensive data on falls in low- and middle-income countries, complicating the creation of effective prevention programs. To the authors’ best knowledge, no such studies have been conducted in Georgia. The aim of the study is to explore the epidemiology of falls in the elderly population. The hospitalization database of the National Center for Disease Control and Public Health of Georgia was used for the retrospective study. Falls-related injuries were identified using ICD-10 classifications using the class XIX (S and T codes) and class XX for the type of injury (V-Y codes). Statistical data analyses were done using SPSS software version 23.0. The total number of fall-related hospitalizations for individuals aged 65 and older from 2015 to 2021 was 29,697. The study revealed that falls accounted for an average of 63% (ranging from 59% to 66%) of all hospitalizations and 68% (ranging from 65% to 70%) of injury-related hospitalizations during this period. The 69% of all patients were women and 31%-men (Chi2=4482.1, p<0.001). The highest rate of hospitalization was in the age groups 80-84 and 75-79. The probability of fall-related hospitalization was significantly higher in women (p<0.001) compared to men in all age groups except 65-69 years. In the target age group of 65 years and older, the probability of hospitalization increased significantly with an increase in age (p<0.001). The study's results can be leveraged to create evidence-based awareness programs, design targeted multi-domain interventions addressing specific risk factors, and enhance the quality of geriatric healthcare services in Georgia.Keywords: elderly population, falls, geriatric patients, hospitalization, injuries
Procedia PDF Downloads 29478 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 115477 A Comparative Study of the Use of Medicinal Plants and Conventional Medicine for the Treatment of Hepatitis B Virus in Ibadan Metropolis
Authors: Julius Adebayo John
Abstract:
The objective of this study is to compare the use of medicinal plants and Conventional medicine intervention in the management of HBV among Ibadan populace. A purposive sampling technique was used to administer questionnaires at 2 places, namely, the University College Hospital and Total Healthcare Diagnostic Centre, Ibadan, where viral loads are carried out. A EuroQol (EQ – 5D) was adopted to collect data. Descriptive and inferential analyses were performed. Also, ANOVA, Correlation, charts, and tables were used. Findings revealed a high prevalence of HBV among female respondents and sample between ages 26years to 50years. Results showed that the majority discovered their health status through free HBV tests. Analysis indicated that the use of medicinal plant extract is cost-effective in 73% of cases. Rank order utility derived from medicinal plants is higher than other interventions. Correlation analysis performed for the current health status of respondents were significant at P<0.01 against the intervention management adopted (0.046), cost of treatment (0.549), utility (0.407) at P<0.00, duration of the treatment (0.604) at P<0.01; viral load before treatment (-0.142) not significant at P<0.01, the R2 (72.2%) showed the statistical variance in respondents current health status as explained by the independent variables. Respondents gained quality-adjusted life-years (QALYs) of between 1year to 3years. Suggestions were made for a public-private partnership effort against HBV with emphasis on periodic screening, viral load test subsidy, and free vaccination of people with –HBV status. Promoting phytomedicine through intensive research with strong regulation of herbal practitioners will go a long way in alleviating the burdens of the disease in society.Keywords: medicinal plant, HBV management interventions, utility, QALYs, ibadan metropolis
Procedia PDF Downloads 155476 Drivers and Barriers to the Acceptability of a Human Milk Bank Among Malaysians: A Cross Sectional Study
Authors: Kalaashini Ramachandran, Maznah Dahlui, Nik Daliana Nik Farid
Abstract:
WHO recommends all babies to be exclusively breastfed and donor milk is the next best alternative in the absence of mother’s own milk. The establishment of a human milk bank (HMB) is still being debated due to religious concerns in Malaysia leading to informal milk sharing practices, but little is known on the knowledge, attitude and perception of women towards HMB and its benefits. This study hypothesizes that there is no association between knowledge and attitude and the acceptance towards the establishment of human milk bank among Malaysian women and healthcare providers. The aim of this study is to determine the drivers and barriers among Malaysian towards the acceptance of an HMB. A cross-sectional study with 367 participants was enrolled within a period of 3 months to answer an online self-administered questionnaire. Data on