Search results for: Nemerow Pollution Index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5127

Search results for: Nemerow Pollution Index

3687 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 128
3686 Bacteriological Quality and Physicochemical Water Beaches of the City of Annaba (Mediterranean Sea)

Authors: Wahiba Boudraa, Farah Chettibbi, Meriem Aberkane, Fatma Djamaa, Moussa Houhamdi

Abstract:

The intensity of human activities in regions surrounding the Mediterranean Sea always has a strong long-term environmental impact resulting in coastal and marine degradation, as well as an aggravated risk of more serious damage. The available data on water quality show that most water resources in Algeria are polluted by uncontrolled discharges from municipal sewage and untreated industrial effluents. Annaba is a coastal town in Algeria; The Gulf of Annaba, responds to these changes as it receives the continental inputs and urban waste, industrial without prior treatment of a highly industrialized and urbanized city, subject to the same environmental problems that know the rest of the Algerian coast. In later year, the beaches of bacterial enumeration process waters showed relatively high levels of bacterial indicators of fecal contamination (group D streptococci, total and fecal coliforms), which reflect the risks to people attending these beaches. During the twelve months of our study, we isolated from three beaches in the city of Annaba (St. Cloud, El-Kettara, and Djenane El Bey) a number of pathogenic microorganisms considered, namely: Salmonella, Aeromonas, Citrobacter, Yersinia, Enterococcus, and E.coli. The microbial count revealed elevated levels of coliform bacteria, fecal coliforms and fecal streptococci quite high especially in urban beaches (St. Cloud and El-Kettara). They are widely popular during the summer by many vacationers. For the physico-chemical parameters, there exist some weak values which increase during the pluvial period, hivernal and festival saison. These values remain, nevertheless, weak to be able to cause an organic or metallic pollution.

Keywords: quality microbiology, pollution of water, fecal contamination, physico-chemistry, beaches of Annaba city, Algeria.

Procedia PDF Downloads 326
3685 Experimental Design for Formulation Optimization of Nanoparticle of Cilnidipine

Authors: Arti Bagada, Kantilal Vadalia, Mihir Raval

Abstract:

Cilnidipine is practically insoluble in water which results in its insufficient oral bioavailability. The purpose of the present investigation was to formulate cilnidipine nanoparticles by nanoprecipitation method to increase the aqueous solubility and dissolution rate and hence bioavailability by utilizing various experimental statistical design modules. Experimental design were used to investigate specific effects of independent variables during preparation cilnidipine nanoparticles and corresponding responses in optimizing the formulation. Plackett Burman design for independent variables was successfully employed for optimization of nanoparticles of cilnidipine. The influence of independent variables studied were drug concentration, solvent to antisolvent ratio, polymer concentration, stabilizer concentration and stirring speed. The dependent variables namely average particle size, polydispersity index, zeta potential value and saturation solubility of the formulated nanoparticles of cilnidipine. The experiments were carried out according to 13 runs involving 5 independent variables (higher and lower levels) employing Plackett-Burman design. The cilnidipine nanoparticles were characterized by average particle size, polydispersity index value, zeta potential value and saturation solubility and it results were 149 nm, 0.314, 43.24 and 0.0379 mg/ml, respectively. The experimental results were good correlated with predicted data analysed by Plackett-Burman statistical method.

Keywords: dissolution enhancement, nanoparticles, Plackett-Burman design, nanoprecipitation

Procedia PDF Downloads 145
3684 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 242
3683 Happiness of Thai People: An Analysis by Socioeconomic Factors

Authors: Kalayanee Senasu

Abstract:

This research investigates Thai people’s happiness based on socioeconomic factors, i.e. region, municipality, gender, age, and occupation. The research data were collected from survey data using interviewed questionnaires. The primary data were from stratified multi-stage sampling in each region, province, district, and enumeration area; and simple random sampling in each enumeration area. These data were collected in 13 provinces: Bangkok and three provinces in each of all four regions. The data were collected over two consecutive years. There were 3,217 usable responses from the 2017 sampling, and 3,280 usable responses from the 2018 sampling. The Senasu’s Thai Happiness Index (THaI) was used to calculate the happiness level of Thai people in 2017 and 2018. This Thai Happiness Index comprises five dimensions: subjective well-being, quality of life, philosophy of living, governance, and standard of living. The result reveals that the 2017 happiness value is 0.506, while Thai people are happier in 2018 (THaI = 0.556). For 2017 happiness, people in the Central region have the highest happiness (THaI = 0.532), which is followed closely by people in the Bangkok Metropolitan Area (THaI = 0.530). People in the North have the lowest happiness (THaI = 0.476) which is close to the level for people in the Northeast (THaI = 0.479). Comparing age groups, it is found that people in the age range 25-29 years old are the happiest (THaI = 0.529), followed by people in the age range 55-59 and 35-39 years old (THaI = 0.526 and 0.523, respectively). Additionally, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.533 vs. 0.475). Males are happier than females (THaI = 0.530 vs. 0.482), and retired people, entrepreneurs, and government employees are all in the high happiness groups (THaI =0.614, 0.608, and 0.593, respectively). For 2018 happiness, people in the Northern region have the highest happiness (THaI = 0.590), which is followed closely by people in the South and Bangkok Metropolitan Area (THaI = 0.578 and 0.577, respectively). People in the Central have the lowest happiness (THaI = 0.530), which is close to the level for people in the Northeast (THaI = 0.533). Comparing age groups, it is found that people in the age range 35-39 years old are the happiest (THaI = 0.572), followed by people in the age range 40-44 and 60-64 years old (THaI = 0.569 and 0.568, respectively). Similar to 2017 happiness, people who live in municipal areas are happier than those who live in non-municipal areas (THaI = 0.567 vs. 0. 552). However, males and females are happy at about the same levels (THaI = 0.561 vs. 0.560), and government employees, retired people, and state enterprise employees are all in the high happiness groups (THaI =0.667, 0.639, and 0.661, respectively).

