Search results for: corrosion monitoring
2342 Facile Hydrothermal Synthesis of Hierarchical NiO/ZnCo₂O₄ Nanocomposite for High-Energy Supercapacitor Applications
Authors: Fayssal Ynineb, Toufik Hadjersi, Fatsah Moulai, Wafa Achour
Abstract:
Currently, tremendous attention has been paid to the rational design and synthesis of core/shell heterostructures for high-performance supercapacitors. In this study, the hierarchical NiO/ZnCo₂O₄ Core-Shell Nanorods Arrays were successfully deposited onto ITO substrate via a two-step hydrothermal and electrodeposition methods. The effect of the thin carbon layer between NiO and ZnCo₂O₄ in this multi-scale hierarchical structure was investigated. The selection of this structure was based on: (i) a high specific area of pseudo-capacitive NiO to maximize specific capacitance; (ii) an effective NiO-electrolyte interface to facilitate fast charging/discharging; and (iii) conducting carbon layer between ZnCo₂O₄ and NiO enhance the electric conductivity which reduces energy loss, and the corrosion protection of ZnCo₂O₄ in alkaline electrolyte. The obtained results indicate that hierarchical NiO/ZnCo₂O₄ present a high specific capacitance of 63 mF.cm⁻² at a current density of 0.05 mA.cm⁻² higher than that of pristine NiO and ZnCo₂O₄ of 6 and 3 mF.cm⁻², respectively. The carbon layer improves the electrical conductivity among NiO and ZnCo₂O₄ in the hierarchical NiO/C/ZnCo₂O₄ electrode. As well, the specific capacitance drastically increased to reach 125 mF.cm⁻². Moreover, this multi-scale hierarchical structure exhibits superior cycling stability with ~ 95.7 % capacitance retention after 65k cycles. These results indicate that the NiO/C/ZnCo₂O₄ nanocomposite material is an outstanding electrode material for supercapacitors.Keywords: NiO/C/ZnCo₂O₄, specific capacitance, hydrothermal, supercapacitors
Procedia PDF Downloads 992341 Fracture and Fatigue Crack Growth Analysis and Modeling
Authors: Volkmar Nolting
Abstract:
Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring
Procedia PDF Downloads 492340 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia
Authors: Nguyen-Thanh Son
Abstract:
Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.Keywords: MODIS, flood, mapping, Cambodia
Procedia PDF Downloads 1262339 Conceptual Design of Panel Based Reinforced Concrete Floating Substructure for 10 MW Offshore Wind Turbine
Authors: M. Sohail Hasan, Wichuda Munbua, Chikako Fujiyama, Koichi Maekawa
Abstract:
During the past few years, offshore wind energy has become the key parameter to reduce carbon emissions. In most of the previous studies, floaters in floating offshore wind turbines (FOWT) are made up of steel. However, fatigue and corrosion are always major concerns of steel marine structures. Recently, researchers are working on concrete floating substructures. In this paper, the conceptual design of pre-cast panel-based economical and durable reinforced concrete floating substructure for a 10 MW offshore wind turbine is proposed. The new geometrical shape, i.e., hexagon with inside hollow boxes, is proposed under static conditions. To design the outer panel/side walls to resist hydrostatic forces, special consideration for durability is given to limit the crack width within permissible range under service limit state. A comprehensive system is proposed for transferring the ultimate moment and shear due to strong wind at the connection between steel tower and concrete floating substructure. Moreover, a stable connection is also designed considering the fatigue of concrete and steel due to the fluctuation of stress from the mooring line. This conceptual design will be verified by subsequent dynamic analysis soon.Keywords: cracks width control, mooring line, reinforced concrete floater, steel tower
Procedia PDF Downloads 2232338 Nano Ceramics Materials in Clean Rooms: Properties and Characterization
Authors: HebatAllah Tarek, Zeyad El-Sayad, Ali F. Bakr
Abstract:
Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials.Keywords: nano-ceramic coating, clean rooms, porcelain, surface properties
Procedia PDF Downloads 1092337 The Incidence of Cardiac Arrhythmias Using Trans-Telephonic, Portable Electrocardiography Recorder, in Out-Patients Faculty of Medicine Ramathibodi Hospital
Authors: Urasri Imsomboon, Sopita Areerob, Kanchaporn Kongchauy, Tuchapong Ngarmukos
Abstract:
