Search results for: cold spray coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1825

Search results for: cold spray coating

385 Temperature Dependence and Seasonal Variation of Denitrifying Microbial Consortia from a Woodchip Bioreactor in Denmark

Authors: A. Jéglot, F. Plauborg, M. K. Schnorr, R. S. Sørensen, L. Elsgaard

Abstract:

Artificial wetlands such as woodchip bioreactors are efficient tools to remove nitrate from agricultural wastewater with a minimized environmental impact. However, the temperature dependence of the microbiological nitrate removal prevents the woodchip bioreactors from being an efficient system when the water temperature drops below 8℃. To quantify and describe the temperature effects on nitrate removal efficiency, we studied nitrate-reducing enrichments from a woodchip bioreactor in Denmark based on samples collected in Spring and Fall. Growth was quantified as optical density, and nitrate and nitrous oxide concentrations were measured in time-course experiments to compare the growth of the microbial population and the nitrate conversion efficiencies at different temperatures. Ammonia was measured to indicate the importance of dissimilatory nitrate reduction to ammonia (DNRA) in nitrate conversion for the given denitrifying community. The temperature responses observed followed the increasing trend proposed by the Arrhenius equation, indicating higher nitrate removal efficiencies at higher temperatures. However, the growth and the nitrous oxide production observed at low temperature provided evidence of the psychrotolerance of the microbial community under study. The assays conducted showed higher nitrate removal from the microbial community extracted from the woodchip bioreactor at the cold season compared to the ones extracted during the warmer season. This indicated the ability of the bacterial populations in the bioreactor to evolve and adapt to different seasonal temperatures.

Keywords: agricultural waste water treatment, artificial wetland, denitrification, psychrophilic conditions

Procedia PDF Downloads 102
384 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics

Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou

Abstract:

Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle

Procedia PDF Downloads 300
383 Novel Animal Drawn Wheel-Axle Mechanism Actuated Knapsack Boom Sprayer

Authors: Ibrahim O. Abdulmalik, Michael C. Amonye, Mahdi Makoyo

Abstract:

Manual knapsack sprayer is the most popular means of farm spraying in Nigeria. It has its limitations. Apart from the human fatigue, which leads to unsteady walking steps, their field capacities are small. They barely cover about 0.2hectare per hour. Their small swath implies that a sizeable farm would take several days to cover. Weather changes are erratic and often it is desired to spray a large farm within hours or few days for even effect, uniformity and to avoid adverse weather interference. It is also often required that a large farm be covered within a short period to avoid re-emergence of weeds before crop emergence. Deployment of many knapsack operators to large farms has not been successful. Human error in taking equally spaced swaths usually result in over dosage of overlaps and in unapplied areas due to error at edges overlaps. Large farm spraying require boom equipment with larger swath. Reduced error in swath overlaps and spraying within the shortest possible time are then assured. Tractor boom sprayers would readily overcome these problems and achieve greater coverage, but they are not available in the country. Tractor hire for cultivation is very costly with the attendant lack of spare parts and specialized technicians for maintenance wherefore farmers find it difficult to engage tractors for cultivation and would avoid considering the employment of a tractor boom sprayer. Animal traction in farming is predominant in Nigeria, especially in the Northern part of the country. Development of boom sprayers drawn by work animals surely implies the maximization of animal utilization in farming. The Hydraulic Equipment Development Institute, Kano, in keeping to its mandate of targeted R&D in hydraulic and pneumatic systems, has developed an Animal Drawn Knapsack Boom Sprayer with four nozzles using the axle mechanism of a two wheeled cart to actuate the piston pump of two knapsack sprayers in line with appropriate technology demand of the country. It is hoped that the introduction of this novel contrivance shall enhance crop protection practice and lead to greater crop and food production in Nigeria.