Keywords: happiness, quality of life, Thai happiness index, socio-economic factors

Procedia PDF Downloads 96
3682 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils

Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana

Abstract:

This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.

Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction

Procedia PDF Downloads 44
3681 Reviewing Performance Assessment Frameworks for Urban Sanitation Services in India

Authors: Gaurav Vaidya, N. R. Mandal

Abstract:

UN Summit, 2000 had resolved to provide access to sanitation to whole humanity as part of ‘Millennium Development Goals -2015’. However, more than one third of world’s population still did not have the access to basic sanitation facilities by 2015. Therefore, it will be a gigantic challenge to achieve goal-6 of ‘UN Sustainable Development Goal’ to ensure availability and sustainable management of sanitation for all by the year 2030. Countries attempt to find out own ways of meeting this challenge of providing access to safe sanitation and as part of monitoring the actions have prepared varied types of ‘performance assessment frameworks (PAF)’. India introduced Service Level Benchmarking (SLB) in 2010 to set targets and achieve the goals of NUSP. Further, a method of reviewing performance was introduced as ‘Swachh Sarvekshan’ (Cleanliness Surveys) in 2016 and in 2017 guidelines for the same was revised. This study, as a first step, reviews the documents in use in India with a conclusion that the frameworks adopted are based on target setting, financial allocation and performance in achieving the targets set. However, it does not focus upon sanitation needs holistically i.e., areas and aspects not targeted through projects are not covered in the performance assessment. In this context, as a second step, this study reviews literature available on performance assessment frameworks for urban sanitation in selected other countries and compares the same with that in India. The outcome of the comparative review resulted in identification of unaddressed aspects as well as inadequacy of parameters in Indian context. Thirdly, in an attempt to restructure the performance assessment process and develop an index in urban sanitation, researches done in other urban services such as health and education were studied focusing on methods of measuring under-performance. As a fourth step, a tentative modified framework is suggested with the help of understanding drawn from above for urban sanitation using stages of Urban Sanitation Service Chain Management (SSCM) and modified set of parameters drawn from the literature review in the first and second steps. This paper reviews existing literature on SSCM procedures, Performance Index in sanitation and other urban services and identifies a tentative list of parameters and a framework for measuring under-performance in sanitation services. This may aid in preparation of a Service Delivery Under-performance Index (SDUI) in future.

Keywords: assessment, performance, sanitation, services

Procedia PDF Downloads 132
3680 Methodology to Assess the Circularity of Industrial Processes

Authors: Bruna F. Oliveira, Teresa I. Gonçalves, Marcelo M. Sousa, Sandra M. Pimenta, Octávio F. Ramalho, José B. Cruz, Flávia V. Barbosa

Abstract:

The EU Circular Economy action plan, launched in 2020, is one of the major initiatives to promote the transition into a more sustainable industry. The circular economy is a popular concept used by many companies nowadays. Some industries are better forwarded to this reality than others, and the tannery industry is a sector that needs more attention due to its strong environmental impact caused by its dimension, intensive resources consumption, lack of recyclability, and second use of its products, as well as the industrial effluents generated by the manufacturing processes. For these reasons, the zero-waste goal and the European objectives are further being achieved. In this context, a need arises to provide an effective methodology that allows to determine the level of circularity of tannery companies. Regarding the complexity of the circular economy concept, few factories have a specialist in sustainability to assess the company’s circularity or have the ability to implement circular strategies that could benefit the manufacturing processes. Although there are several methodologies to assess circularity in specific industrial sectors, there is not an easy go-to methodology applied in factories aiming for cleaner production. Therefore, a straightforward methodology to assess the level of circularity, in this case of a tannery industry, is presented and discussed in this work, allowing any company to measure the impact of its activities. The methodology developed consists in calculating the Overall Circular Index (OCI) by evaluating the circularity of four key areas -energy, material, economy and social- in a specific factory. The index is a value between 0 and 1, where 0 means a linear economy, and 1 is a complete circular economy. Each key area has a sub-index, obtained through key performance indicators (KPIs) regarding each theme, and the OCI reflects the average of the four sub-indexes. Some fieldwork in the appointed company was required in order to obtain all the necessary data. By having separate sub-indexes, one can observe which areas are more linear than others. Thus, it is possible to work on the most critical areas by implementing strategies to increase the OCI. After these strategies are implemented, the OCI is recalculated to check the improvements made and any other changes in the remaining sub-indexes. As such, the methodology in discussion works through continuous improvement, constantly reevaluating and improving the circularity of the factory. The methodology is also flexible enough to be implemented in any industrial sector by adapting the KPIs. This methodology was implemented in a selected Portuguese small and medium-sized enterprises (SME) tannery industry and proved to be a relevant tool to measure the circularity level of the factory. It was witnessed that it is easier for non-specialists to evaluate circularity and identify possible solutions to increase its value, as well as learn how one action can impact their environment. In the end, energetic and environmental inefficiencies were identified and corrected, increasing the sustainability and circularity of the company. Through this work, important contributions were provided, helping the Portuguese SMEs to achieve the European and UN 2030 sustainable goals.

Keywords: circular economy, circularity index, sustainability, tannery industry, zero-waste

Procedia PDF Downloads 54
3679 Crash Statistics Comparison for Riyadh, Eastern Province, and Qaseem for 2016 and 2017

Authors: Hassan M. Al-Ahmadi

Abstract:

The fatality index (deaths/100 K population) due to road traffic accidents in the Kingdom of Saudi Arabia (KSA) is over 25, according to the World Health Organization Statistics (WHO) statistics, which is much higher than in the neighboring Arab regions. The KSA has implemented measures to mitigate traffic accidents by enforcing road safety regulations. As a result, there has been a slight decline in the frequency of road traffic accidents within the Kingdom. This study was based on the variations in the accidents for three provinces of KSA, i.e., Riyadh, Eastern Province (EP), & Qaseem, for 2016 and 2017 using ANOVA method. Data appropriateness for the ANOVA method was confirmed by the normality and the randomness of residuals. Additionally, the half-normal plot was used to identify the significant terms for the ANOVA analysis. The analysis revealed that the accidents in the EP were significantly higher than in the other two provinces during the analysis period. The monthly variation showed a spike in the accidents from month 7th to 9th month in the EP region and a slight drop in the accidents in the Qaseem and the Riyadh region during the same period, which was attributed to the increased leisure travels from the other regions to the EP. Furthermore, most of the accidents were found to occur in the age group of 18+ and 30+, and also the major reduction of accidents in 2017 as compared to 2016 was found to have occurred in the same group. These findings can be beneficial for developing strategies to further reduce the number of accidents.

Keywords: fatality index, emergency, road traffic accident, safety, leisure travels

Procedia PDF Downloads 14
3678 Agriculture, Food Security and Poverty Reduction in Nigeria: Cointegration and Granger Causality Approach

Authors: Ogunwole Cecilia Oluwakemi, Timothy Ayomitunde Aderemi

Abstract:

Provision of sufficient food and elimination of abject poverty have usually been the conventional benefits of agriculture in any society. Meanwhile, despite the fact that Nigeria is an agrarian society, food insecurity and poverty have become the issues of concern among both scholars and policymakers in the recent times. Against this backdrop, this study examined the nexus among agriculture, food security, and poverty reduction in Nigeria from 1990 to 2019 within the framework of the Cointegration and Granger Causality approach. Data was collected from the Central Bank of Nigeria Statistical Bulletin and the World Development Indicators, respectively. The following are the major results that emanated from the study. A long run equilibrium relationship exists among agricultural value added, food production index, and GDP per capita in Nigeria. Similarly, there is a unidirectional causality which flows from food production index to poverty reduction in Nigeria. In the same vein, one way causality flows from poverty reduction to agricultural value added in Nigeria. Consequently, this study makes the following recommendation for the policymakers in Nigeria, and other African countries by extension, that agricultural value added and food production are the important variables that cannot be undermined when poverty reduction occupies the central focus of the policymakers. Therefore, any time these policymakers want to reduce poverty, policies that drive agricultural value added and food production should be embarked upon. Therefore, this study will contribute to the literature by establishing the type of linkage that exists between agriculture, food security, and poverty reduction in Nigeria.