sociodemographic, knowledge on breastfeeding benefits, knowledge and attitude on HMB and its specific issues were analyzed in terms of frequency and then proceed to multiple logistic regression. Majority of the respondents are of Islamis religion (73.3%), have succeesfully completed their tertiary education (82.8%), and are employed (70.8%). Only 55.9% of respondents have heard of an HMB stating internet as their main source of information but a higher prevalence is agreeable to the establishment of a human milk bank (67.8%). Most respondents have a good score on knowledge of breastfeeding benefits and on HMB specific issues (70% and 54.2% respectively) while 63.8% of them have a positive attitude towards HMB. In the multivariate analysis, mothers with a good score on general knowledge of breastfeeding (AOR: 1.715) were more likely to accept the establishment of an HMB while Islamic religion was negatively associated with its establishment (AOR:0.113). This study has found a high prevalence rate of mothers who are willing to accept the establishment of an HMB. This action can be potentially shaped by educating mothers on the benefits of breastfeeding as well as addressing their religious concerns so the establishment of a religiously abiding HMB in Malaysia may be accepted without compromising their belief or the health benefit of donor milk.Keywords: acceptability, attitude, human milk bank, knowledge
Procedia PDF Downloads 102475 Egyptian Soil Isolate Shows Promise as a Source of a New Broad-spectrum Antimicrobial Agent Against Multidrug-resistant Pathogens
Authors: Norhan H. Mahdally, Bathini Thissera Riham A. ElShiekh, Noha M. Elhosseiny, Mona T. Kashef, Ali M. El Halawany, Mostafa E. Rateb, Ahmed S. Attia
Abstract:
Multidrug-resistant (MDR) pathogens pose a global threat to healthcare settings. The exhaustion of the current antibiotic arsenal and the scarcity of new antimicrobials in the pipeline aggravate this threat and necessitate a prompt and effective response. This study focused on two major pathogens that can cause serious infections: carbapenem-resistant Acinetobacter baumannii (CRAB) and methicillin-resistant Staphylococcus aureus (MRSA). Multiple soil isolates were collected from several locations throughout Egypt and screened for their conventional and non-conventional antimicrobial activities against MDR pathogens. One isolate exhibited potent antimicrobial activity and was subjected to multiple rounds of fractionation. After fermentation and bio-guided fractionation, we identified pure microbial secondary metabolites with two scaffolds that exhibited promising effects against CRAB and MRSA. Scaling up and chemical synthesis of derivatives of the identified metabolite resulted in obtaining a more potent derivative, which we designated as 2HP. Cytotoxicity studies indicated that 2HP is well-tolerated by human cells. Ongoing work is focusing on formulating the new compound into a nano-formulation to enhance its delivery. Also, to have a better idea about how this compound works, a proteomic approach is currently underway. Our findings suggest that 2HP is a potential new broad-spectrum antimicrobial agent. Further studies are needed to confirm these findings and to develop 2HP into a safe and effective treatment for MDR infections.Keywords: broad-spectrum antimicrobials, carbapenem-resistant acinetobacter baumannii, drug discovery, methicillin-resistant staphylococcus aureus, multidrug-resistant, natural products
Procedia PDF Downloads 80474 A Pilot Study Assessing the Effectiveness of a Virtual Reality Intervention for Alleviating Pain and Anxiety in the Pediatric Emergency Room
Authors: Muqadis Shazia Rajpar, Lawrence Mitelberg, Rubaiat S. Ahmed, Jemer Garrido, Rukhsana Hossain, Sergey M. Motov
Abstract:
Distraction techniques have been used as a means to reduce pain, anxiety, and stress in various healthcare settings to facilitate care and make visits less unpleasant. Using virtual reality (VR) in the pediatric emergency setting can be a valuable, effective, and safe non-pharmacological alternative to the current standard of care for pain and anxiety management in pediatric patients. Our pilot study aimed to evaluate the effectiveness of a VR-based intervention as an alternative distraction modality to alleviate pain and anxiety associated with pediatric emergency department (ED) visits and acute pain conditions. The pilot study period was from November 16 to December 9, 2022, for pediatric ED visits for pain, anxiety, or both. Patients were selected based on a novel VR protocol to receive the VR intervention with the administration of pre and post-intervention surveys concerning pain/anxiety ratings and pain scores (Wong-Baker FACES/NRS). Descriptive statistics, paired t-test, and a Fisher Exact Test were used for data analysis, assuming a p-value of 0.05 for significance. A total of 33 patients (21 females, 12 males), ages 5-20 (M = 10.5, SD = 3.43) participated in this study – 12 patients had pain, 2 patients had anxiety, and 19 patients had both pain and anxiety. There was a statistically significant decrease in post-intervention pain scores of less than one point on the rating scale (6.48 vs. 5.62, p < .001). There was a statistically significant reduction in the percentage of patients suffering from “considerable” or “great” pain after the VR intervention (51.6% to 42.3%, p < .001). Similarly, we noticed an increase in the number of patients with “slight” or “moderate” pain post–VR intervention (48.4% to 57.7%, p < .001). Lastly, we demonstrated a decrease in anxiety among patients after utilizing VR (63.6% vs. 36.4%, p < .001). To conclude, VR can alleviate pain and anxiety in pediatric patients and be a useful non-pharmacological tool in the emergency setting.Keywords: anxiety, emergency room, pain management, pediatric emergency medicine, virtual reality
Procedia PDF Downloads 88473 The Perspective of Health Care Professionals of Pediatric Palliative Care
Authors: Eunkyo Kang, Jihye Lee, Jiyeon Choo
Abstract:
Background: Pediatric palliative care has been increasing, and the number of studies has focused on the age at which pediatric patient can be notified their terminal illness, pediatric advanced care planning (ACP) and palliative care. However, there is a lack of research on health professionals’ perception. Aim: We aimed to investigate the perceptions of healthcare professionals about appropriate age disclosing terminal illness, awareness of ACP, and the relationship between ACP knowledge and the preference for palliative care for children. Methods: We administered nationwide questionnaires to 928 physicians from the 12 hospitals and the Korean Medical Association and 1,241 individuals of the general Korean population. We asked about the age at which the pediatric patients could be notified of their terminal illness, by 4 groups; 4 years old or older, 12 years old or older, 15 years old or older, or not. In addition, we surveyed the questionnaires about the knowledge of ACP of the medical staff, the preference of the pediatric hospice palliative care, aggressive treatment, and life-sustaining treatment preference. Results: In the appropriate age disclosing terminal illness, there were more respondents in the physicians than in the general population who thought that it was possible even at a younger age. Palliative care preference in pediatric patients who were expected to expire within months was higher when health care professionals had knowledge of ACPs compared to those without knowledge. The same results were obtained when deaths were expected within weeks or days. The age of the terminal status notification, the health care professionals who thought to be available at a lower age have a higher preference for palliative care and has less preference for aggressive treatment and life-sustaining treatment. Conclusion: Despite the importance of pediatric palliative care, our study confirmed that there is a difference in the preference of the health care professionals for pediatric palliative care according to the ACP knowledge of the medical staff or the appropriate age disclosing terminal illness. Future research should focus on strategies for inducing changes in perceptions of health care professionals and identifying other obstacles for the pediatric palliative care.Keywords: pediatric palliative care, disclosing terminal illness, palliative care, advanced care planning
Procedia PDF Downloads 301472 Credibility and Personal Social Media Use of Health Professionals: A Field Study
Authors: Abrar Al-Hasan
Abstract:
Objectives: There is ongoing discourse regarding the potential risks to health professionals' reputations and credibility arising from their personal social media use. However, the specific impacts on professional credibility and the health professional-client relationship remain largely unexplored. This study aims to investigate the type and frequency of the content posted by health professionals on their Instagram accounts and its influence on their credibility and the professional-client relationship. Methodology: In a controlled field study, participants reviewed randomly assigned mock Instagram profiles of health professionals. Mock profiles were constructed according to gender (female/male), social media usage (high/low), and social media richness (high/ low), with richness increasing from posts to stories to reels and personal content type (high /low). Participants then rated the profile owners’ credibility on a visual analog scale. An analysis of variance compared these ratings, and mediation analyses assessed the influence of credibility ratings on participants' willingness to become clients of the mock health professional. Results: Results from 315 participants showed