Search results for: peak to average power ratio (PAPR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15143

Search results for: peak to average power ratio (PAPR)

653 Challenges of School Leadership

Authors: Stefan Ninković

Abstract:

The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.

Keywords: educational changes, leaders, leadership, school

Procedia PDF Downloads 329
652 Coulomb-Explosion Driven Proton Focusing in an Arched CH Target

Authors: W. Q. Wang, Y. Yin, D. B. Zou, T. P. Yu, J. M. Ouyang, F. Q. Shao

Abstract:

High-energy-density state, i.e., matter and radiation at energy densities in excess of 10^11 J/m^3, is related to material, nuclear physics, astrophysics, and geophysics. Laser-driven particle beams are better suited to heat the matter as a trigger due to their unique properties of ultrashort duration and low emittance. Compared to X-ray and electron sources, it is easier to generate uniformly heated large-volume material for the proton and ion beams because of highly localized energy deposition. With the construction of state-of-art high power laser facilities, creating of extremely conditions of high-temperature and high-density in laboratories becomes possible. It has been demonstrated that on a picosecond time scale the solid density material can be isochorically heated to over 20 eV by the ultrafast proton beam generated from spherically shaped targets. For the above-mentioned technique, the proton energy density plays a crucial role in the formation of warm dense matter states. Recently, several methods have devoted to realize the focusing of the accelerated protons, involving externally exerted static-fields or specially designed targets interacting with a single or multi-pile laser pulses. In previous works, two co-propagating or opposite direction laser pulses are employed to strike a submicron plasma-shell. However, ultra-high pulse intensities, accurately temporal synchronization and undesirable transverse instabilities for a long time are still intractable for currently experimental implementations. A mechanism of the focusing of laser-driven proton beams from two-ion-species arched targets is investigated by multi-dimensional particle-in-cell simulations. When an intense linearly-polarized laser pulse impinges on the thin arched target, all electrons are completely evacuated, leading to a Coulomb-explosive electric-field mostly originated from the heavier carbon ions. The lighter protons in the moving reference frame by the ionic sound speed will be accelerated and effectively focused because of this radially isotropic field. At a 2.42×10^21 W/cm^2 laser intensity, a ballistic proton bunch with its energy-density as high as 2.15×10^17 J/m^3 is produced, and the highest proton energy and the focusing position agree well with that from the theory.

Keywords: Coulomb explosion, focusing, high-energy-density, ion acceleration

Procedia PDF Downloads 324
651 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 450
650 Partnering With Key Stakeholders for Successful Implementation of Inhaled Analgesia for Specific Emergency Department Presentations

Authors: Sarah Hazelwood, Janice Hay

Abstract:

Methoxyflurane is an inhaled analgesic administered via a disposable inhaler, which has been used in Australia for 40 years for the management of pain in children & adults. However, there is a lack of data for methoxyflurane as a frontline analgesic medication within the emergency department (ED). This study will investigate the usefulness of methoxyflurane in a private inner-city ED. The study concluded that the inclusion of all key stakeholders in the prescribing, administering & use of this new process led to comprehensive uptake & vastly positive outcomes for consumer & health professionals. Method: A 12-week prospective pilot study was completed utilizing patients presenting to the ED in pain (numeric pain rating score > 4) that fit the requirement of methoxyflurane use (as outlined in the Australian Prescriber information package). Nurses completed a formatted spreadsheet for each interaction where methoxyflurane was used. Patient demographics, day, time, initial numeric pain score, analgesic response time, the reason for use, staff concern (free text), & patient feedback (free text), & discharge time was documented. When clinical concern was raised, the researcher retrieved & reviewed patient notes. Results: 140 methoxyflurane inhalers were used. 60% of patients were 31 years of age & over (n=82) with 16% aged 70+. The gender split; 51% male: 49% female. Trauma-related pain (57%) saw the highest use of administration, with the evening hours (1500-2259) seeing the greatest numbers used (39%). Tuesday, Thursday & Sunday shared the highest daily use throughout the study. A minimum numerical pain score of 4/10 (n=13, 9%), with the ranges of 5 - 7/10 (moderate pain) being given by almost 50% of patients. Only 3 instances of pain scores increased post use of methoxyflurane (all other entries showed pain score < initial rating). Patients & staff noted obvious analgesic response within 3 minutes (n= 96, 81%, of administration). Nurses documented a change in patient vital signs for 4 of the 15 patient-related concerns; the remaining concerns were due to “gagging” on the taste, or “having a coughing episode”; one patient tried to leave the department before the procedure was attended (very euphoric state). Upon review of the staff concerns – no adverse events occurred & return to therapeutic vitals occurred within 10 minutes. Length of stay for patients was compared with similar presentations (such as dislocated shoulder or ankle fracture) & saw an average 40-minute decrease in time to discharge. Methoxyflurane treatment was rated “positively” by > 80% of patients – with remaining feedback related to mild & transient concerns. Staff similarly noted a positive response to methoxyflurane as an analgesic & as an added tool for frontline analgesic purposes. Conclusion: Methoxyflurane should be used on suitable patient presentations requiring immediate, short term pain relief. As a highly portable, non-narcotic avenue to treat pain this study showed obvious therapeutic benefit, positive feedback, & a shorter length of stay in the ED. By partnering with key stake holders, this study determined methoxyflurane use decreased work load, decreased wait time to analgesia, and increased patient satisfaction.