Objective: The Trans-telephonic Electrocardiography (ECG) monitoring is used to diagnose of infrequent cardiac arrhythmias and improve outcome of early detection and treatment on suspected cardiac patients. The objectives of this study were to explore incidence of cardiac arrhythmia using Trans-Telephonic and to explore time to first symptomatic episode and documented cardiac arrhythmia in outpatients. Methods: Descriptive research study was conducted between February 1, 2016, and December 31, 2016. A total of 117 patients who visited outpatient clinic were purposively selected. Research instruments in this study were the personal data questionnaire and the record form of incidence of cardiac arrhythmias using Trans-Telephonic ECG recorder. Results: A total of 117 patients aged between 15-92 years old (mean age 52.7 ±17.1 years), majority of studied sample was women (64.1%). The results revealed that 387 ECGs (Average 2.88 ECGs/person, SD = 3.55, Range 0 – 21) were sent to Cardiac Monitoring Center at Coronary Care Unit. Of these, normal sinus rhythm was found mostly 46%. Top 5 of cardiac arrhythmias were documented at the time of symptoms: sinus tachycardia 43.5%, premature atrial contraction 17.7%, premature ventricular contraction 14.3%, sinus bradycardia 11.5% and atrial fibrillation 8.6%. Presenting symptom were tachycardia 94%, palpitation 83.8%, dyspnea 51.3%, chest pain 19.6%, and syncope 14.5%. Mostly activities during symptom were no activity 64.8%, sleep 55.6% and work 25.6%.The mean time until the first symptomatic episode occurred on average after 6.88 ± 7.72 days (median 3 days). The first documented cardiac arrhythmia occurred on average after 9 ± 7.92 days (median 7 day). The treatments after patients known actual cardiac arrhythmias were observe themselves 68%, continue same medications 15%, got further investigations (7 patients), and corrected causes of cardiac arrhythmias via invasive cardiac procedures (5 patients). Conclusion: Trans-telephonic: portable ECGs recorder is effective in the diagnosis of suspected symptomatic cardiac arrhythmias in outpatient clinic.Keywords: cardiac arrhythmias, diagnosis, outpatient clinic, trans-telephonic: portable ECG recorder
Procedia PDF Downloads 1902336 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 2852335 Managing the Blue Economy and Responding to the Environmental Dimensions of a Transnational Governance Challenge
Authors: Ivy Chen XQ
Abstract:
This research places a much-needed focus on the conservation of the Blue Economy (BE) by focusing on the design and development of monitoring systems to track critical indicators on the status of the BE. In this process, local experiences provide an insight into important community issues, as well as the necessity to cooperate and collaborate in order to achieve sustainable options. Researchers worldwide and industry initiatives over the last decade show that the exploitation of marine resources has resulted in a significant decrease in the share of total allowable catch (TAC). The result has been strengthening law enforcement, yet the results have shown that problems were related to poor policies, a lack of understanding of over-exploitation, biological uncertainty and political pressures. This reality and other statistics that show a significant negative impact on the attainment of the Sustainable Development Goals (SDGs), warrant an emphasis on the development of national M&E systems, in order to provide evidence-based information, on the nature and scale of especially transnational fisheries crime and under-sea marine resources in the BE. In particular, a need exists to establish a compendium of relevant BE indicators to assess such impact against the SDGs by using selected SDG indicators for this purpose. The research methodology consists of ATLAS.ti qualitative approach and a case study will be developed of Illegal, unregulated and unreported (IUU) poaching and Illegal Wildlife Trade (IWT) as component of the BE as it relates to the case of abalone in southern Africa and Far East. This research project will make an original contribution through the analysis and comparative assessment of available indicators, in the design process of M&E systems and developing indicators and monitoring frameworks in order to track critical trends and tendencies on the status of the BE, to ensure specific objectives to be aligned with the indicators of the SDGs framework. The research will provide a set of recommendations to governments and stakeholders involved in such projects on lessons learned, as well as priorities for future research. The research findings will enable scholars, civil society institutions, donors and public servants, to understand the capability of the M&E systems, the importance of showing multi-level governance, in the coordination of information management, together with knowledge management (KM) and M&E at the