Keywords: agriculture, value added, food production, GDP per capita, Nigeria

Procedia PDF Downloads 159
3677 Effect of Pretreatment on Quality Parameters of Natural Convection Mixed-Mode Solar Dried Potato

Authors: Kshanaprava Dhalsamant, Punyadarshini P. Tripathy, Shanker L. Shrivastava

Abstract:

With present high global population, the need for rising food usage by minimizing food wastage and investment is highly necessary to achieve food security. The purpose of this study is to enlighten the effect of pre-drying treatment on rehydration, color, texture, nanohardness, microstructure and surface morphology of solar dried potato samples dried in the mixed-mode solar dryer. Locally bought potatoes were cleaned and cut into cylindrical pieces and pretreated with sodium metabisulfite (0.5%) for 10 min before placing them in natural convection solar dryer designed and developed in Indian Institute of Technology Kharagpur, India. Advanced quality characteristics were studied using Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM) and nanoindentation method, along with color, texture and water activity. The rehydration indices of solar dried potatoes were significantly biased by pretreatment followed by rehydration temperature. A lower redness index (a*) with a higher value of yellowness index (b*), chroma (C*) and hue angle (h*) were obtained for pretreated samples. Also, the average nanohardness (H) of untreated samples exhibited substantial lower value (18.46%) compared to pretreated samples. Additionally, a creep displacement of 43.27 nm during 20 s dwell time under constant load of 200

Keywords: pretreatment, nanohardness, microstructure, surface morphology

Procedia PDF Downloads 154
3676 Effect of Scaling and Root Planing on Improvement of Glycemic Control in Periodontitis Patients with Type-2 Diabetes Mellitus

Authors: Shivalal Sharma, Sanjib K. Sharma, Madhab Lamsal

Abstract:

Background: The aim of this study was to evaluate the clinical and laboratory changes three months after full-mouth scaling and root planing (SRP) in periodontitis patients with type 2 diabetes mellitus (DM). Methods: Forty-seven type 2 DM subjects with moderate to severe periodontitis were randomly divided into two groups. Treatment group (TG), 25 subjects, received full-mouth scaling and root planning; control group (CG), 22 subjects, received no treatment. At baseline and at the end of three months, glycated hemoglobin (HbA1c) values, fasting glucose, and clinical parameters like plaque index (PI), gingival index (GI), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded in all the patients. Following SRP, the patients were enrolled in a monthly interval maintenance program for 3 months. Results: A statistically significant effect could be demonstrated for PI, GI, PPD, and CAL for the treatment group. HbA1c levels in the treatment group decreased significantly whereas the control group showed a slight but insignificant increase for these parameters. Conclusions: The results of this study showed that non-surgical periodontal treatment (SRP) is associated with improved glycemic control in type 2 DM patients and could be undertaken along with the standard measures for the diabetic patient care.

Keywords: periodontitis, type 2 diabetes mellitus, non-surgical periodontal therapy, SRP

Procedia PDF Downloads 280
3675 Implementing the WHO Air Quality Guideline for PM2.5 Worldwide can Prevent Millions of Premature Deaths Per Year

Authors: Despina Giannadaki, Jos Lelieveld, Andrea Pozzer, John Evans

Abstract:

Outdoor air pollution by fine particles ranks among the top ten global health risk factors that can lead to premature mortality. Epidemiological cohort studies, mainly conducted in United States and Europe, have shown that the long-term exposure to PM2.5 (particles with an aerodynamic diameter less than 2.5μm) is associated with increased mortality from cardiovascular, respiratory diseases and lung cancer. Fine particulates can cause health impacts even at very low concentrations. Previously, no concentration level has been defined below which health damage can be fully prevented. The World Health Organization ambient air quality guidelines suggest an annual mean PM2.5 concentration limit of 10μg/m3. Populations in large parts of the world, especially in East and Southeast Asia, and in the Middle East, are exposed to high levels of fine particulate pollution that by far exceeds the World Health Organization guidelines. The aim of this work is to evaluate the implementation of recent air quality standards for PM2.5 in the EU, the US and other countries worldwide and estimate what measures will be needed to substantially reduce premature mortality. We investigated premature mortality attributed to fine particulate matter (PM2.5) under adults ≥ 30yrs and children < 5yrs, applying a high-resolution global atmospheric chemistry model combined with epidemiological concentration-response functions. The latter are based on the methodology of the Global Burden of Disease for 2010, assuming a ‘safe’ annual mean PM2.5 threshold of 7.3μg/m3. We estimate the global premature mortality by PM2.5 at 3.15 million/year in 2010. China is the leading country with about 1.33 million, followed by India with 575 thousand and Pakistan with 105 thousand. For the European Union (EU) we estimate 173 thousand and the United States (US) 52 thousand in 2010. Based on sensitivity calculations we tested the gains from PM2.5 control by applying the air quality guidelines (AQG) and standards of the World Health Organization (WHO), the EU, the US and other countries. To estimate potential reductions in mortality rates we take into consideration the deaths that cannot be avoided after the implementation of PM2.5 upper limits, due to the contribution of natural sources to total PM2.5 and therefore to mortality (mainly airborne desert dust). The annual mean EU limit of 25μg/m3 would reduce global premature mortality by 18%, while within the EU the effect is negligible, indicating that the standard is largely met and that stricter limits are needed. The new US standard of 12μg/m3 would reduce premature mortality by 46% worldwide, 4% in the US and 20% in the EU. Implementing the AQG by the WHO of 10μg/m3 would reduce global premature mortality by 54%, 76% in China and 59% in India. In the EU and US, the mortality would be reduced by 36% and 14%, respectively. Hence, following the WHO guideline will prevent 1.7 million premature deaths per year. Sensitivity calculations indicate that even small changes at the lower PM2.5 standards can have major impacts on global mortality rates.