Keywords: boom, knapsack, farm, sprayer, wheel axle

Procedia PDF Downloads 263
382 Effect of Nutrition Education on the Control and Function of Insulin-Dependent Diabetes Patients

Authors: Rahil Sahragard, Mahmoud Hatami, Rostam Bahadori Khalili

Abstract:

Diabetes is one of the most important health problems in the world and a chronic disease requiring continuous care and therefore, it is necessary for patients to undergo self-care and nutrition education. This study was conducted to evaluate the effect of nutrition education on the metabolic control of diabetic patients in Tehran in 2015. An experimental study was conducted on 100 patients who had previously been approved by a specialist physician for diabetes and at least one year after their onset. At first, patients without any knowledge of the educational program were selected as sample and from them a checklist containing demographic and specific information about diabetes was filled and were taken three fasting blood glucose and three times fasting blood glucose (5 p.m.) Then, the patients received face-to-face training in the same conditions for 2 weeks in a Mehregan hospital of Tehran, and received 3 months of training, while they were fully monitored and during this time, samples that had a cold or blood pressure-related disease or were admitted to the hospital were excluded from the study. After the end of the study, the checklist was filled again and 3 fasting blood glucose and 3 fasting blood glucose samples were taken, the results were statistically analyzed by MC Nemar's statistical test. The research findings were performed on 100 patients 41.7% male and 58.3% women, the range of age was between 22 and 60 years old, with a duration of diabetes ranging from 1 to 15 years. Abnormal fasting blood glucose from 95% to 48.3% (P <0.0001) and non-fasting blood glucose decreased from 91.6% to 71.2% (P <0.001). Research has shown that training on blood glucose control has been successful, therefore, it is recommended that more research is done in the field of education to help patients with diabetes more comfortable.

Keywords: nutrition education, diabetes, function, insulin, chronic, metabolic control

Procedia PDF Downloads 117
381 Basic Study on a Thermal Model for Evaluating The Environment of Infant Facilities

Authors: Xin Yuan, Yuji Ryu

Abstract:

The indoor environment has a significant impact on occupants and a suitable indoor thermal environment can improve the children’s physical health and study efficiency during school hours. In this study, we explored the thermal environment in infant facilities classrooms for infants and children aged 1-5 and evaluated their thermal comfort. An infant facility in Fukuoka, Japan was selected for a case study to capture the infant and children’s thermal comfort characteristics in summer and winter from August 2019 to February 2020. Previous studies have pointed out using PMV indices to evaluate the thermal comfort for children could create errors that may lead to misleading results. Thus, to grasp the actual thermal environment and thermal comfort characteristics of infants and children, we retrieved the operative temperature of each child through the thermal model, based on the sensible heat transfer from the skin to the environment, and the measured classroom indoor temperature, relative humidity, and pocket temperature of children’s shorts. The statistical and comparative analysis of the results shows that (1) the operative temperature showed a large individual difference among children, with the maximum reached 6.25 °C. (2) The children might feel slightly cold in the classrooms in summer, with the frequencies of operative temperature within the interval of 26-28 ºC were only 5.33% and 16.6% for children respectively. (3) The thermal environment around children is more complicated in winter the operative temperature could exceed or fail to reach the thermal comfort temperature zone (20-23 ºC interval). (4) The environmental conditions surrounding the children may account for the reduction of their thermal comfort. The findings contribute to improving the understanding of the infant and children’s thermal comfort and provide valuable information for designers and governments to develop effective strategies for the indoor thermal environment considering the perspective of children.

Keywords: infant and children, thermal environment, thermal model, operative temperature.

Procedia PDF Downloads 98
380 Rare-Earth Ions Doped Zirconium Oxide Layers for Optical and Photovoltaic Applications

Authors: Sylwia Gieraltowska, Lukasz Wachnicki, Bartlomiej S. Witkowski, Marek Godlewski

Abstract:

Oxide layers doped with rare-earth (RE) ions in optimized way can absorb short (ultraviolet light), which will be converted to visible light by so-called down-conversion. Down-conversion mechanisms are usually exploited to modify the incident solar spectrum. In down conversion, multiple low-energy photons are generated to exploit the energy of one incident high-energy photon. These RE-doped oxide materials have attracted a great deal of attention from researchers because of their potential for optical manipulation in optical devices (detectors, temperature sensors, and compact solid-state lasers, light-emitting diodes), bio-analysis, medical therapy, display technologies, and light harvesting (such as in photovoltaic cells). The zirconium dioxide (ZrO2) doped RE ions (Eu, Tb, Ce) multilayer structures were tested as active layers, which can convert short wave emission to light in the visible range (the down-conversion mechanism). For these applications original approach of deposition ZrO2 layers using the Atomic Layer Deposition (ALD) method and doping these layers with RE ions using the spin-coating technique was used. ALD films are deposited at relatively low temperature (well below 250°C). This can be an effective method to achieve the white-light emission and to improve on this way light conversion efficiency, by an extension of absorbed spectral range by a solar cell material. Photoluminescence (PL), X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) measurement are analyzed. The research was financially supported by the National Science Centre (decision No. DEC-2012/06/A/ST7/00398 and DEC- 2013/09/N/ST5/00901).

