Search results for: H₂-optimal model reduction
19305 Photovoltaic System: An Alternative to Energy Efficiency in a Residence
Authors: Arsenio Jose Mindu
Abstract:
The concern to carry out a study related to Energy Efficiency arose based on the various debates in international television networks and not only, but also in several forums of national debates. The concept of Energy Efficiency is not yet widely disseminated and /or taken into account in terms of energy consumption, not only at the domestic level but also at the industrial level in Mozambique. In the context of the energy audit, the time during which each of the appliances is connected to the voltage source, the time during which they are in standby mode was recorded on a spreadsheet basis. Based on these data, daily and monthly consumption was calculated. In order to have more accurate information on the daily levels of daily consumption, the electricity consumption was read every hour of the day (from 5:00 am to 11:00 pm), since after 23:00 the energy consumption remains constant. For ten days. Based on the daily energy consumption and the maximum consumption power, the design of the photovoltaic system for the residence was made. With the implementation of the photovoltaic system in order to guarantee energy efficiency, there was a significant reduction in the use of electricity from the public grid, increasing from approximately 17 kwh per day to around 11 kwh, thus achieving an energy efficiency of 67.4 %. That is to say, there was a reduction not only in terms of the amount of energy consumed but also of the monthly expenses with electricity, having increased from around 2,500,00Mt (2,500 meticais) to around 800Mt per month.Keywords: energy efficiency, photovoltaic system, residential sector, Mozambique
Procedia PDF Downloads 20619304 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis
Authors: J. Ritonja, B. Grcar
Abstract:
For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator
Procedia PDF Downloads 24519303 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 30419302 Comparing the Efficacy of Minimally Supervised Home-Based and Closely Supervised Gym Based Exercise Programs on Weight Reduction and Insulin Resistance after Bariatric Surgery
Authors: Haleh Dadgostar, Sara Kaviani, Hanieh Adib, Ali Mazaherinezhad, Masoud Solaymani-Dodaran, Fahimeh Soheilipour, Abdolreza Pazouki
Abstract:
Background and Objectives: Effectiveness of various exercise protocols in weight reduction after bariatric surgery has not been sufficiently explored in the literature. We compared the effect of minimally supervised home-based and closely supervised Gym based exercise programs on weight reduction and insulin resistance after bariatric surgery. Methods: Women undergoing gastric bypass surgery were invited to participate in an exercise program and were randomly allocated into two groups. They were either offered a minimally supervised home-based (MSHB) or closely supervised Gym-based (CSGB) exercise program. The CSGB protocol constitute two sessions per week of training under ACSM guidelines. In the MSHB protocol participants received a notebook containing a list of recommended aerobic and resistance exercises, a log to record their activity and a schedule of follow up phone calls and clinic visits. Both groups received a pedometer. We measured their weight, BMI, lipid profile, FBS, and insulin level at the baseline and after 20 weeks of exercise and were compared at the end of the study. Results: A total of 80 patients completed our study (MSHB=38 and CSGB=42). The baseline comparison showed that the two groups are similar. Using the ANCOVA method of analysis the mean change in BMI (covariate: BMI at the beginning of the study) was slightly better in CSGB compared with the MSHB (between-group mean difference: 3.33 (95%CI 4.718 to 1.943, F: 22.844 p < 0.001)). Conclusion: Our results showed that both MSHB and CSGB exercise methods are somewhat equally effective in improvement of studied factors in the two groups. With considerably lower costs of Minimally Supervised Home Based exercise programs, these methods should be considered when adequate funding are not available.Keywords: postoperative exercise, insulin resistance, bariatric surgery, morbid obesity
Procedia PDF Downloads 28919301 Further Investigation of α+12C and α+16O Elastic Scattering
Authors: Sh. Hamada
Abstract:
The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model
Procedia PDF Downloads 23719300 The Hidden Mechanism beyond Ginger (Zingiber officinale Rosc.) Potent in vivo and in vitro Anti-Inflammatory Activity
Authors: Shahira M. Ezzat, Marwa I. Ezzat, Mona M. Okba, Esther T. Menze, Ashraf B. Abdel-Naim, Shahnas O. Mohamed
Abstract:
Background: In order to decrease the burden of the high cost of synthetic drugs, it is important to focus on phytopharmaceuticals. The aim of our study was to search for the mechanism of ginger (Zingiber officinale Roscoe) anti-inflammatory potential and to correlate it to its biophytochemicals. Methods: Various extracts viz. water, 50%, 70%, 80%, and 90% ethanol were prepared from ginger rhizomes. Fractionation of the aqueous extract (AE) was accomplished using Diaion HP-20. In vitro anti-inflammatory activity of the different extracts and isolated compounds was evaluated by protein denaturation inhibition, membrane stabilization, protease inhibition, and anti-lipoxygenase assays. In vivo anti-inflammatory activity of AE was estimated by assessment of rat paw oedema after carrageenan injection. Prostaglandin E2 (PGE2), certain inflammation markers (TNF-α, IL-6, IL-1α, IL-1β, INFr, MCP-1MIP, RANTES, and Nox) levels and MPO activity in the paw edema exudates were measured. Total antioxidant capacity (TAC) was also determined. Histopathological alterations of paw tissues were scored. Results: All the tested extracts showed significant (p < 0.1) anti-inflammatory activities. The highest percentage of heat induced albumin denaturation (66%) was exhibited by the 50% ethanol (250 μg/ml). The 70 and 90% ethanol extracts (500 μg/ml) were more potent as membrane stabilizers (34.5 and 37%, respectively) than diclofenac (33%). The 80 and 90% ethanol extracts (500 μg/ml) showed maximum protease inhibition (56%). The strongest anti-lipoxygenase activity was observed for the AE. It showed more significant lipoxygenase inhibition activity than that of diclofenac (58% and 52%, respectively) at the same concentration (125 μg/ml). Fractionation of AE yielded four main fractions (Fr I-IV) which showed significant in vitro anti-inflammatory. Purification of Fr-III and IV led to the isolation of 6-poradol (G1), 6-shogaol (G2); methyl 6- gingerol (G3), 5-gingerol (G4), 6-gingerol (G5), 8-gingerol (G6), 10-gingerol (G7), and 1-dehydro-6-gingerol (G8). G2 (62.5 ug/ml), G1 (250 ug/ml), and G8 (250 ug/ml) exhibited potent anti-inflammatory activity in all studied assays, while G4 and G5 exhibited moderate activity. In vivo administration of AE ameliorated rat paw oedema in a dose-dependent manner. AE (at 200 mg/kg) showed significant reduction (60%) of PGE2 production. The AE at different doses (at 25-200 mg/kg) showed significant reduction in inflammatory markers except for IL-1α. AE (at 25 mg/kg) is superior to indomethacin in reduction of IL-1β. Treatment of animals with the AE (100, 200 mg/kg) or indomethacin (10 mg/kg) showed significant reduction in TNF-α, IL-6, MCP-1, and RANTES levels, and MPO activity by about (31, 57 and 32% ) (65, 60 and 57%) (27, 41 and 28%) (23, 32 and 23%) (66, 67 and 67%) respectively. AE at 100 and 200 mg/kg was equipotent to indomethacin in reduction of NOₓ level and in increasing the TAC. Histopathological examination revealed very few inflammatory cells infiltration and oedema after administration of AE (200 mg/kg) prior to carrageenan. Conclusion: Ginger anti-inflammatory activity is mediated by inhibiting macrophage and neutrophils activation as well as negatively affecting monocyte and leukocyte migration. Moreover, it produced dose-dependent decrease in pro-inflammatory cytokines and chemokines and replenished the total antioxidant capacity. We strongly recommend future investigations of ginger in the potential signal transduction pathways.Keywords: anti-lipoxygenase activity, inflammatory markers, 1-dehydro-6-gingerol, 6-shogaol
Procedia PDF Downloads 25219299 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 18119298 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)
Procedia PDF Downloads 8619297 Combination of Silver-Curcumin Nanoparticle for the Treatment of Root Canal Infection
Authors: M. Gowri, E. K. Girija, V. Ganesh
Abstract:
Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate C. albicans. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against Candida albicans. Detailed molecular studies were carried out with silver-curcumin nanoparticle on C. albicans pathogenicity. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against C. albicans. Silver-curcumin nanoparticle exerted time kill effect and post antifungal effect. When used in combination with fluconazole or nystatin, silver-curcumin nanoparticle revealed a minimum inhibitory concentration (MIC) decrease for both drugs used. In-depth molecular studies with silver-curcumin nanoparticle on C. albicans showed that silver-curcumin nanoparticle inhibited yeast to hyphae (Y-H) conversion. Further, SEM images of C. albicans showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of C. albicans and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Conclusion: The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection.Keywords: C. albicans, ex vivo dentine model, inhibition of biofilm formation, root canal infection, yeast to hyphae conversion inhibition
Procedia PDF Downloads 20819296 Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine
Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Archibong Eso
Abstract:
Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made.Keywords: inlet filtration, pressure loss, single spool, two spool
Procedia PDF Downloads 32219295 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model
Authors: Li Chen, Alex Skvortsov, Chris Norwood
Abstract:
Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model
Procedia PDF Downloads 28719294 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image
Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias
Abstract:
Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals
Procedia PDF Downloads 7319293 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 17519292 Interoperable Design Coordination Method for Sharing Communication Information Using Building Information Model Collaboration Format
Authors: Jin Gang Lee, Hyun-Soo Lee, Moonseo Park
Abstract:
The utilization of BIM and IFC allows project participants to collaborate across different areas by consistently sharing interoperable product information represented in a model. Comments or markups generated during the coordination process can be categorized as communication information, which can be shared in less standardized manner. It can be difficult to manage and reuse such information compared to the product information in a model. The present study proposes an interoperable coordination method using BCF (the BIM Collaboration Format) for managing and sharing the communication information during BIM based coordination process. A management function for coordination in the BIM collaboration system is developed to assess its ability to share the communication information in BIM collaboration projects. This approach systematically links communication information during the coordination process to the building model and serves as a type of storage system for retrieving knowledge created during BIM collaboration projects.Keywords: design coordination, building information model, BIM collaboration format, industry foundation classes
Procedia PDF Downloads 43319291 Economical Dependency Evolution and Complexity
Authors: Allé Dieng, Mamadou Bousso, Latif Dramani
Abstract:
The purpose of this work is to show the complexity behind economical interrelations in a country and provide a linear dynamic model of economical dependency evolution in a country. The model is based on National Transfer Account which is one of the most robust methodology developed in order to measure a level of demographic dividend captured in a country. It is built upon three major factors: demography, economical dependency and migration. The established mathematical model has been simulated using Netlogo software. The innovation of this study is in describing economical dependency as a complex system and simulating using mathematical equation the evolution of the two populations: the economical dependent and the non-economical dependent as defined in the National Transfer Account methodology. It also allows us to see the interactions and behaviors of both populations. The model can track individual characteristics and look at the effect of birth and death rates on the evolution of these two populations. The developed model is useful to understand how demographic and economic phenomenon are relatedKeywords: ABM, demographic dividend, National Transfer Accounts (NTA), ODE
Procedia PDF Downloads 20519290 Analysis of the Contribution of Drude and Brendel Model Terms to the Dielectric Function
Authors: Christopher Mkirema Maghanga, Maurice Mghendi Mwamburi
Abstract:
Parametric modeling provides a means to deeper understand the properties of materials. Drude, Brendel, Lorentz and OJL incorporated in SCOUT® software are some of the models used to study dielectric films. In our work, we utilized Brendel and Drude models to extract the optical constants from spectroscopic data of fabricated undoped and niobium doped titanium oxide thin films. The individual contributions by the two models were studied to establish how they influence the dielectric function. The effect of dopants on their influences was also analyzed. For the undoped films, results indicate minimal contribution from the Drude term due to the dielectric nature of the films. However as doping levels increase, the rise in the concentration of free electrons favors the use of Drude model. Brendel model was confirmed to work well with dielectric films - the undoped titanium Oxide films in our case.Keywords: modeling, Brendel model, optical constants, titanium oxide, Drude Model
Procedia PDF Downloads 18319289 Evaluation of Negative Air Ions in Bioaerosol Removal: Indoor Concentration of Airborne Bacterial and Fungal in Residential Building in Qom City, Iran
Authors: Z. Asadgol, A. Nadali, H. Arfaeinia, M. Khalifeh Gholi, R. Fateh, M. Fahiminia
Abstract:
The present investigation was conducted to detect the type and concentrations of bacterial and fungal bioaerosols in one room (bedroom) of each selected residential building located in different regions of Qom during February 2015 (n=9) to July 2016 (n=11). Moreover, we evaluated the efficiency of negative air ions (NAIs) in bioaerosol reduction in indoor air in residential buildings. In the first step, the mean concentrations of bacterial and fungal in nine sampling sites evaluated in winter were 744 and 579 colony forming units (CFU)/m3, while these values were 1628.6 and 231 CFU/m3 in the 11 sampling sites evaluated in summer, respectively. The most predominant genera between bacterial and fungal in all sampling sites were detected as Micrococcus spp. and Staphylococcus spp. and also, Aspergillus spp. and Penicillium spp., respectively. The 95% and 45% of sampling sites have bacterial and fungal concentrations over the recommended levels, respectively. In the removal step, we achieved a reduction with a range of 38% to 93% for bacterial genera and 25% to 100% for fungal genera by using NAIs. The results suggested that NAI is a highly effective, simple and efficient technique in reducing the bacterial and fungal concentration in the indoor air of residential buildings.Keywords: bacterial, fungal, negative air ions (NAIs), indoor air, Iran