Keywords: air quality guidelines, outdoor air pollution, particulate matter, premature mortality

Procedia PDF Downloads 296
3674 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana

Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura

Abstract:

Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.

Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone

Procedia PDF Downloads 384
3673 Clinical and Sleep Features in an Australian Population Diagnosed with Mild Cognitive Impairment

Authors: Sadie Khorramnia, Asha Bonney, Kate Galloway, Andrew Kyoong

Abstract:

Sleep plays a pivotal role in the registration and consolidation of memory. Multiple observational studies have demonstrated that self-reported sleep duration and sleep quality are associated with cognitive performance. Montreal Cognitive Assessment questionnaire is a screening tool to assess mild cognitive (MCI) impairment with a 90% diagnostic sensitivity. In our current study, we used MOCA to identify MCI in patients who underwent sleep study in our sleep department. We then looked at the clinical risk factors and sleep-related parameters in subjects found to have mild cognitive impairment but without a diagnosis of sleep-disordered breathing. Clinical risk factors, including physician, diagnosed hypertension, diabetes, and depression and sleep-related parameters, measured during sleep study, including percentage time of each sleep stage, total sleep time, awakenings, sleep efficiency, apnoea hypopnoea index, and oxygen saturation, were evaluated. A total of 90 subjects who underwent sleep study between March 2019 and October 2019 were included. Currently, there is no pharmacotherapy available for MCI; therefore, identifying the risk factors and attempting to reverse or mitigate their effect is pivotal in slowing down the rate of cognitive deterioration. Further characterization of sleep parameters in this group of patients could open up opportunities for potentially beneficial interventions.

Keywords: apnoea hypopnea index, mild cognitive impairment, sleep architecture, sleep study

Procedia PDF Downloads 130
3672 Fodder Production and Livestock Rearing in Relation to Climate Change and Possible Adaptation Measures in Manaslu Conservation Area, Nepal

Authors: Bhojan Dhakal, Naba Raj Devkota, Chet Raj Upreti, Maheshwar Sapkota

Abstract:

A study was conducted to find out the production potential, nutrient composition, and the variability of the most commonly available fodder trees along with the varying altitude to help optimize the dry matter requirement during winter lean period. The study was carried out from March to June, 2012 in Lho and Prok Village Development Committee of Manaslu Conservation Area (MCA), located in Gorkha district of Nepal. The other objective of the research was to learn the impact of climate change on livestock production linking it with feed availability. The study was conducted in two parts: social and biological. Accordingly, a households (HHs) survey was conducted to collect primary data from 70 HHs, focusing on the perception of respondents on impacts of climatic variability on the feeding management. The next part consisted of understanding yield potential and nutrient composition of the four most commonly available fodder trees (M. azedirach, M. alba, F. roxburghii, F. nemoralis), within two altitudes range: (1500-2000 masl and 2000-2500 masl) by using a RCB design in 2*4 factorial combination of treatments, each replicated four times. Results revealed that majority of the farmers perceived the change in climatic phenomenon more severely within the past five years. Farmers were using different adaptation technologies such as collection of forage from jungle, reducing unproductive animals, fodder trees utilization, and crop by product feeding at feed scarcity period. Ranking of the different fodder trees on the basis of indigenous knowledge and experiences revealed that F. roxburghii was the best-preferred fodder tree species (index value 0.72) in terms overall preferability whereas M. azedirach had highest growth and productivity (index value 0.77), F. roxburghii had highest adoptability (index value 0.69) and palatability (index value 0.69) as well. Similarly, fresh yield and dry matter yield of the each fodder trees was significant (P < 0.01) between the altitude and within species. Fodder trees yield analysis revealed that the highest dry matter (DM) yield (28 kg/tree) was obtained for F. roxburghii but that remained statistically similar (P > 0.05) to the other treatment. On the other hand, most of the parameters: ether extract (EE), acid detergent lignin (ADL), acid detergent fibre (ADF), cell wall digestibility (CWD), relative digestibility (RD), digestible nutrient (TDN), and Calcium (Ca) among the treatments were highly significant (P < 0.01). This indicates the scope of introducing productive and nutritive fodder trees species even at the high altitude to help reduce fodder scarcity problem during winter. The finding also revealed the scope of promoting all available local fodder trees species as crude protein content of these species were similar.