Keywords: ALD, oxide layers, photovoltaics, thin films

Procedia PDF Downloads 250
379 Nano Sol Based Solar Responsive Smart Window for Aircraft

Authors: K. A. D. D. Kuruppu, R. M. De Silva, K. M. N. De Silva

Abstract:

This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins.

Keywords: aircraft, nano, smart windows, solar

Procedia PDF Downloads 235
378 Magneto-Hydrodynamic Mixed Convection of Water-Al2O3 Nanofluid in a Wavy Lid-Driven Cavity

Authors: Farshid Fathinia

Abstract:

This paper examines numerically the laminar steady magneto-hydrodynamic mixed convection flow and heat transfer in a wavy lid-driven cavity filled with water-Al2O3 nanofluid using FDM method. The left and right sidewalls of the cavity have a wavy geometry and are maintained at a cold and hot temperature, respectively. The top and bottom walls are considered flat and insulated while, the bottom wall moves from left to right direction with a uniform lid-driven velocity. A magnetic field is applied vertically downward on the bottom wall of the cavity. Based on the numerical results, the effects of the dominant parameters such as Rayleigh number, Hartmann number, solid volume fraction, and wavy wall geometry parameters are examined. The numerical results are obtained for Hartmann number varying as 0 ≤ Ha ≤ 0.6, Rayleigh numbers varying as 103≤ Ra ≤105, and the solid volume fractions varying as 0 ≤ φ ≤ 0.0003. Comparisons with previously published numerical works on mixed convection in a nanofluid filled cavity are performed and good agreements between the results are observed. It is found that the flow circulation and mean Nusselt number decrease as the solid volume fraction and Hartmann number increase. Moreover, the convection enhances when the amplitude ratio of the wavy surface increases. The results also show that both the flow and thermal fields are significantly affected by the amplitude ratio (i.e., wave form) of the wavy wall.

Keywords: nanofluid, mixed convection, magnetic field, wavy cavity, lid-driven, SPH method

Procedia PDF Downloads 291
377 Chemical Composition and Antioxidant Activity of Fresh Chokeberries

Authors: Vesna Tumbas Šaponjac, Sonja Djilas, Jasna Čanadanović-Brunet, Gordana Ćetković, Jelena Vulić, Slađana Stajčić, Milica Vinčić

Abstract:

Substantial interest has been expressed in fruits and berries due to their potential favourable health effects and high content of polyphenols, especially flavonoids and anthocyanins. Chokeberries (Aronia melanocarpa) are dark berries, similar to blackcurrants, that have been used by native Americans both as a food resource and in traditional medicine for treatment of cold. Epidemiological studies revealed positive effects of chokeberries on colorectal cancer, cardiovascular diseases, and various inflammatory conditions. Chokeberries are well known as good natural antioxidants, which contain phenolic compounds, flavonoids, anthocyanidins and antioxidant vitamins. The aim of this study was to provide information on polyphenolic compounds present in fresh chokeberries as well as to determine its antioxidant activity. Individual polyphenolic compounds have been identified and quantified using HPLC/UV-Vis. Results showed that the most dominant phenolic acid was protocatechuic acid (274.23 mg/100 g FW), flavonoid rutin (319.66 mg/100 g FW) and anthocyanin cyanidin-3-galactoside (1532.68 mg/100 g FW). Generally, anthocyanins were predominant compounds in fresh chokeberry (2342.82 mg/100 g FW). Four anthocyanins have been identified in fresh chokeberry and all of them were cyanidin glicosides. Antioxidant activity was determined using spectrophotometric DPPH assay and compared to standard antioxidant compound vitamin C. The resulting EC50 value (amount of fresh chokeberries that scavenge 50% of DPPH radicals) is 0.33 mg vitamin C equivalent/100 g FW. The results of this investigation provide evidence on high contents of phenolic compounds, especially anthocyanins, in chokeberries as well as high antioxidant activity of this fruit.