that health professionals with personal Instagram profiles displaying high social media richness were perceived as more credible than those with lower social media richness. Low social media usage is perceived as more credible than high social media usage. Personal content type is perceived as less credible as compared to those with low personal content type. Contributions: These findings provide initial evidence of the impact of health professionals' personal online disclosures on credibility and the health professional-client relationship. Understanding public perceptions of professionalism and credibility is essential for informing e-professionalism guidelines and promoting best practices in social media use among health professionals.Keywords: credibility, consumer behavior, social media, media richness, healthcare professionals
Procedia PDF Downloads 42471 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data
Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos
Abstract:
Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia
Procedia PDF Downloads 22470 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 447469 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 75468 Attitudes and Knowledge of Dental Patients Towards Infection Control Measures in Kuwait University Dental Center
Authors: Fatima Taqi, Abrar Alanzi
Abstract:
Objectives: The objective of this study is to determine and assess the level of knowledge and attitudes of dental patients attending Kuwait University Dental Clinics (KUDC) regarding the infection control protocols practiced in the clinic. The results would highlight the importance of conducting awareness campaigns in the community to promote good oral healthcare in Kuwait. Materials and Methods: A cross-sectional descriptive survey was carried out among dental patients attending KUDC. A structured questionnaire, in both Arabic and English languages, was used for data collection about the socio-demographic characteristics, knowledge about the dental cross-infection, and attitudes and self-reported practices regarding infection transmission and control in dentistry. Results: A response rate of 80% (202/250) was reported. 47% of respondents had poor knowledge about dental infection transmission, and only 19.8% had satisfactory knowledge. Female participants obtained a higher satisfactory score (14.3%) compared to males (5.5%). Patients with a university degree or higher education had a better level of knowledge compared to patients with a lower educational level (p < 0.05). The majority of participants agreed that the dentist should wear gloves (95.5%), masks (89.6%), safety glasses (70.3%), and gowns (84.7%). Many patients believed that the protection measures are mainly to stop the infection transmission from patient to patient via the dentist. Half of the participants would ask if the instruments are sterilized and might accept treatment from non-vaccinated dentists. Conclusions: Many dental patients attending KUDC have obtained poor knowledge scores regarding infection transmission in the dental clinic. The educational level was significantly associated with their level of knowledge. An overall positive attitude was reported regarding the infection control protocols practiced in the dental clinic. Raising awareness among dental patients about dental infection transmission and protective measures is of utmost importance.Keywords: dental infection, knowledge, dental patients, infection control
Procedia PDF Downloads 139467 Education Management and Planning with Manual Based
Authors: Purna Bahadur Lamichhane
Abstract:
Education planning and management are foundational pillars for developing effective educational systems. However, in many educational contexts, especially in developing nations, technology-enabled management is still emerging. In such settings, manual-based systems, where instructions and guidelines are physically documented, remain central to educational planning and management. This paper examines the effectiveness, challenges, and potential of manual-based education planning systems in fostering structured, reliable, and adaptable management frameworks. The objective of this study is to explore how a manual-based approach can successfully guide administrators, educators, and policymakers in delivering high-quality education. By using structured, accessible instructions, this approach serves as a blueprint for educational governance, offering clear, actionable steps to achieve institutional goals. Through an analysis of case studies from various regions, the paper identifies key strategies for planning school schedules, managing resources, and monitoring academic and administrative performance without relying on automated systems. The findings underscore the significance of organized documentation, standard operating procedures, and comprehensive manuals that