Keywords: analgesia, benefits, emergency, methoxyflurane

Procedia PDF Downloads 118
649 A Theoretical Approach of Tesla Pump

Authors: Cristian Sirbu-Dragomir, Stefan-Mihai Sofian, Adrian Predescu

Abstract:

This paper aims to study Tesla pumps for circulating biofluids. It is desired to make a small pump for the circulation of biofluids. This type of pump will be studied because it has the following characteristics: It doesn’t have blades which results in very small frictions; Reduced friction forces; Low production cost; Increased adaptability to different types of fluids; Low cavitation (towards 0); Low shocks due to lack of blades; Rare maintenance due to low cavity; Very small turbulences in the fluid; It has a low number of changes in the direction of the fluid (compared to rotors with blades); Increased efficiency at low powers.; Fast acceleration; The need for a low torque; Lack of shocks in blades at sudden starts and stops. All these elements are necessary to be able to make a small pump that could be inserted into the thoracic cavity. The pump will be designed to combat myocardial infarction. Because the pump must be inserted in the thoracic cavity, elements such as Low friction forces, shocks as low as possible, low cavitation and as little maintenance as possible are very important. The operation should be performed once, without having to change the rotor after a certain time. Given the very small size of the pump, the blades of a classic rotor would be very thin and sudden starts and stops could cause considerable damage or require a very expensive material. At the same time, being a medical procedure, the low cost is important in order to be easily accessible to the population. The lack of turbulence or vortices caused by a classic rotor is again a key element because when it comes to blood circulation, the flow must be laminar and not turbulent. The turbulent flow can even cause a heart attack. Due to these aspects, Tesla's model could be ideal for this work. Usually, the pump is considered to reach an efficiency of 40% being used for very high powers. However, the author of this type of pump claimed that the maximum efficiency that the pump can achieve is 98%. The key element that could help to achieve this efficiency or one as close as possible is the fact that the pump will be used for low volumes and pressures. The key elements to obtain the best efficiency for this model are the number of rotors placed in parallel and the distance between them. The distance between them must be small, which helps to obtain a pump as small as possible. The principle of operation of such a rotor is to place in several parallel discs cut inside. Thus the space between the discs creates the vacuum effect by pulling the liquid through the holes in the rotor and throwing it outwards. Also, a very important element is the viscosity of the liquid. It dictates the distance between the disks to achieve a lossless power flow.

Keywords: lubrication, temperature, tesla-pump, viscosity

Procedia PDF Downloads 173
648 Functional Outcome of Speech, Voice and Swallowing Following Excision of Glomus Jugulare Tumor

Authors: B. S. Premalatha, Kausalya Sahani

Abstract:

Background: Glomus jugulare tumors arise within the jugular foramen and are commonly seen in females particularly on the left side. Surgical excision of the tumor may cause lower cranial nerve deficits. Cranial nerve involvement produces hoarseness of voice, slurred speech, and dysphagia along with other physical symptoms, thereby affecting the quality of life of individuals. Though oncological clearance is mainly emphasized on while treating these individuals, little importance is given to their communication, voice and swallowing problems, which play a crucial part in daily functioning. Objective: To examine the functions of voice, speech and swallowing outcomes of the subjects, following excision of glomus jugulare tumor. Methods: Two female subjects aged 56 and 62 years had come with a complaint of change in voice, inability to swallow and reduced clarity of speech following surgery for left glomus jugulare tumor were participants of the study. Their surgical information revealed multiple cranial nerve palsies involving the left facial, left superior and recurrent branches of the vagus nerve, left pharyngeal, left soft palate, left hypoglossal and vestibular nerves. Functional outcomes of voice, speech and swallowing were evaluated by perceptual and objective assessment procedures. Assessment included the examination of oral structures and functions, dysarthria by Frenchey dysarthria assessment, cranial nerve functions and swallowing functions. MDVP and Dr. Speech software were used to evaluate acoustic parameters of voice and quality of voice respectively. Results: The study revealed that both the subjects, subsequent to excision of glomus jugulare tumor, showed a varied picture of affected oral structure and functions, articulation, voice and swallowing functions. The cranial nerve assessment showed impairment of the vagus, hypoglossal, facial and glossopharyngeal nerves. Voice examination indicated vocal cord paralysis associated with breathy quality of voice, weak voluntary cough, reduced pitch and loudness range, and poor respiratory support. Perturbation parameters as jitter, shimmer were affected along with s/z ratio indicative of voice fold pathology. Reduced MPD(Maximum Phonation Duration) of vowels indicated that disturbed coordination between respiratory and laryngeal systems. Hypernasality was found to be a prominent feature which reduced speech intelligibility. Imprecise articulation was seen in both the subjects as the hypoglossal nerve was affected following surgery. Injury to vagus, hypoglossal, gloss pharyngeal and facial nerves disturbed the function of swallowing. All the phases of swallow were affected. Aspiration was observed before and during the swallow, confirming the oropharyngeal dysphagia. All the subsystems were affected as per Frenchey Dysarthria Assessment signifying the diagnosis of flaccid dysarthria. Conclusion: There is an observable communication and swallowing difficulty seen following excision of glomus jugulare tumor. Even with complete resection, extensive rehabilitation may be necessary due to significant lower cranial nerve dysfunction. The finding of the present study stresses the need for involvement of as speech and swallowing therapist for pre-operative counseling and assessment of functional outcomes.