Keywords: fodder trees, yield potential, climate change, nutrient composition

Procedia PDF Downloads 300
3671 Urban Greenery in the Greatest Polish Cities: Analysis of Spatial Concentration

Authors: Elżbieta Antczak

Abstract:

Cities offer important opportunities for economic development and for expanding access to basic services, including health care and education, for large numbers of people. Moreover, green areas (as an integral part of sustainable urban development) present a major opportunity for improving urban environments, quality of lives and livelihoods. This paper examines, using spatial concentration and spatial taxonomic measures, regional diversification of greenery in the cities of Poland. The analysis includes location quotients, Lorenz curve, Locational Gini Index, and the synthetic index of greenery and spatial statistics tools: (1) To verify the occurrence of strong concentration or dispersion of the phenomenon in time and space depending on the variable category, and, (2) To study if the level of greenery depends on the spatial autocorrelation. The data includes the greatest Polish cities, categories of the urban greenery (parks, lawns, street greenery, and green areas on housing estates, cemeteries, and forests) and the time span 2004-2015. According to the obtained estimations, most of cites in Poland are already taking measures to become greener. However, in the country there are still many barriers to well-balanced urban greenery development (e.g. uncontrolled urban sprawl, poor management as well as lack of spatial urban planning systems).

Keywords: greenery, urban areas, regional spatial diversification and concentration, spatial taxonomic measure

Procedia PDF Downloads 268
3670 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems

Authors: Nabil Mezhoud

Abstract:

The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.

Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm

Procedia PDF Downloads 47
3669 Magnetic Survey for the Delineation of Concrete Pillars in Geotechnical Investigation for Site Characterization

Authors: Nuraddeen Usman, Khiruddin Abdullah, Mohd Nawawi, Amin Khalil Ismail

Abstract:

A magnetic survey is carried out in order to locate the remains of construction items, specifically concrete pillars. The conventional Euler deconvolution technique can perform the task but it requires the use of fixed structural index (SI) and the construction items are made of materials with different shapes which require different SI (unknown). A Euler deconvolution technique that estimate background, horizontal coordinate (xo and yo), depth and structural index (SI) simultaneously is prepared and used for this task. The synthetic model study carried indicated the new methodology can give a good estimate of location and does not depend on magnetic latitude. For field data, both the total magnetic field and gradiometer reading had been collected simultaneously. The computed vertical derivatives and gradiometer readings are compared and they have shown good correlation signifying the effectiveness of the method. The filtering is carried out using automated procedure, analytic signal and other traditional techniques. The clustered depth solutions coincided with the high amplitude/values of analytic signal and these are the possible target positions of the concrete pillars being sought. The targets under investigation are interpreted to be located at the depth between 2.8 to 9.4 meters. More follow up survey is recommended as this mark the preliminary stage of the work.

Keywords: concrete pillar, magnetic survey, geotechnical investigation, Euler Deconvolution

Procedia PDF Downloads 244
3668 Comparative Assessment of Microplastic Pollution in Surface Water and Sediment of the Gomati and Saryu Rivers, India

Authors: Amit K. Mishra, Jaswant Singh

Abstract:

The menace of plastic, which significantly pollutes the aquatic environment, has emerged as a global problem. There is an emerging concern about microplastics (MPs) accumulation in aquatic ecosystems. It is familiar to everyone that the ultimate end for most of the plastic debris is the ocean. Rivers are the efficient carriers for transferring MPs from terrestrial to aquatic, further from upstream to downstream areas, and ultimately to oceans. The root cause study can provide an effective solution to a problem; hence, tracing of MPs in the riverine system can illustrate the long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in surface water and sediment of the two major river systems of Uttar Pradesh, India. One is the Gomti River, Lucknow, a tributary of the Ganga, and the second is the Saryu River, the lower part of the Ghagra River, which flows through the city of Ayodhya. In this study, the distribution and abundance of MPs in surface water and sediments of two rivers were compared. Samples of water and sediment were collected from different (four from each river) sampling stations in the river catchment of two rivers. Plastic particles were classified according to type, shape, and color. In this study, 1523 (average abundance 254) and 143 (average abundance 26) microplastics were identified in all studied sites in the Gomati River and Saryu River, respectively. Observations on samples of water showed that the average MPs concentration was 392 (±69.6) and 63 ((±18.9) particles per 50l of water, whereas the sediment sample showed that the average MPs concentration was 116 (±42.9) and 46 (±12.5) particles per 250gm of dry sediment in the Gomati River and Saryu River, respectively. The high concentration of microplastics in the Lucknow area can be attributed to human activities, population density, and the entry of various effluents into the river. Microplastics with fibrous shapes were dominated, followed by fragment shapes in all the samples. The present study is a pioneering effort to count MPs in the Gomati and Saryu River systems.