international, regional, national and local levels. This coordination should focus on a sustainable development management approach, based on addressing socio-economic challenges to the potential and sustainability of BE, with an emphasis on ecosystem resilience, social equity and resource efficiency. This research and study focus are timely as the opportunities of the post-Covid-19 crisis recovery package will be grasped to set the economy on a path to sustainable development in line with the UN 2030 Agenda. The pandemic raises more awareness for the world to eliminate IUU poaching and illegal wildlife trade (IWT).Keywords: Blue Economy (BE), transnational governance, Monitoring and Evaluation (M&E), Sustainable Development Goals (SDGs).
Procedia PDF Downloads 1732334 Creating Energy Sustainability in an Enterprise
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure
Procedia PDF Downloads 1112333 Condition Monitoring for Controlling the Stability of the Rotating Machinery
Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir
Abstract:
In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor are developed. Numerical calculations on the model develop of three dimensions prove that the defects effect has a negative effect on the stability of the rotor. Experimentally, the study of the rotor in the transient system allowed to determine the vibratory responses due to the unbalances and various excitations.Keywords: rotor, frequency, finite element, specter
Procedia PDF Downloads 3822332 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.Keywords: concrete beam, FRP bars, spacing effect, thermal deformation
Procedia PDF Downloads 2032331 Dosimetry in Interventional Radiology Examinations for Occupational Exposure Monitoring
Authors: Ava Zarif Sanayei, Sedigheh Sina
Abstract:
Interventional radiology (IR) uses imaging guidance, including X-rays and CT scans, to deliver therapy precisely. Most IR procedures are performed under local anesthesia and start with a small needle being inserted through the skin, which may be called pinhole surgery or image-guided surgery. There is increasing concern about radiation exposure during interventional radiology procedures due to procedure complexity. The basic aim of optimizing radiation protection as outlined in ICRP 139, is to strike a balance between image quality and radiation dose while maximizing benefits, ensuring that diagnostic interpretation is satisfactory. This study aims to estimate the equivalent doses to the main trunk of the body for the Interventional radiologist and Superintendent using LiF: Mg, Ti (TLD-100) chips at the IR department of a hospital in Shiraz, Iran. In the initial stage, the dosimeters were calibrated with the use of various phantoms. Afterward, a group of dosimeters was prepared, following which they were used for three months. To measure the personal equivalent dose to the body, three TLD chips were put in a tissue-equivalent batch and used under a protective lead apron. After the completion of the duration, TLDs were read out by a TLD reader. The results revealed that these individuals received equivalent doses of 387.39 and 145.11 µSv, respectively. The findings of this investigation revealed that the total radiation exposure to the staff was less than the annual limit of occupational exposure. However, it's imperative to implement appropriate radiation protection measures. Although the dose received by the interventional radiologist is a bit noticeable, it may be due to the reason for using conventional equipment with over-couch x-ray tubes for interventional procedures. It is therefore important to use dedicated equipment and protective means such as glasses and screens whenever compatible with the intervention when they are available or have them fitted to equipment if they are not present. Based on the results, the placement of staff in an appropriate location led to increasing the dose to the radiologist. Manufacturing and installation of moveable lead curtains with a thickness of 0.25 millimeters can effectively minimize the radiation dose to the body. Providing adequate training on radiation safety principles, particularly for technologists, can be an optimal approach to further decreasing exposure.Keywords: interventional radiology, personal monitoring, radiation protection, thermoluminescence dosimetry
Procedia PDF Downloads 622330 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin
Authors: Hillary Mwongyera
Abstract:
The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring
Procedia PDF Downloads 5312329 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution
Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen
Abstract:
Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating
Procedia PDF Downloads 1862328 Smart Services for Easy and Retrofittable Machine Data Collection
Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum
Abstract:
This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 732327 Absence of Malignancy in Oral Epithelial Cells from Individuals Occupationally Exposed to Organic Solvents Working in the Shoe Industry
Authors: B. González-Yebra, B. Flores-Nieto, P. Aguilar-Salinas, M. Preciado Puga, A. L. González Yebra
Abstract:
The monitoring of populations occupationally exposed to organic solvents has been an important issue for several shoe factories for years since the International Agency for Research on Cancer (IARC) has advised on the potential carcinogenic risk of chemicals related to occupations. In order to detect if exposition to organic solvents used in some Mexican shoe factories contributes to oral carcinogenesis, we performed monitoring in three factories. Occupational exposure was determined by using monitors 3M. Organic solvents were assessed by gas chromatography. Then, we recruited 30 shoe workers (30.2 ± 8.4 years) and 10 unexposed subjects (43.3 ± 11.2 years) for the micronuclei (MN) test and immunodetection of some cancer biomarkers (ki-67, p16, caspase-3) in scraped oral epithelial cells. Monitored solvents detected were acetone, benzene, hexane, methyl ethyl ketone, and toluene in acceptable levels according to Official Mexican Norm. We found by MN test higher incidence of nuclear abnormalities (karyorrhexis, pycnosis, karyolysis, condensed chromatin, and macronuclei) in the exposed group than the non-exposed group. On the other hand, we found, a negative expression for Ki-67 and p16 in exfoliated epithelial cells from exposed and non-exposed to organic solvents subjects. Only caspase-3 shown positive patter of expression in 9/30 (30%) exposed subjects, and we detected high karyolysis incidence in caspase-3 subjects (p = 0.021). The absence of expression of proliferation markers p16 and ki-67 and presence of apoptosis marker caspase-3 are indicating the absence of malignancy in oral epithelial cells and low risk for oral cancer. It is a fact that the MN test is a very effective method to detect nuclear abnormalities in exfoliated buccal cells from subjects that have been exposed to organic solvents in the shoe industry. However, in order to improve this tool and predict cancer risk is it is mandatory to implement complementary tests as other biomarkers that can help to detect malignancy in individuals occupationally exposed.Keywords: biomarkers, oral cancer, organic solvents, shoe industries
Procedia PDF Downloads 1362326 Bacterial Diversity Reports Contamination around the Ichkeul Lake in Tunisia
Authors: Zeina Bourhane, Anders Lanzen, Christine Cagnon, Olfa Ben Said, Cristiana Cravo-Laureau, Robert Duran
Abstract:
The anthropogenic pressure in coastal areas increases dramatically with the exploitation of environmental resources. Biomonitoring coastal areas are crucial to determine the impact of pollutants on bacterial communities in soils and sediments since they provide important ecosystem services. However, relevant biomonitoring tools allowing fast determination of the ecological status are yet to be defined. Microbial ecology approaches provide useful information for developing such microbial monitoring tools reporting on the effect of environmental stressors. Chemical and microbial molecular approaches were combined in order to determine microbial bioindicators for assessing the ecological status of soil and river ecosystems around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected along soil/river/lake continuums in three stations around the Ichkeul Lake influenced by different human activities at two seasons (summer and winter). Contaminant pressure indexes (PI), including PAHs (Polycyclic aromatic hydrocarbons), alkanes, and OCPs (Organochlorine pesticides) contents, showed significant differences in the contamination level between the stations with seasonal variation. Bacterial communities were characterized by 16S ribosomal RNAs (rRNA) gene metabarcoding. Although microgAMBI indexes, determined from the sequencing data, were in accordance with contaminant contents, they were not sufficient to fully explain the PI. Therefore, further microbial indicators are still to be defined. The comparison of bacterial communities revealed the specific microbial assemblage for soil, river, and lake sediments, which were significantly correlated with contaminant contents and PI. Such observation offers the possibility to define a relevant set of bioindicators for reporting the effects of human activities on the microbial community structure. Such bioindicators might constitute useful monitoring tools for the management of microbial communities in coastal areas.Keywords: bacterial communities, biomonitoring, contamination, human impacts, microbial bioindicators