Keywords: functional outcome, glomus jugulare tumor excision, multiple cranial nerve impairment, speech and swallowing

Procedia PDF Downloads 242
647 The Importance of Entrepreneurship for National Economy: Evaluation of Developed and Least Developed Countries

Authors: Adnan Celik

Abstract:

Entrepreneurs are people who attempt to do a business and do not hesitate to do so. They are involved in the production of economic goods and services through factors of production. They also find the financial resources necessary for production and the markets where the production will be evaluated. After all, they create economic values. The main function of the entrepreneur in contemporary societies is to realize innovations. From this point, the power of the modern entrepreneur is based on her/his capacity to innovate and transform his innovations into tangible commercial products. In this context, the concept of an entrepreneur is used to mean the person or persons who constantly innovate. Successful entrepreneurs take on the role of the locomotive in the development of their countries. They support economic development with their activities. In addition to production and marketing activities, it also has important contributions to employment. Along with the development of the country, they also try to make the income distribution more balanced. Especially developed country entrepreneurs intensely perform the following functions; “to produce new goods and services or to increase the quality and quality of known goods and services; ability to develop and apply new production methods; establishing new organizations in the industry; reach new markets; to find new sources from which raw materials and similar materials can be obtained”. Entrepreneurs who fully implement business functions are easier to achieve economic efficiency. Thus, they provide great advantages to the business and the national economy. Successful entrepreneurs are people who make money by creating economic values. These revenues are; on the one hand, it is distributed to individuals in the business as wages, premiums, or dividends; It is also used in the growth of companies. Thus, employees, managers, entrepreneurs and the whole country can benefit greatly. In the least developed countries, the guiding effect of traditional value patterns on individuals' attitudes and behaviors varies depending on the socio-economic characteristics of individuals. It is normal for an entrepreneur with a low level of education, who was brought up in a traditional structure, to behave in accordance with traditional value patterns. In fact, this is the primary problem of all countries in the development effort. The solution to this problem will be possible by giving the necessary importance to the social dimension as well as the technical dimension of development. This study mainly focuses on the importance of entrepreneurship for the national economy. This issue has been handled separately in terms of developed and least developed countries. As a result of the study, entrepreneurship suggestions were made, especially to least developed countries, with the goal of national economy and development.

Keywords: entrepreneur, entrepreneurship, national economy, entrepreneurship in developed and least developed countries

Procedia PDF Downloads 130
646 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.

Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability

Procedia PDF Downloads 144
645 Improving the Technology of Assembly by Use of Computer Calculations

Authors: Mariya V. Yanyukina, Michael A. Bolotov

Abstract:

Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.

Keywords: accuracy, assembly, interacting dimension chains, turbine

Procedia PDF Downloads 367
644 A Randomized, Controlled Trial to Test Behavior Change Techniques to Improve Low Intensity Physical Activity in Older Adults

Authors: Ciaran Friel, Jerry Suls, Mark Butler, Patrick Robles, Samantha Gordon, Frank Vicari, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant engagement. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit® fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. In the 8-week intervention phase of the study, participants received each of the four BCTs, in random order, for a two-week period. Text message prompts were delivered daily each morning at a consistent time. All prompts required participant engagement to acknowledge receipt of the BCT message. Engagement is dependent upon the BCT message and may have included recording that a detailed plan for walking has been made or confirmed a daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves to their baseline average step count (self-monitoring, feedback). At the end of each two-week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances, and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. The analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, five days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of an N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 84
643 Geothermal Resources to Ensure Energy Security During Climate Change

Authors: Debasmita Misra, Arthur Nash

Abstract:

Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.

Keywords: exploration, geothermal, renewable energy, sustainable

Procedia PDF Downloads 144
642 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix

Authors: Natia Jalagonia, Tinatin Kuchukhidze

Abstract:

Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculated

Keywords: synthesis, PMHS, membrane, electrolyte

Procedia PDF Downloads 246
641 Functional Traits and Agroecosystem Multifunctionality in Summer Cover Crop Mixtures and Monocultures

Authors: Etienne Herrick

Abstract:

As an economically and ecologically feasible method for farmers to introduce greater diversity into their crop rotations, cover cropping presents a valuable opportunity for improving the sustainability of food production. Planted in-between cash crop growing seasons, cover crops serve to enhance agroecosystem functioning, rather than being destined for sale or consumption. In fact, cover crops may hold the capacity to deliver multiple ecosystem functions or services simultaneously (multifunctionality). Building upon this line of research will not only benefit society at present, but also support its continued survival through its potential for restoring depleted soils and reducing the need for energy-intensive and harmful external inputs like fertilizers and pesticides. This study utilizes a trait-based approach to explore the influence of inter- and intra-specific interactions in summer cover crop mixtures and monocultures on functional trait expression and ecosystem services. Functional traits that enhance ecosystem services related to agricultural production include height, specific leaf area (SLA), root, shoot ratio, leaf C and N concentrations, and flowering phenology. Ecosystem services include biomass production, weed suppression, reduced N leaching, N recycling, and support of pollinators. Employing a trait-based approach may allow for the elucidation of mechanistic links between plant structure and resulting ecosystem service delivery. While relationships between some functional traits and the delivery of particular ecosystem services may be readily apparent through existing ecological knowledge (e.g. height positively correlating with weed suppression), this study will begin to quantify those relationships so as to gain further understanding of whether and how measurable variation in functional trait expression across cover crop mixtures and monocultures can serve as a reliable predictor of variation in the types and abundances of ecosystem services delivered. Six cover crop species, including legume, grass, and broadleaf functional types, were selected for growth in six mixtures and their component monocultures based upon the principle of trait complementarity. The tricultures (three-way mixtures) are comprised of a legume, grass, and broadleaf species, and include cowpea/sudex/buckwheat, sunnhemp/sudex/buckwheat, and chickling vetch/oat/buckwheat combinations; the dicultures contain the same legume and grass combinations as above, without the buckwheat broadleaf. By combining species with expectedly complimentary traits (for example, legumes are N suppliers and grasses are N acquirers, creating a nutrient cycling loop) the cover crop mixtures may elicit a broader range of ecosystem services than that provided by a monoculture, though trade-offs could exist. Collecting functional trait data will enable the investigation of the types of interactions driving these ecosystem service outcomes. It also allows for generalizability across a broader range of species than just those selected for this study, which may aid in informing further research efforts exploring species and ecosystem functioning, as well as on-farm management decisions.