Procedia PDF Downloads 40519288 A Multicriteria Mathematical Programming Model for Farm Planning in Greece
Authors: Basil Manos, Parthena Chatzinikolaou, Fedra Kiomourtzi
Abstract:
This paper presents a Multicriteria Mathematical Programming model for farm planning and sustainable optimization of agricultural production. The model can be used as a tool for the analysis and simulation of agricultural production plans, as well as for the study of impacts of various measures of Common Agriculture Policy in the member states of European Union. The model can achieve the optimum production plan of a farm or an agricultural region combining in one utility function different conflicting criteria as the maximization of gross margin and the minimization of fertilizers used, under a set of constraints for land, labor, available capital, Common Agricultural Policy etc. The proposed model was applied to the region of Larisa in central Greece. The optimum production plan achieves a greater gross return, a less fertilizers use, and a less irrigated water use than the existent production plan.Keywords: sustainable optimization, multicriteria analysis, agricultural production, farm planning
Procedia PDF Downloads 60419287 A Comparative Analysis of E-Government Quality Models
Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri
Abstract:
Many quality models have been used to measure e-government portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.Keywords: e-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126
Procedia PDF Downloads 56019286 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 7519285 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje
Authors: Ozden Saygili, Eser Cakti
Abstract:
The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry
Procedia PDF Downloads 42619284 Tolerating Input Faults in Asynchronous Sequential Machines
Authors: Jung-Min Yang
Abstract:
A method of tolerating input faults for input/state asynchronous sequential machines is proposed. A corrective controller is placed in front of the considered asynchronous machine to realize model matching with a reference model. The value of the external input transmitted to the closed-loop system may change by fault. We address the existence condition for the controller that can counteract adverse effects of any input fault while maintaining the objective of model matching. A design procedure for constructing the controller is outlined. The proposed reachability condition for the controller design is validated in an illustrative example.Keywords: asynchronous sequential machines, corrective control, fault tolerance, input faults, model matching
Procedia PDF Downloads 42419283 Agricultural Waste Recovery For Industrial Effluent Treatment And Environmental Protection
Authors: Salim Ahmed
Abstract:
In many countries, water pollution from industrial effluents is a real problem. It may have a negative impact on the environment. To minimize the adverse effects of these contaminants, various methods are used to improve effluent purification, including physico-chemical processes such as adsorption.The present study focuses on applying a naturally biodegradable adsorbent based on argan (southern Morocco) in a physico-chemical adsorption process to reduce the harmful effects of pollutants on the environment. Tests were carried out with the cationic dye methylene blue (MB) and revealed that removal is significantly higher within the first 15 minutes. The parameters studied in this study are adsorbent mass and concentration. The Freundlich model provides an excellent example of the adsorption phenomenon of BMs over argan powder. The results of this study show that argan kernels are a highly beneficial alternative for local communities, as they help to achieve a triple objective: pollution reduction, waste recovery and water recycling.Keywords: environmental protection, activated carbon, water treatment, adsorption
Procedia PDF Downloads 6219282 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model
Authors: Gürkan Şakar, Fevzi Çakmak Bolat
Abstract:
In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model
Procedia PDF Downloads 41719281 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection
Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar
Abstract:
In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM
Procedia PDF Downloads 15919280 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater
Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff
Abstract:
The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential
Procedia PDF Downloads 6219279 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 44419278 Analysis of Real Time Seismic Signal Dataset Using Machine Learning
Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.
Abstract:
Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection
Procedia PDF Downloads 12419277 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification
Procedia PDF Downloads 30919276 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 345