Keywords: chokeberry, polyphenols, antioxidant, DPPH radicals

Procedia PDF Downloads 556
376 Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan

Authors: Zia Ullah, Ruh Ullah

Abstract:

A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m.

Keywords: agro-climatic zones, aridity index, GDD, rainfall

Procedia PDF Downloads 392
375 Personality Across Different Castes: A Quantitative Study of Three Castes

Authors: Huma Aly, Caramel Rodger, Saman Zafar

Abstract:

The present study explored the role of caste system in determining and understanding various personality characteristics related to different castes. It analyzed various personality characteristics of Arains, Jutts and Sheikhs caste of Pakistan. Reasons for the emphasis on within caste marriage in relation to personality characteristics were identified. In the present study a sample of 200 unmarried students were taken from different institutes of Lahore, Pakistan. 117 students were taken from Fast University and 83 from LUMS (Lahore University of Management and Sciences) on the basis of purposive and convenience sampling. 76 Arains, 59 Sheikhs and 65 Jutts were taken. Non-probability purposive sampling, quantitative research method, big five personality scale were used. Kruskal Wallis test was used as three independent groups were taken in the study. Results revealed various personality characteristics associated with different castes namely Arain, Jutts and Sheikhs. Individuals belonging to Jutts caste were reported to be high on being talkative, findings faults, doing thorough job, being depressed, reservedness, quarrelling, reliable, tensed, deep thinker, worrying a lot, imaginative, lazy, inventive, assertive, cold aloof, preserved and rude. Arains were reported to be original, helpful, careless,relaxed, curious, enthusiastic, forgiving, quiet, trusting, moody, shy, retaining anger, routinely working, planners, nervous, playing with ideas, artistic, cooperative, easily distracted and sophisticated. Lastly, Sheikhs were reported to be energetic, disorganized, stable. This study will play a significant part in changing the traditional viewpoint of majority of elders of our society who still have immense association with the caste they belong to.

Keywords: castes, personality, Arains, Jutts, Sheikhs, Pakistan

Procedia PDF Downloads 241
374 Numerical Aeroacoustics Investigation of Eroded and Coated Leading Edge of NACA 64- 618 Airfoil

Authors: Zeinab Gharibi, B. Stoevesandt, J. Peinke

Abstract:

Long term surface erosion of wind turbine blades, especially at the leading edge, impairs aerodynamic performance; therefore, lowers efficiency of the blades mostly in the high-speed rotor tip regions. Blade protection provides significant improvements in annual energy production, reduces costly downtime, and protects the integrity of the blades. However, this protection still influences the aerodynamic behavior, and broadband noise caused by interaction between the impinging turbulence and blade’s leading edge. This paper presents an extensive numerical aeroacoustics approach by investigating the sound power spectra of the eroded and coated NACA 64-618 wind turbine airfoil and evaluates aeroacoustics improvements after the protection procedure. Using computational fluid dynamics (CFD), different quasi 2D numerical grids were implemented and special attention was paid to the refinement of the boundary layers. The noise sources were captured and decoupled with acoustic propagation via the derived formulation of Curle’s analogy implemented in OpenFOAM. Therefore, the noise spectra were compared for clean, coated and eroded profiles in the range of chord-based Reynolds number (1.6e6 ≤ Re ≤ 11.5e6). Angle of attack was zero in all cases. Verifications were conducted for the clean profile using available experimental data. Sensitivity studies for the far-field were done on different observational positions. Furthermore, beamforming studies were done simulating an Archimedean spiral microphone array for far-field noise directivity patterns. Comparing the noise spectra of the coated and eroded geometries, results show that, coating clearly improves aerodynamic and acoustic performance of the eroded airfoil.