Keywords: agroecology, cover crops, functional traits, multifunctionality, trait complementarity

Procedia PDF Downloads 245
640 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening

Authors: Partha Saha, Uttam Kumar Banerjee

Abstract:

Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.

Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries

Procedia PDF Downloads 248
639 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 236
638 Feminising Football and Its Fandom: The Ideological Construction of Women's Super League

Authors: Donna Woodhouse, Beth Fielding-Lloyd, Ruth Sequerra

Abstract:

This paper explores the structure and culture of the English Football Association (FA) the governing body of soccer in England, in relation to the development of the FA Women’s Super League (WSL). In doing so, it examines the organisation’s journey from banning the sport in 1921 to establishing the country’s first semi professional female soccer league in 2011. As the FA has a virtual monopoly on defining the structures of the elite game, we attempted to understand its behaviour in the context of broader issues of power, control and resistance by giving voice to the experiences of those affected by its decisions. Observations were carried out at 39 matches over three years. Semi structured interviews with 17 people involved in the women’s game, identified via snowball sampling, were also carried out. Transcripts accompanied detailed field notes and were inductively coded to identify themes. What emerged was the governing body’s desire to create a new product, jettisoning the long history of the women’s game in order to shape and control the sport in a way it is no longer able to, with the elite male club game. The League created was also shaped by traditional conceptualisations of gender, in terms of the portrayal of its style of play and target audience, setting increased participation and spectatorship targets as measures of ‘success’. The national governing body has demonstrated pseudo inclusion and a lack of enthusiasm for the implementation of equity reforms, driven by a belief that the organisation is already representative, fair and accessible. Despite a consistent external pressure, the Football Association is still dominated at its most senior levels by males. Via claiming to hold a monopoly on expertise around the sport, maintaining complex committee structures and procedures, and with membership rules rooted in the amateur game, it remains a deeply gendered organisation, resistant to structural and cultural change. In WSL, the FA's structure and culture have created a franchise over which it retains almost complete control, dictating the terms of conditions of entry and marginalising alternative voices. The organisation presents a feminised version of both play and spectatorship, portraying the sport as a distinct, and lesser, version of soccer.

Keywords: football association, organisational culture, soccer, women’s super league

Procedia PDF Downloads 346
637 Health Reforms in Central and Eastern European Countries: Results, Dynamics, and Outcomes Measure

Authors: Piotr Romaniuk, Krzysztof Kaczmarek, Adam Szromek

Abstract:

Background: A number of approaches to assess the performance of health system have been proposed so far. Nonetheless, they lack a consensus regarding the key components of assessment procedure and criteria of evaluation. The WHO and OECD have developed methods of assessing health system to counteract the underlying issues, but they are not free of controversies and did not manage to produce a commonly accepted consensus. The aim of the study: On the basis of WHO and OECD approaches we decided to develop own methodology to assess the performance of health systems in Central and Eastern European countries. We have applied the method to compare the effects of health systems reforms in 20 countries of the region, in order to evaluate the dynamic of changes in terms of health system outcomes.Methods: Data was collected from a 25-year time period after the fall of communism, subsetted into different post-reform stages. Datasets collected from individual countries underwent one-, two- or multi-dimensional statistical analyses, and the Synthetic Measure of health system Outcomes (SMO) was calculated, on the basis of the method of zeroed unitarization. A map of dynamics of changes over time across the region was constructed. Results: When making a comparative analysis of the tested group in terms of the average SMO value throughout the analyzed period, we noticed some differences, although the gaps between individual countries were small. The countries with the highest SMO were the Czech Republic, Estonia, Poland, Hungary and Slovenia, while the lowest was in Ukraine, Russia, Moldova, Georgia, Albania, and Armenia. Countries differ in terms of the range of SMO value changes throughout the analyzed period. The dynamics of change is high in the case of Estonia and Latvia, moderate in the case of Poland, Hungary, Czech Republic, Croatia, Russia and Moldova, and small when it comes to Belarus, Ukraine, Macedonia, Lithuania, and Georgia. This information reveals fluctuation dynamics of the measured value in time, yet it does not necessarily mean that in such a dynamic range an improvement appears in a given country. In reality, some of the countries moved from on the scale with different effects. Albania decreased the level of health system outcomes while Armenia and Georgia made progress, but lost distance to leaders in the region. On the other hand, Latvia and Estonia showed the most dynamic progress in improving the outcomes. Conclusions: Countries that have decided to implement comprehensive health reform have achieved a positive result in terms of further improvements in health system efficiency levels. Besides, a higher level of efficiency during the initial transition period generally positively determined the subsequent value of the efficiency index value, but not the dynamics of change. The paths of health system outcomes improvement are highly diverse between different countries. The instrument we propose constitutes a useful tool to evaluate the effectiveness of reform processes in post-communist countries, but more studies are needed to identify factors that may determine results obtained by individual countries, as well as to eliminate the limitations of methodology we applied.