establish uniformity and maintain educational standards across institutions. With a manual-based approach, management can remain flexible, responsive, and user-friendly, especially in environments where internet access and digital literacy are limited. Moreover, it allows for localization, where instructions can be tailored to the unique cultural and socio-economic contexts of the community, thereby increasing relevancy and ownership among local stakeholders. This paper also highlights several challenges associated with manual-based education management. Manual systems often require significant time and human resources for maintenance and updating, potentially leading to inefficiencies and inconsistencies over time. Furthermore, manual records can be susceptible to loss, damage, and limited accessibility, which may affect decision-making and institutional memory. There is also the risk of siloed information, where crucial data resides with specific individuals rather than being accessible across the organization. However, with proper training and regular oversight, many of these limitations can be mitigated. The study further explores the potential for hybrid approaches, combining manual planning with selected digital tools for record-keeping, reporting, and analytics. This transitional strategy can enable schools and educational institutions to gradually embrace digital solutions without discarding the familiarity and reliability of manual instructions. In conclusion, this paper advocates for a balanced, context-sensitive approach to education planning and management. While digital systems hold the potential to streamline processes, manual-based systems offer resilience, inclusivity, and adaptability for institutions where technology adoption may be constrained. Ultimately, by reinforcing the importance of structured, detailed manuals and instructional guides, educational institutions can build robust management frameworks that facilitate both short-term successes and long-term growth in their educational mission. This research aims to provide a reference for policymakers, educators, and administrators seeking practical, low-cost, and adaptable solutions for sustainable educational planning and management.Keywords: educatoin, planning, management, manual
Procedia PDF Downloads 12466 The Importance of Artificial Intelligence in Various Healthcare Applications
Authors: Joshna Rani S., Ahmadi Banu
Abstract:
Artificial Intelligence (AI) has a significant task to carry out in the medical care contributions of things to come. As AI, it is the essential capacity behind the advancement of accuracy medication, generally consented to be a painfully required development in care. Albeit early endeavors at giving analysis and treatment proposals have demonstrated testing, we anticipate that AI will at last dominate that area too. Given the quick propels in AI for imaging examination, it appears to be likely that most radiology, what's more, pathology pictures will be inspected eventually by a machine. Discourse and text acknowledgment are now utilized for assignments like patient correspondence and catch of clinical notes, and their utilization will increment. The best test to AI in these medical services areas isn't regardless of whether the innovations will be sufficiently skilled to be valuable, but instead guaranteeing their appropriation in day by day clinical practice. For far reaching selection to happen, AI frameworks should be affirmed by controllers, coordinated with EHR frameworks, normalized to an adequate degree that comparative items work likewise, instructed to clinicians, paid for by open or private payer associations, and refreshed over the long haul in the field. These difficulties will, at last, be survived, yet they will take any longer to do as such than it will take for the actual innovations to develop. Therefore, we hope to see restricted utilization of AI in clinical practice inside 5 years and more broad use inside 10 years. It likewise appears to be progressively evident that AI frameworks won't supplant human clinicians for a huge scope, yet rather will increase their endeavors to really focus on patients. Over the long haul, human clinicians may advance toward errands and work plans that draw on remarkably human abilities like sympathy, influence, and higher perspective mix. Maybe the lone medical services suppliers who will chance their professions over the long run might be the individuals who will not work close by AIKeywords: artificial intellogence, health care, breast cancer, AI applications
Procedia PDF Downloads 181465 Assessing the Accessibility to Primary Percutaneous Coronary Intervention
Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu
Abstract:
Background: Ensuring patients with ST-elevation myocardial infarction (STEMI) access to hospitals that could perform percutaneous coronary intervention (PCI) in time is an important concern of healthcare managers. One commonly used the method to assess the coverage of population access to PCI hospital is the use GIS-estimated linear distance (crow's fly distance) between the district centroid and the nearest PCI hospital. If the distance is within a given distance (such as 20 km), the entire population of that district is considered to have appropriate access to PCI. The premise of using district centroid to estimate the coverage of population resident in that district is that the people live in the district are evenly distributed. In reality, the population density is not evenly distributed within the administrative district, especially in rural districts. Fortunately, the Taiwan government released basic statistical area (on average 450 population within the area) recently, which provide us an opportunity to estimate the coverage of population access to PCI services more accurate. Objectives: We aimed in this study to compare the population covered by a give PCI hospital according to traditional administrative district versus basic statistical area. We further examined if the differences between two geographic units used would be larger in a rural area than in urban area. Method: We selected two hospitals in Tainan City for this analysis. Hospital A is in urban area, hospital B is in rural area. The population in each traditional administrative district and basic statistical area are obtained from Taiwan National Geographic Information System, Ministry of Internal Affairs. Results: Estimated population live within 20 km of hospital A and B was 1,515,846 and 323,472 according to traditional administrative district and was 1,506,325 and 428,556 according to basic statistical area. Conclusion: In urban area, the estimated access population to PCI services was similar between two geographic units. However, in rural areas, the access population would be overestimated.Keywords: accessibility, basic statistical area, modifiable areal unit problem (MAUP), percutaneous coronary intervention (PCI)
Procedia PDF Downloads 458464 Exploring the Effectiveness of End-Of-Life Patient Decision Add in the ICU
Authors: Ru-Yu Lien, Shih-Hsin Hung, Shu-Fen Lu, Ju-Jen Shie, Wen-Ju Yang, Yuann-Meei Tzeng, Chien-Ying Wang
Abstract:
Background: The quality of care in intensive care units (ICUs) is crucial, especially for terminally ill patients. Shared decision-making (SDM) with families is essential to ensure appropriate care and reduce suffering. Aim: This study explores the effectiveness of an end-of-life decision support Patient Decision Aid (PDA) in an ICU setting. Methods: This study employed a cross-sectional research design conducted in an ICU from August 2020 to June 2023. Participants included family members of end-of-life patients aged 20 or older. A total of 319 participants. Family members of end-of-life patients received the PDA, and data were collected after they made medical decisions. Data collection involved providing family members with a PDA during family meetings. A post-PDA questionnaire with 17 questions assessed PDA effectiveness and anxiety levels. Statistical analysis was performed using SPSS 22.0. Results: The PDA significantly reduced anxiety levels among family members (p < 0.001). It helped them organize their thoughts, prepare for discussions with doctors, and understand critical decision factors. Most importantly, it influenced decision outcomes, with a shift towards palliative care and withdrawal of life-sustaining treatment. Conclusion: This study highlights the importance of family-centered end-of-life care in ICUs. PDAs promote informed decision-making, reduce conflicts, and enhance patient and family involvement. These tools align patient values and goals with medical recommendations, ultimately leading to decisions that prioritize comfort and quality of life. Implementing PDAs in healthcare systems can ensure that patients' care aligns with their values.Keywords: shared decision-making, patient decision aid, end-of-life care, intensive care unit, family-centered care
Procedia PDF Downloads 86463 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 209462 Near-Peer Mentoring/Curriculum and Community Enterprise for Environmental Restoration Science
Authors: Lauren B. Birney
Abstract:
The BOP-CCERS (Billion Oyster Project- Curriculum and Community Enterprise for Restoration Science) Near-Peer Mentoring Program provides the long-term (five-year) support network to motivate and guide students toward restoration science-based CTE pathways. Students are selected from middle schools with actively participating BOP-CCERS teachers. Teachers will nominate students from grades 6-8 to join cohorts of between 10 and 15 students each. Cohorts are comprised primarily of students from the same school in order to facilitate mentors' travel logistics as well as to sustain connections with students and their families. Each cohort is matched with an exceptional undergraduate or graduate student, either a BOP research associate or STEM mentor recruited from collaborating City University of New York (CUNY) partner programs. In rare cases, an exceptional high school junior or senior may be matched with a cohort in addition to a research associate or graduate student. In no case is a high school student or minor be placed individually with a cohort. Mentors meet with students at least once per month and provide at least one offsite field visit per month, either to a local STEM Hub or research lab. Keeping with its five-year trajectory, the near-peer mentoring program will seek to retain students in the same cohort with the same mentor for the full duration of middle school and for at least two additional years of high school. Upon reaching the final quarter of 8th grade, the mentor will develop a meeting plan for each individual mentee. The mentee and the mentor will be required to meet individually or in small groups once per month. Once per quarter, individual meetings will be substituted for full cohort professional outings. The mentor will organize the entire cohort on a field visit or educational workshop with a museum or aquarium partner. In addition to the mentor-mentee relationship, each participating student will also be asked to conduct and present his or her own BOP field research. This research is ideally carried out with the support of the students’ regular high school STEM subject teacher; however, in cases where the teacher or school does not permit independent study, the student will be asked to conduct the research on an extracurricular basis. Near-peer mentoring affects students’ social identities and helps them to connect to role models from similar groups, ultimately giving them a sense of belonging. Qualitative and quantitative analytics were performed throughout the study. Interviews and focus groups also ensued. Additionally, an external evaluator was utilized to ensure project efficacy, efficiency, and effectiveness throughout the entire project. The BOP-CCERS Near Peer Mentoring program is a peer support network in which high school students with interest or experience in BOP (Billion Oyster Project) topics and activities (such as classroom oyster tanks, STEM Hubs, or digital platform research) provide mentorship and support for middle school or high school freshmen mentees. Peer mentoring not only empowers those students being taught but also increases the content knowledge and engagement of mentors. This support provides the necessary resources, structure, and tools to assist students in finding success.Keywords: STEM education, environmental science, citizen science, near peer mentoring
Procedia PDF Downloads 91461 Ethno-Botanical Research on Medicinal Plants Commonly Used for Children’s Health in South East Nigeria
Authors: Chioma J. Nwakamma, Blessing O. Oyedemi, Garuba Omosun
Abstract:
This research surveys and documents information on medicinal plants and their botanical preparations used in the treatment of children’s ailments in South-Eastern Nigeria. Children under the age of 5 in developing countries suffer from diseases with high morbidity and mortality rate yearly due to inaccessible and unaffordable healthcare. Structured questionnaires were administered to herbal sellers, traditional medicine practitioners, nursing mothers, and adult dwellers to collect data on the names of plants used to treat the conditions, methods of preparation, duration of treatment, adverse effects, and the methods of administration of the plant materials. A total of 135 plants belonging to 55 families were identified for the management of children’s health in the area. Common pediatric ailments which were said to be treated with herbal remedies by the respondents included malaria, pneumonia, stomach ache, diarrhea, dysentery, measles, chickenpox/smallpox, convulsion, jaundice, pile, ringworm, scabies, eczema, stubborn cough, scurvy, catarrh, wounds, boils, insect bites, food poison, cholera, and umbilical cord complications. Percentages of respondents were; herbal sellers (48.2%), traditional medical practitioners (21.6%), nursing mothers (11.1%), and others (19.1%). The most occurring plant families were Euphorbiaceae, Fabaceae, and Apocynaceae, with 8 species of plants each followed by Annonaceae and Asteriaceae with 7 and 6 species, respectively. The recipes were made from the combination of different parts of two or more plant species, and others were made from single plant parts. Methods of extraction were mostly decoction and raw-squeezing out of the juice and infusion, while oral administration was the main route of administration.Keywords: ethno-botanicals, children’s health, medicinal plants, South-Eastern Nigeria
Procedia PDF Downloads 102