Keywords: computational fluid dynamics, computational aeroacoustics, leading edge, OpenFOAM

Procedia PDF Downloads 199
373 Forming Limit Analysis of DP600-800 Steels

Authors: Marcelo Costa Cardoso, Luciano Pessanha Moreira

Abstract:

In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stress-strain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions.

Keywords: advanced high strength steels, forming limit curve, numerical modelling, sheet metal forming

Procedia PDF Downloads 351
372 The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface

Authors: M. Bazrafshan, M. B. de Rooij, D. J. Schipper

Abstract:

Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed.

Keywords: boundary element model, frictional hysteresis, adhesion, roughness, pre-sliding

Procedia PDF Downloads 151
371 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity

Procedia PDF Downloads 109
370 Electrospun Conducting Polymer/Graphene Composite Nanofibers for Gas Sensing Applications

Authors: Aliaa M. S. Salem, Soliman I. El-Hout, Amira Gaber, Hassan Nageh

Abstract:

Nowadays, the development of poisonous gas detectors is considered to be an urgent matter to secure human health and the environment from poisonous gases, in view of the fact that even a minimal amount of poisonous gas can be fatal. Of these concerns, various inorganic or organic sensing materials have been used. Among these are conducting polymers, have been used as the active material in the gassensorsdue to their low-cost,easy-controllable molding, good electrochemical properties including facile fabrication process, inherent physical properties, biocompatibility, and optical properties. Moreover, conducting polymer-based chemical sensors have an amazing advantage compared to the conventional one as structural diversity, facile functionalization, room temperature operation, and easy fabrication. However, the low selectivity and conductivity of conducting polymers motivated the doping of it with varied materials, especially graphene, to enhance the gas-sensing performance under ambient conditions. There were a number of approaches proposed for producing polymer/ graphene nanocomposites, including template-free self-assembly, hard physical template-guided synthesis, chemical, electrochemical, and electrospinning...etc. In this work, we aim to prepare a novel gas sensordepending on Electrospun nanofibers of conducting polymer/RGO composite that is the effective and efficient expectation of poisonous gases like ammonia, in different application areas such as environmental gas analysis, chemical-,automotive- and medical industries. Moreover, our ultimate objective is to maximize the sensing performance of the prepared sensor and to check its recovery properties.

Keywords: electro spinning process, conducting polymer, polyaniline, polypyrrole, polythiophene, graphene oxide, reduced graphene oxide, functionalized reduced graphene oxide, spin coating technique, gas sensors

Procedia PDF Downloads 162
369 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 521
368 Making Good Samaritans: An Exploration of Criminal Liability for Failure to Rescue in England and Wales

Authors: Usmaan Siddiqui

Abstract:

In England and Wales, there is no duty to rescue strangers. We will be investigating whether this is correct, and whether we should introduce a Good Samaritan law. In order to explore this, firstly, we will be exploring the nature of our moral duties. How far do our moral duties extend? Do they extend only to our family and friends, or do they also extend to strangers? Secondly, even if there does exist a moral duty, should this duty be enforced by criminal law? To what extent should the criminal law reflect morality? Under English criminal law, the consensus is, that it is not the job of the English criminal law to perfect human behaviour, and whilst the law should prevent us from causing harm, it should not force us to be good. This approach is radically different from many other European countries that actually do have a Good Samaritan law. If there are compelling in principle reasons to introduce a Good Samaritan law how would we deal with the pragmatic institutional constraints? Such a law has been stated as being unworkable in practice and difficult in defining its limits. In order to verify this, we shall carry out a comparative analysis between England and selected states in the US to gauge how successful the Good Samaritan law has been in dealing with these institutional constraints. In terms of methodology, as well as a comparative analysis, we shall also be carrying out a doctrinal analysis exploring what the English criminal law’s position is regarding Omissions. In conclusion, the findings so far are, whilst it is not the job of the law to perfect human behaviour, both respect for the law and the level of social co-operation will be greatly improved if the law encourages morally desirable conduct. Whilst it is possible for society to exist without a duty to assist the distressed, a society which ignores the vulnerable is cold, callous, and uncaring. After all, we all need to face up to the possibility that we may be one day be vulnerable and in need of urgent aid, and it is about time English criminal law, catches up with the majority of Europe and protects the vulnerable.