Keywords: health system outcomes, health reforms, health system assessment, health system evaluation

Procedia PDF Downloads 281
636 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 472
635 Active Filtration of Phosphorus in Ca-Rich Hydrated Oil Shale Ash Filters: The Effect of Organic Loading and Form of Precipitated Phosphatic Material

Authors: Päärn Paiste, Margit Kõiv, Riho Mõtlep, Kalle Kirsimäe

Abstract:

For small-scale wastewater management, the treatment wetlands (TWs) as a low cost alternative to conventional treatment facilities, can be used. However, P removal capacity of TW systems is usually problematic. P removal in TWs is mainly dependent on the physico–chemical and hydrological properties of the filter material. Highest P removal efficiency has been shown trough Ca-phosphate precipitation (i.e. active filtration) in Ca-rich alkaline filter materials, e.g. industrial by-products like hydrated oil shale ash (HOSA), metallurgical slags. In this contribution we report preliminary results of a full-scale TW system using HOSA material for P removal for a municipal wastewater at Nõo site, Estonia. The main goals of this ongoing project are to evaluate: a) the long-term P removal efficiency of HOSA using real waste water; b) the effect of high organic loading rate; c) variable P-loading effects on the P removal mechanism (adsorption/direct precipitation); and d) the form and composition of phosphate precipitates. Onsite full-scale experiment with two concurrent filter systems for treatment of municipal wastewater was established in September 2013. System’s pretreatment steps include septic tank (2 m2) and vertical down-flow LECA filters (3 m2 each), followed by horizontal subsurface HOSA filters (effective volume 8 m3 each). Overall organic and hydraulic loading rates of both systems are the same. However, the first system is operated in a stable hydraulic loading regime and the second in variable loading regime that imitates the wastewater production in an average household. Piezometers for water and perforated sample containers for filter material sampling were incorporated inside the filter beds to allow for continuous in-situ monitoring. During the 18 months of operation the median removal efficiency (inflow to outflow) of both systems were over 99% for TP, 93% for COD and 57% for TN. However, we observed significant differences in the samples collected in different points inside the filter systems. In both systems, we observed development of preferred flow paths and zones with high and low loadings. The filters show formation and a gradual advance of a “dead” zone along the flow path (zone with saturated filter material characterized by ineffective removal rates), which develops more rapidly in the system working under variable loading regime. The formation of the “dead” zone is accompanied by the growth of organic substances on the filter material particles that evidently inhibit the P removal. Phase analysis of used filter materials using X-ray diffraction method reveals formation of minor amounts of amorphous Ca-phosphate precipitates. This finding is supported by ATR-FTIR and SEM-EDS measurements, which also reveal Ca-phosphate and authigenic carbonate precipitation. Our first experimental results demonstrate that organic pollution and loading regime significantly affect the performance of hydrated ash filters. The material analyses also show that P is incorporated into a carbonate substituted hydroxyapatite phase.

Keywords: active filtration, apatite, hydrated oil shale ash, organic pollution, phosphorus

Procedia PDF Downloads 264
634 Strengths Profiling: An Alternative Approach to Assessing Character Strengths Based on Personal Construct Psychology

Authors: Sam J. Cooley, Mary L. Quinton, Benjamin J. Parry, Mark J. G. Holland, Richard J. Whiting, Jennifer Cumming

Abstract:

Practitioners draw attention to people’s character strengths to promote empowerment and well-being. This paper explores the possibility that existing approaches for assessing character strengths (e.g., the Values in Action survey; VIA-IS) could be even more autonomy supportive and empowering when combined with strengths profiling, an ideographic tool informed by personal construct theory (PCT). A PCT approach ensures that: (1) knowledge is co-created (i.e., the practitioner is not seen as the ‘expert’ who leads the process); (2) individuals are not required to ‘fit’ within a prescribed list of characteristics; and (3) individuals are free to use their own terminology and interpretations. A combined Strengths Profiling and VIA approach was used in a sample of homeless youth (aged 16-25) who are commonly perceived as ‘hard-to-engage’ through traditional forms of assessment. Strengths Profiling was completed face-to-face in small groups. Participants (N = 116) began by listing a variety of personally meaningful characteristics. Participants gave each characteristic a score out of ten for how important it was to them (1 = not so important; 10 = very important), their ideal competency, and their current competency (1 = poor; 10 = excellent). A discrepancy score was calculated for each characteristic (discrepancy score = ideal score - current score x importance), whereby a lower discrepancy score indicated greater satisfaction. Strengths Profiling was used at the beginning and end of a 10-week positive youth development programme. Experiences were captured through video diary room entries made by participants and through reflective notes taken by the facilitators. Participants were also asked to complete a pre-and post-programme questionnaire, measuring perceptions of well-being, self-worth, and resilience. All of the young people who attended the strengths profiling session agreed to complete a profile, and the majority became highly engaged in the process. Strengths profiling was found to be an autonomy supportive and empowering experience, with each participant identifying an average of 10 character strengths (M = 10.27, SD = 3.23). In total, 215 different character strengths were identified, each with varying terms and definitions used, which differed greatly between participants and demonstrated the value in soliciting personal constructs. Using the participants’ definitions, 98% of characteristics were categorized deductively into the VIA framework. Bravery, perseverance, and hope were the character strengths that featured most, whilst temperance and courage received the highest discrepancy scores. Discrepancy scores were negatively correlated with well-being, self-worth, and resilience, and meaningful improvements were recorded following the intervention. These findings support the use of strengths profiling as a theoretically-driven and novel way to engage disadvantaged youth in identifying and monitoring character strengths. When young people are given the freedom to express their own characteristics, the resulting terminologies extend beyond the language used in existing frameworks. This added freedom and control over the process of strengths identification encouraged youth to take ownership over their profiles and apply their strengths. In addition, the ability to transform characteristics post hoc into the VIA framework means that strengths profiling can be used to explore aggregated/nomothetic hypotheses, whilst still benefiting from its ideographic roots.