Keywords: freshwater, Gomati, microplastics, Saryu, sediment

Procedia PDF Downloads 65
3667 An Experimental Study on Service Life Prediction of Self: Compacting Concrete Using Sorptivity as a Durability Index

Authors: S. Girish, N. Ajay

Abstract:

Permeation properties have been widely used to quantify durability characteristics of concrete for assessing long term performance and sustainability. The processes of deterioration in concrete are mediated largely by water. There is a strong interest in finding a better way of assessing the material properties of concrete in terms of durability. Water sorptivity is a useful single material property which can be one of the measures of durability useful in service life planning and prediction, especially in severe environmental conditions. This paper presents the results of the comparative study of sorptivity of Self-Compacting Concrete (SCC) with conventionally vibrated concrete. SCC is a new, special type of concrete mixture, characterized by high resistance to segregation that can flow through intricate geometrical configuration in the presence of reinforcement, under its own mass, without vibration and compaction. SCC mixes were developed for the paste contents of 0.38, 0.41 and 0.43 with fly ash as the filler for different cement contents ranging from 300 to 450 kg/m3. The study shows better performance by SCC in terms of capillary absorption. The sorptivity value decreased as the volume of paste increased. The use of higher paste content in SCC can make the concrete robust with better densification of the micro-structure, improving the durability and making the concrete more sustainable with improved long term performance. The sorptivity based on secondary absorption can be effectively used as a durability index to predict the time duration required for the ingress of water to penetrate the concrete, which has practical significance.

Keywords: self-compacting concrete, service life prediction, sorptivity, volume of paste

Procedia PDF Downloads 304
3666 Identifying Neighborhoods at Potential Risk of Food Insecurity in Rural British Columbia

Authors: Amirmohsen Behjat, Aleck Ostry, Christina Miewald, Bernie Pauly

Abstract:

Substantial research has indicated that socioeconomic and demographic characteristics’ of neighborhoods are strong determinants of food security. The aim of this study was to develop a Food Insecurity Neighborhood Index (FINI) based on the associated socioeconomic and demographic variables to identify the areas at potential risk of food insecurity in rural British Columbia (BC). Principle Component Analysis (PCA) technique was used to calculate the FINI for each rural Dissemination Area (DA) using the food security determinant variables from Canadian Census data. Using ArcGIS, the neighborhoods with the top quartile FINI values were classified as food insecure. The results of this study indicated that the most food insecure neighborhood with the highest FINI value of 99.1 was in the Bulkley-Nechako (central BC) area whereas the lowest FINI with the value of 2.97 was for a rural neighborhood in the Cowichan Valley area. In total, 98.049 (19%) of the rural population of British Columbians reside in high food insecure areas. Moreover, the distribution of food insecure neighborhoods was found to be strongly dependent on the degree of rurality in BC. In conclusion, the cluster of food insecure neighbourhoods was more pronounced in Central Coast, Mount Wadington, Peace River, Kootenay Boundary, and the Alberni-Clayoqout Regional Districts.

Keywords: neighborhood food insecurity index, socioeconomic and demographic determinants, principal component analysis, Canada census, ArcGIS

Procedia PDF Downloads 153
3665 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland

Authors: Maryam Salehi, Gholamreza Bonyadinejad

Abstract:

The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.

Keywords: soil health, plastic pollution, sustainability, photodegradation

Procedia PDF Downloads 204
3664 Soil Characteristics and Liquefaction Potential of the Bengkulu Region Based on the Microtremor Method

Authors: Aditya Setyo Rahman, Dwikorita Karnawati, Muzli, Dadang Permana, Sigit Pramono, Fajri Syukur Rahmatullah, Oriza Sativa, Moehajirin, Edy Santoso, Nur Hidayati Oktavia, Ardian Yudhi Octantyo, Robby Wallansha, Juwita Sari Pradita, Nur Fani Habibah, Audia Kaluku, Amelia Chelcea, Yoga Dharma Persada, Anton Sugiharto

Abstract:

Earthquake vibrations on the surface are not only affected by the magnitude of the earthquake and the distance from the hypocenter but also by the characteristics of the local soil. Variations and changes in soil characteristics from the depth of the bedrock to the surface can cause an amplification of earthquake vibrations that also affect the impact they may have on the surface. Soil characteristics vary widely even at relatively close distances, so for earthquake hazard mapping in cities with earthquake threats, it is necessary to study the characteristics of the local soil on a detailed or micro-scale (microzonation). This study proposes seismic microzonation and liquefaction potential based on microtremor observations. We carried out 143 microtremor observations, and the observation sites were spread across all populated sub-districts in Bengkulu City; the results showed that the dominance of Bengkulu City had medium soil types with a dominant period value of 0.4 < T₀ < 0.6, and there was one location with soft soil characteristics in the river, shaved with T₀ > 0.6. These results correlate with the potential for liquefaction as indicated by a seismic vulnerability index (K𝓰) greater than 5.