Keywords: criminal, law, omissions, philosophy

Procedia PDF Downloads 214
367 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E.A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for meat products. However, to the best of our knowledge, the incorporation of free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for meats is seldom reported. Therefore, this study aims at protection of the aqueous crude extract of hibiscus flowers utilizing spry drying encapsulation technique. Fourier transform infrared (FTIR), scanning electron microscope (SEM), and zetasizer results confirmed the successful formation of assembled capsules via strong interactions, spherical rough microparticles, and ~ 235 nm of particle size, respectively. Also, the obtained microcapsules enjoy high thermal stability, unlike the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to PVA. Application of the prepared films on the real meat samples displayed low bacterial growth with a slight increase in the pH over the storage time up to 10 days at 4 oC which further proved the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of prepared composite films pave the way towards combined active/smart food packaging applications. This would play a vital role in the food hygiene, including also quality control and assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 66
366 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 251
365 Analyzing the Ergonomic Design of Manual Material Handling in Chemical Industry: Case Study of Activity Task Weigh Liquid Catalyst to the Container Storage

Authors: Yayan Harry Yadi, L. Meily Kurniawidjaja

Abstract:

Work activities for MMH (Manual Material Handling) in the storage of liquid catalyst raw material workstations in chemical industries identify high-risk MSDs (Musculoskeletal Disorders). Their work is often performed frequently requires an awkward body posture, twisting, bending because of physical space limited, cold, slippery, and limited tools for transfer container and weighing the liquid chemistry of the catalyst into the container. This study aims to develop an ergonomic work system design on the transfer and weighing process of liquid catalyst raw materials at the storage warehouse. A triangulation method through an interview, observation, and detail study team with assessing the level of risk work posture and complaints. Work postures were analyzed using the RULA method, through the support of CATIA software. The study concludes that ergonomic design can make reduce 3 levels of risk scores awkward posture. CATIA Software simulation provided a comprehensive solution for a better posture of manual material handling at task weigh. An addition of manual material handling tools such as adjustable conveyors, trolley and modification tools semi-mechanical weighing with techniques based on rule ergonomic design can reduce the hazard of chemical fluid spills.

Keywords: ergonomic design, MSDs, CATIA software, RULA, chemical industry

Procedia PDF Downloads 148
364 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production

Authors: Enlin Lo, Ioannis Dogaris, George Philippidis

Abstract:

Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.

Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid

Procedia PDF Downloads 199
363 Structural Analysis of Polymer Thin Films at Single Macromolecule Level

Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii

Abstract:

The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.

Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy

Procedia PDF Downloads 262
362 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran

Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr

Abstract:

Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.

Keywords: climate, change, thermal, power plants

Procedia PDF Downloads 56
361 Mechanical and Physical Properties of Various Types of Dental Floss

Authors: Supanitayanon Lalita, Dechkunakorn Surachai, Anuwongnukroh Niwat, Srikhirin Toemsak, Roongrujimek Pitchaya, Tua-Ngam Peerapong

Abstract:

Objective: To compare maximum load, percentage of elongation, physical characteristics of 4 types of dental floss: (1) Thai Silk Floss (silk, waxed), (2) Oral B® Essential Floss (nylon, waxed), (3) Experimental Floss Xu (nylon, unwaxed), (4) Experimental Floss Xw (nylon, waxed). Materials & method: Four types of floss were tested (n=30) with a Universal Testing Machine (Instron®). Each sample (30 cm long, 5 cm segment) was fixed, and pulled apart with load cell of 100 N and a test speed of 100 mm/min. Physical characteristics were investigated by digital microscope under 2.5×10 magnification, and scanning electron microscope under 1×100 and 5×100 magnification. The size of the filaments was measured in micron (μm) and the fineness were measured in Denier. Statistical analysis: For mechanical properties, the maximum load and the percentage of elongation were presented as mean ± SD. The distribution of the data was calculated by the Kolmogorov-Smirnov test. One-way ANOVA and multiple comparison (Tukey HSD) were used to analyze the differences among the groups with the level of a statistical difference at p < 0.05. Results: The maximum load of Floss Xu, Floss Xw, Oral B and Thai Silk were 47.39, 46.46, 25.38, and 23.70 N, respectively. The percentage of elongation of Oral B, Floss Xw, Floss Xu and Thai Silk were 72.43, 44.62, 31.25, and 16.44%, respectively. All 4 types of dental floss showed statistically differences in both the maximum load and percentage of elongation at p < 0.05, except for maximum load between Floss Xw and Floss Xu that showed no statistically significant difference. Physical characteristics of Thai silk revealed the most disintegrated, the smallest, and the least fine filaments. Conclusion: Floss Xu had the highest maximum load. Oral B had the highest percentage of elongation. Wax coating on Floss X increased the elongation but had no significant effect on the maximum load. The physical characteristics of Thai Silk resulted in the lowest mechanical properties values.