Keywords: ideographic, nomothetic, positive youth development, VIA-IS, assessment, homeless youth

Procedia PDF Downloads 188
633 Disparities in Language Competence and Conflict: The Moderating Role of Cultural Intelligence in Intercultural Interactions

Authors: Catherine Peyrols Wu

Abstract:

Intercultural interactions are becoming increasingly common in organizations and life. These interactions are often the stage of miscommunication and conflict. In management research, these problems are commonly attributed to cultural differences in values and interactional norms. As a result, the notion that intercultural competence can minimize these challenges is widely accepted. Cultural differences, however, are not the only source of a challenge during intercultural interactions. The need to rely on a lingua franca – or common language between people who have different mother tongues – is another important one. In theory, a lingua franca can improve communication and ease coordination. In practice however, disparities in people’s ability and confidence to communicate in the language can exacerbate tensions and generate inefficiencies. In this study, we draw on power theory to develop a model of disparities in language competence and conflict in a multicultural work context. Specifically, we hypothesized that differences in language competence between interaction partners would be positively related to conflict such that people would report greater conflict with partners who have more dissimilar levels of language competence and lesser conflict with partners with more similar levels of language competence. Furthermore, we proposed that cultural intelligence (CQ) an intercultural competence that denotes an individual’s capability to be effective in intercultural situations, would weaken the relationship between disparities in language competence and conflict such that people would report less conflict with partners who have more dissimilar levels of language competence when the interaction partner has high CQ and more conflict when the partner has low CQ. We tested this model with a sample of 135 undergraduate students working in multicultural teams for 13 weeks. We used a round-robin design to examine conflict in 646 dyads nested within 21 teams. Results of analyses using social relations modeling provided support for our hypotheses. Specifically, we found that in intercultural dyads with large disparities in language competence, partners with the lowest level of language competence would report higher levels of interpersonal conflict. However, this relationship disappeared when the partner with higher language competence was also high in CQ. These findings suggest that communication in a lingua franca can be a source of conflict in intercultural collaboration when partners differ in their level of language competence and that CQ can alleviate these effects during collaboration with partners who have relatively lower levels of language competence. Theoretically, this study underscores the benefits of CQ as a complement to language competence for intercultural effectiveness. Practically, these results further attest to the benefits of investing resources to develop language competence and CQ in employees engaged in multicultural work.

Keywords: cultural intelligence, intercultural interactions, language competence, multicultural teamwork

Procedia PDF Downloads 159
632 Using Structured Analysis and Design Technique Method for Unmanned Aerial Vehicle Components

Authors: Najeh Lakhoua

Abstract:

Introduction: Scientific developments and techniques for the systemic approach generate several names to the systemic approach: systems analysis, systems analysis, structural analysis. The main purpose of these reflections is to find a multi-disciplinary approach which organizes knowledge, creates universal language design and controls complex sets. In fact, system analysis is structured sequentially by steps: the observation of the system by various observers in various aspects, the analysis of interactions and regulatory chains, the modeling that takes into account the evolution of the system, the simulation and the real tests in order to obtain the consensus. Thus the system approach allows two types of analysis according to the structure and the function of the system. The purpose of this paper is to present an application of system analysis of Unmanned Aerial Vehicle (UAV) components in order to represent the architecture of this system. Method: There are various analysis methods which are proposed, in the literature, in to carry out actions of global analysis and different points of view as SADT method (Structured Analysis and Design Technique), Petri Network. The methodology adopted in order to contribute to the system analysis of an Unmanned Aerial Vehicle has been proposed in this paper and it is based on the use of SADT. In fact, we present a functional analysis based on the SADT method of UAV components Body, power supply and platform, computing, sensors, actuators, software, loop principles, flight controls and communications). Results: In this part, we present the application of SADT method for the functional analysis of the UAV components. This SADT model will be composed exclusively of actigrams. It starts with the main function ‘To analysis of the UAV components’. Then, this function is broken into sub-functions and this process is developed until the last decomposition level has been reached (levels A1, A2, A3 and A4). Recall that SADT techniques are semi-formal; however, for the same subject, different correct models can be built without having to know with certitude which model is the good or, at least, the best. In fact, this kind of model allows users a sufficient freedom in its construction and so the subjective factor introduces a supplementary dimension for its validation. That is why the validation step on the whole necessitates the confrontation of different points of views. Conclusion: In this paper, we presented an application of system analysis of Unmanned Aerial Vehicle components. In fact, this application of system analysis is based on SADT method (Structured Analysis Design Technique). This functional analysis proved the useful use of SADT method and its ability of describing complex dynamic systems.