Procedia PDF Downloads 1642325 Medication Errors in Neonatal Intensive Care Unit
Authors: Ramzi Shawahna
Abstract:
Background: Neonatal intensive care units are high-risk settings where medication errors can occur and cause harm to this fragile segment of patients. This multicenter qualitative study was conducted to describe medication errors that occurred in neonatal intensive care units in Palestine from the perspectives of healthcare providers. Methods: This exploratory multicenter qualitative study was conducted and reported in adherence to the consolidated criteria for reporting qualitative research checklist. Semi-structured in-depth interviews were conducted with healthcare professionals (4 pediatricians/neonatologists and 11 intensive care unit nurses) who provided care services for patients admitted to neonatal intensive care units in Palestine. An interview schedule guided the semi-structured in-depth interviews. The qualitative interpretive description approach was used to thematically analyze the data. Results: The total duration of the interviews was 282 min. The healthcare providers described their experiences with 41 different medication errors. These medication errors were categorized under 3 categories and 10 subcategories. Errors that occurred while preparing/diluting/storing medications were related to calculations, using a wrong solvent/diluent, dilution errors, failure to adhere to guidelines while preparing the medication, failure to adhere to storage/packaging guidelines, and failure to adhere to labeling guidelines. Errors that occurred while prescribing/administering medications were related to inappropriate medication for the neonate, using a different administration technique from the one that was intended and administering a different dose from the one that was intended. Errors that occurred after administering the medications were related to failure to adhere to monitoring guidelines. Conclusion: In this multicenter study, pediatricians/neonatologists and neonatal intensive care unit nurses described medication errors occurring in intensive care units in Palestine. Medication errors occur in different stages of the medication process: preparation/dilution/storage, prescription/administration, and monitoring. Further studies are still needed to quantify medication errors occurring in neonatal intensive care units and investigate if the designed strategies could be effective in minimizing medication errors.Keywords: medication errors, pharmacist, pharmacology, neonates
Procedia PDF Downloads 802324 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 2992323 Selective Laser Melting (SLM) Process and Its Influence on the Machinability of TA6V Alloy
Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud
Abstract:
Titanium alloys are among the most important material in the aircraft industry, due to its low density, high strength, and corrosion resistance. However, these alloys are considered as difficult to machine because they have poor thermal properties and high reactivity with cutting tools. The Selective Laser Melting (SLM) process becomes even more popular through industry since it enables the design of new complex components, that cannot be manufactured by standard processes. However, the high temperature reached during the melting phase as well as the several rapid heating and cooling phases, due to the movement of the laser, induce complex microstructures. These microstructures differ from conventional equiaxed ones obtained by casting+forging. Parts obtained by SLM have to be machined in order calibrate the dimensions and the surface roughness of functional surfaces. The ball milling technique is widely applied to finish complex shapes. However, the machinability of titanium is strongly influenced by the microstructure. So the objective of this work is to investigate the influence of the SLM process, i.e. microstructure, on the machinability of titanium, compared to conventional forming processes. The machinability is analyzed by measuring surface roughness, cutting forces, cutting tool wear for a range of cutting conditions (depth of cut ap, feed per tooth fz, spindle speed N) in accordance with industrial practices.Keywords: ball milling, microstructure, surface roughness, titanium