Keywords: dental floss, maximum load, mechanical property, percentage of elongation, physical property

Procedia PDF Downloads 253
360 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 96
359 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling

Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche

Abstract:

High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.

Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations

Procedia PDF Downloads 418
358 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities

Authors: Pranjal Johri, Misbah Ul-Islam

Abstract:

Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing.

Keywords: power transfoemrs, no load current, DGA, power factor

Procedia PDF Downloads 73
357 Development of Drying System for Dew Collection to Supplement Minimum Water Required for Grazing Plants in Arid Regions

Authors: Mohamed I. Alzarah

Abstract:

Passive dew harvesting and rainwater collection requires a very small financial investment meanwhile they can exploit a free and clean source of water in rural or remote areas. Dew condensation on greenhouse dryer cladding and assorted other surfaces was frequently noticed. Accordingly, this study was performed in order to measure the quantity of condensation in the arid regions. Dew was measured by using three different kinds of collectors which were glass of flat plate solar collector, tempered glass of photovoltaic (PV) and double sloped (25°) acrylic plexiglas of greenhouse dryer. The total amount of dew collection for three different types of collectors was measured during December 2013 to March 2014 in Alahsa, Saudi Arabia. Meteorological data were collected for one year. The condensate dew drops were collected naturally (before scraping) and by scraping once and twice. Dew began to condense most likely between 12:00 am and 6:30 am and its intensity reached the peak at about 45 min before sunrise. The cumulative dew yield on double-sloped test roof was varying with wind speed and direction. Results indicated that, wiping twice gave more dew yield compared to wiping once or collection by gravity. Dew and rain pH were neutral (close to 7) and the total mineralization was considerable. The ions concentration agrees with the World Health Organization recommendations for potable water. Using existing drying system for dew and rain harvesting cold provide a potable water source for arid region.

Keywords: PV module, flat plate solar collector, greenhouse, drying system, dew collection, water vapor, rainwater harvesting

Procedia PDF Downloads 311
356 Understanding Retail Benefits Trade-offs of Dynamic Expiration Dates (DED) Associated with Food Waste

Authors: Junzhang Wu, Yifeng Zou, Alessandro Manzardo, Antonio Scipioni

Abstract:

Dynamic expiration dates (DEDs) play an essential role in reducing food waste in the context of the sustainable cold chain and food system. However, it is unknown for the trades-off in retail benefits when setting an expiration date on fresh food products. This study aims to develop a multi-dimensional decision-making model that integrates DEDs with food waste based on wireless sensor network technology. The model considers the initial quality of fresh food and the change rate of food quality with the storage temperature as cross-independent variables to identify the potential impacts of food waste in retail by applying s DEDs system. The results show that retail benefits from the DEDs system depend on each scenario despite its advanced technology. In the DEDs, the storage temperature of the retail shelf leads to the food waste rate, followed by the change rate of food quality and the initial quality of food products. We found that the DEDs system could reduce food waste when food products are stored at lower temperature areas. Besides, the potential of food savings in an extended replenishment cycle is significantly more advantageous than the fixed expiration dates (FEDs). On the other hand, the information-sharing approach of the DEDs system is relatively limited in improving sustainable assessment performance of food waste in retail and even misleads consumers’ choices. The research provides a comprehensive understanding to support the techno-economic choice of the DEDs associated with food waste in retail.

Keywords: dynamic expiry dates (DEDs), food waste, retail benefits, fixed expiration dates (FEDs)

Procedia PDF Downloads 94