Keywords: system analysis, unmanned aerial vehicle, functional analysis, architecture

Procedia PDF Downloads 187
631 Dividend Policy in Family Controlling Firms from a Governance Perspective: Empirical Evidence in Thailand

Authors: Tanapond S.

Abstract:

Typically, most of the controlling firms are relate to family firms which are widespread and important for economic growth particularly in Asian Pacific region. The unique characteristics of the controlling families tend to play an important role in determining the corporate policies such as dividend policy. Given the complexity of the family business phenomenon, the empirical evidence has been unclear on how the families behind business groups influence dividend policy in Asian markets with the prevalent existence of cross-shareholdings and pyramidal structure. Dividend policy as one of an important determinant of firm value could also be implemented in order to examine the effect of the controlling families behind business groups on strategic decisions-making in terms of a governance perspective and agency problems. The purpose of this paper is to investigate the impact of ownership structure and concentration which are influential internal corporate governance mechanisms in family firms on dividend decision-making. Using panel data and constructing a unique dataset of family ownership and control through hand-collecting information from the nonfinancial companies listed in Stock Exchange of Thailand (SET) between 2000 and 2015, the study finds that family firms with large stakes distribute higher dividends than family firms with small stakes. Family ownership can mitigate the agency problems and the expropriation of minority investors in family firms. To provide insight into the distinguish between ownership rights and control rights, this study examines specific firm characteristics including the degrees of concentration of controlling shareholders by classifying family ownership in different categories. The results show that controlling families with large deviation between voting rights and cash flow rights have more power and affect lower dividend payment. These situations become worse when second blockholders are families. To the best knowledge of the researcher, this study is the first to examine the association between family firms’ characteristics and dividend policy from the corporate governance perspectives in Thailand with weak investor protection environment and high ownership concentration. This research also underscores the importance of family control especially in a context in which family business groups and pyramidal structure are prevalent. As a result, academics and policy makers can develop markets and corporate policies to eliminate agency problem.

Keywords: agency theory, dividend policy, family control, Thailand

Procedia PDF Downloads 273
630 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 291
629 Degradation and Detoxification of Tetracycline by Sono-Fenton and Ozonation

Authors: Chikang Wang, Jhongjheng Jian, Poming Huang

Abstract:

Among a wide variety of pharmaceutical compounds, tetracycline antibiotics are one of the largest groups of pharmaceutical compounds extensively used in human and veterinary medicine to treat and prevent bacterial infections. Because it is water soluble, biologically active, stable and bio-refractory, release to the environment threatens aquatic life and increases the risk posed by antibiotic-resistant pathogens. In practice, due to its antibacterial nature, tetracycline cannot be effectively destructed by traditional biological methods. Hence, in this study, two advanced oxidation processes such as ozonation and sono-Fenton processes were conducted individually to degrade the tetracycline for investigating their feasibility on tetracycline degradation. Effect of operational variables on tetracycline degradation, release of nitrogen and change of toxicity were also proposed. Initial tetracycline concentration was 50 mg/L. To evaluate the efficiency of tetracycline degradation by ozonation, the ozone gas was produced by an ozone generator (Model LAB2B, Ozonia) and introduced into the reactor with different flows (25 - 500 mL/min) at varying pH levels (pH 3 - pH 11) and reaction temperatures (15 - 55°C). In sono-Fenton system, an ultrasonic transducer (Microson VCX 750, USA) operated at 20 kHz combined with H₂O₂ (2 mM) and Fe²⁺ (0.2 mM) were carried out at different pH levels (pH 3 - pH 11), aeration gas and flows (air and oxygen; 0.2 - 1.0 L/min), tetracycline concentrations (10 - 200 mg/L), reaction temperatures (15 - 55°C) and ultrasonic powers (25 - 200 Watts), respectively. Sole ultrasound was ineffective on tetracycline degradation, where the degradation efficiencies were lower than 10% with 60 min reaction. Contribution of Fe²⁺ and H₂O₂ on the degradation of tetracycline was significant, where the maximum tetracycline degradation efficiency in sono-Fenton process was as high as 91.3% followed by 45.8% mineralization. Effect of initial pH level on tetracycline degradation was insignificant from pH 3 to pH 6 but significantly decreased as the pH was greater than pH 7. Increase of the ultrasonic power was slightly increased the degradation efficiency of tetracycline, which indicated that the hydroxyl radicals dominated the oxidation of tetracycline. Effects of aeration of air or oxygen with different flows and reaction temperatures were insignificant. Ozonation showed better efficiencies in tetracycline degradation, where the optimum reaction condition was found at pH 3, 100 mL O₃/min and 25°C with 94% degradation and 60% mineralization. The toxicity of tetracycline was significantly decreased due to the mineralization of tetracycline. In addition, less than 10% of nitrogen content was released to solution phase as NH₃-N, and the most degraded tetracycline cannot be full mineralized to CO₂. The results shown in this study indicated that both the sono-Fenton process and ozonation can effectively degrade the tetracycline and reduce its toxicity at profitable condition. The costs of two systems needed to be further investigated to understand the feasibility in tetracycline degradation.