Procedia PDF Downloads 2972322 Theoretical and Experimental Analysis of Hard Material Machining
Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke
Abstract:
Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.Keywords: speed, feed, depth of cut, roughness, cutting force, flank wear
Procedia PDF Downloads 2852321 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware
Authors: Subham Ghosh, Banani Basu, Marami Das
Abstract:
Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease
Procedia PDF Downloads 72320 Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami
Authors: Rifqi Irvansyah, Abdullah Abdullah, Yunita Idris, Bunga Raihanda
Abstract:
Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads.Keywords: tsunami inundation, column damage, column interaction diagram, mitigation effort
Procedia PDF Downloads 672319 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK
Authors: Usman Bawa
Abstract:
Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution
Procedia PDF Downloads 3462318 Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers
Authors: Mohammed Al-Bloushi, Sanghyun Jeong, Torove Leiknes
Abstract:
Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.Keywords: algae, biocide, biofouling, seawater cooling tower
Procedia PDF Downloads 2392317 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength
Authors: Klara Krizova, Rudolf Hela
Abstract:
The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further.Keywords: concrete, compressive strength, modulus of elasticity, EuroCode 2
Procedia PDF Downloads 4552316 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning
Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation
Procedia PDF Downloads 4332315 Innovation in the Provision of Medical Services in the Field of Qualified Sports and Services Related to the Therapy of Metabolism Disorders and the Treatment of Obesity
Authors: Jerzy Slowik, Elzbieta Grochowska-Niedworok
Abstract:
The analysis of the market needs and trends in both treatment and prophylaxis shows the growing need to implement comprehensive solutions that would enable safe contact of the beneficiaries with the therapeutic and diagnostic support group. Based on the evaluation of the medical and sports industry services market, projects co-financed by the EFRR in the form of comprehensive care systems using IT tools for patients under treatment in the field of obesity and metabolism using the system were implemented under the Regional Operational Program of the Silesian Voivodeship for 2014-2020. SFAO 1.0 (Support for the Fight Against Obesity) number of the WND-RPSL project. 01.02.00-24-06EA / 16) as well as for competitors in qualified sports SK system (qualified sports) project number WND-RPSL. 01.02.00-24-0630 / 17-002. The service provided in accordance with SFAO 1.0 has shown a wide range of therapy possibilities - from monitoring the body's reactions during sports activities of healthy people to remote care for sick patients. As a result of the introduction of an innovative service, it was possible to increase the effectiveness of the therapy, which was manifested in the reduction of the starting doses of drugs by 10%, improvement of the efficiency of the respiratory and blood circulation system, and a 10% increase in bone density. Innovation in the provision of medical services in the field of qualified sports SK was a response to the needs of the athletes and their parents, coaches, physiotherapists, dieticians, and doctors who take care of people actively practicing qualified sports. The creation of the platform made it possible to constantly monitor the trainers necessary for both the proper training process and the control over the health of patients. Monitoring the patient's health by a specialized team in the field of various specialties allows for the proper targeting of the treatment and training process due to the increase in the availability of medical counseling. Specialists taking care of the patient can provide additional advice and modify the medical treatment of the patient on an ongoing basis, which is why we are dealing with a holistic approach.Keywords: innovation of medical services, sport, obesity, innovation
Procedia PDF Downloads 1272314 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 3962313 Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry
Authors: Ajay Sidana, Kulbir Singh Sandhu, Balwinder Singh Sidhu
Abstract:
Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints.Keywords: aluminum alloys, magnesium alloys, friction stir welding, microstructure, mechanical properties
Procedia PDF Downloads 455