Keywords: microtremor, dominant period, microzonation, seismic vulnerability index

Procedia PDF Downloads 94
3663 Using the Ecological Analysis Method to Justify the Environmental Feasibility of Biohydrogen Production from Cassava Wastewater Biogas

Authors: Jonni Guiller Madeira, Angel Sanchez Delgado, Ronney Mancebo Boloy

Abstract:

The use bioenergy, in recent years, has become a good alternative to reduce the emission of polluting gases. Several Brazilian and foreign companies are doing studies related to waste management as an essential tool in the search for energy efficiency, taking into consideration, also, the ecological aspect. Brazil is one of the largest cassava producers in the world; the cassava sub-products are the food base of millions of Brazilians. The repertoire of results about the ecological impact of the production, by steam reforming, of biohydrogen from cassava wastewater biogas is very limited because, in general, this commodity is more common in underdeveloped countries. This hydrogen, produced from cassava wastewater, appears as an alternative fuel to fossil fuels since this is a low-cost carbon source. This paper evaluates the environmental impact of biohydrogen production, by steam reforming, from cassava wastewater biogas. The ecological efficiency methodology developed by Cardu and Baica was used as a benchmark in this study. The methodology mainly assesses the emissions of equivalent carbon dioxide (CO₂, SOₓ, CH₄ and particulate matter). As a result, some environmental parameters, such as equivalent carbon dioxide emissions, pollutant indicator, and ecological efficiency are evaluated due to the fact that they are important to energy production. The average values of the environmental parameters among different biogas compositions (different concentrations of methane) were calculated, the average pollution indicator was 10.11 kgCO₂e/kgH₂ with an average ecological efficiency of 93.37%. As a conclusion, bioenergy production using biohydrogen from cassava wastewater treatment plant is a good option from the environmental feasibility point of view. This fact can be justified by the determination of environmental parameters and comparison of the environmental parameters of hydrogen production via steam reforming from different types of fuels.

Keywords: biohydrogen, ecological efficiency, cassava, pollution indicator

Procedia PDF Downloads 181
3662 Geomatic Techniques to Filter Vegetation from Point Clouds

Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades

Abstract:

More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.

Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud

Procedia PDF Downloads 120
3661 Gender Differences in Walking Capacity and Cardiovascular Regulation in Patients with Peripheral Arterial Disease

Authors: Gabriel Cucato, Marilia Correia, Wagner Domingues, Aline Palmeira, Paulo Longano, Nelson Wolosker, Raphael Ritti-Dias

Abstract:

Women with peripheral arterial disease (PAD) present lower walking capacity in comparison with men. However, whether cardiovascular regulation is also different between genders is unknown. Thus, the aim of this study was to compare walking capacity and cardiovascular regulation between men and women with PAD. A total of 23 women (66±7 yrs) and 31 men (64±9 yrs) were recruited. Patients performed a 6-minute test and the onset claudication distance and total walking distance were measured. Additionally, cardiovascular regulation was assessed by arterial stiffness (pulse wave velocity and augmentation index) and heart rate variability (frequency domain). Independent T test or Mann-Whitney U test were performed. In comparison with men, women present lower onset claudication distance (108±66m vs. 143±50m; P=0.032) and total walking distance (286±83m vs. 361±91 m, P=0.007). Regarding cardiovascular regulation, there were no differences in heart rate variability SDNN (72±160ms vs. 32±22ms, P=0.587); RMSSD (75±209 vs. 25±22ms, P=0.726); pNN50 (11±17ms vs. 8±14ms, P=0.836) in women and men, respectively. Moreover, there were no difference in augmentation index (39±10% vs. 34±11%, P=0.103); pulse pressure (59±17mmHg vs. 56±19mmHg, P=0.593) and pulse wave velocity (8.6±2.6m\s vs. 9.0±2.7m/s, P=0.580). In conclusion, women have impaired walking capacity compared to men. However, sex differences were not observed on cardiovascular regulation in patients with PAD.

Keywords: exercise, intermittent claudication, cardiovascular load, arterial stiffness

Procedia PDF Downloads 374
3660 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria

Authors: Olumuyiwa Olusola Falowo

Abstract:

One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.

Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction

Procedia PDF Downloads 130
3659 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: shelled walnut, MAP, quality, storage temperature

Procedia PDF Downloads 369
3658 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage

Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo

Abstract:

Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.

Keywords: kaolinite, microencapsulation, PCM, thermal energy storage

Procedia PDF Downloads 112