Keywords: degradation, detoxification, mineralization, ozonation, sono-Fenton process, tetracycline

Procedia PDF Downloads 260
628 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 137
627 Friction and Wear Characteristics of Diamond Nanoparticles Mixed with Copper Oxide in Poly Alpha Olefin

Authors: Ankush Raina, Ankush Anand

Abstract:

Plyometric training is a form of specialised strength training that uses fast muscular contractions to improve power and speed in sports conditioning by coaches and athletes. Despite its useful role in sports conditioning programme, the information about plyometric training on the athletes cardiovascular health especially Electrocardiogram (ECG) has not been established in the literature. The purpose of the study was to determine the effects of lower and upper body plyometric training on ECG of athletes. The study was guided by three null hypotheses. Quasi–experimental research design was adopted for the study. Seventy-two university male athletes constituted the population of the study. Thirty male athletes aged 18 to 24 years volunteered to participate in the study, but only twenty-three completed the study. The volunteered athletes were apparently healthy, physically active and free of any lower and upper extremity bone injuries for past one year and they had no medical or orthopedic injuries that may affect their participation in the study. Ten subjects were purposively assigned to one of the three groups: lower body plyometric training (LBPT), upper body plyometric training (UBPT), and control (C). Training consisted of six plyometric exercises: lower (ankle hops, squat jumps, tuck jumps) and upper body plyometric training (push-ups, medicine ball-chest throws and side throws) with moderate intensity. The general data were collated and analysed using Statistical Package for Social Science (SPSS version 22.0). The research questions were answered using mean and standard deviation, while paired samples t-test was also used to test for the hypotheses. The results revealed that athletes who were trained using LBPT had reduced ECG parameters better than those in the control group. The results also revealed that athletes who were trained using both LBPT and UBPT indicated lack of significant differences following ten weeks plyometric training than those in the control group in the ECG parameters except in Q wave, R wave and S wave (QRS) complex. Based on the findings of the study, it was recommended among others that coaches should include both LBPT and UBPT as part of athletes’ overall training programme from primary to tertiary institution to optimise performance as well as reduce the risk of cardiovascular diseases and promotes good healthy lifestyle.

Keywords: boundary lubrication, copper oxide, friction, nano diamond

Procedia PDF Downloads 113
626 The Decision-Making Process of the Central Banks of Brazil and India in Regional Integration: A Comparative Analysis of MERCOSUR and SAARC (2003-2014)

Authors: Andre Sanches Siqueira Campos

Abstract:

Central banks can play a significant role in promoting regional economic and monetary integration by strengthening the payment and settlement systems. However, close coordination and cooperation require facilitating the implementation of reforms at domestic and cross-border levels in order to benchmark with international standards and commitments to the liberal order. This situation reflects the normative power of the regulatory globalization dimension of strong states, which may drive or constrain regional integration. In the MERCOSUR and SAARC regions, central banks have set financial initiatives that could facilitate South America and South Asia regions to move towards convergence integration and facilitate trade and investments connectivities. This is qualitative method research based on a combination of the Process-Tracing method with Qualitative Comparative Analysis (QCA). This research approaches multiple forms of data based on central banks, regional organisations, national governments, and financial institutions supported by existing literature. The aim of this research is to analyze the decision-making process of the Central Bank of Brazil (BCB) and the Reserve Bank of India (RBI) towards regional financial cooperation by identifying connectivity instruments that foster, gridlock, or redefine cooperation. The BCB and The RBI manage the monetary policy of the largest economies of those regions, which makes regional cooperation a relevant framework to understand how they provide an effective institutional arrangement for regional organisations to achieve some of their key policies and economic objectives. The preliminary conclusion is that both BCB and RBI demonstrate a reluctance to deepen regional cooperation because of the existing economic, political, and institutional asymmetries. Deepening regional cooperation is constrained by the interests of central banks in protecting their economies from risks of instability due to different degrees of development between countries in their regions and international financial crises that have impacted the international system in the 21st century. Reluctant regional integration also provides autonomy for national development and political ground for the contestation of Global Financial Governance by Brazil and India.

Keywords: Brazil, central banks, decision-making process, global financial governance, India, MERCOSUR, connectivity, payment system, regional cooperation, SAARC

Procedia PDF Downloads 100
625 Analysis of Waterjet Propulsion System for an Amphibious Vehicle

Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian

Abstract:

This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.

Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion

Procedia PDF Downloads 215
624 An Anthropometric Index Capable of Differentiating Morbid Obesity from Obesity and Metabolic Syndrome in Children

Authors: Mustafa Metin Donma

Abstract:

Circumference measurements are important because they are easily obtained values for the identification of the weight gain without determining body fat. They may give meaningful information about the varying stages of obesity. Besides, some formulas may be derived from a number of body circumference measurements to estimate body fat. Waist (WC), hip (HC) and neck (NC) circumferences are currently the most frequently used measurements. The aim of this study was to develop a formula derived from these three anthropometric measurements, each giving a valuable information independently, to question whether their combined power within a formula was capable of being helpful for the differential diagnosis of morbid obesity without metabolic syndrome (MetS) from MetS. One hundred and eighty seven children were recruited from the pediatrics outpatient clinic of Tekirdag Namik Kemal University Faculty of Medicine. The parents of the participants were informed about asked to fill and sign the consent forms. The study was carried out according to the Helsinki Declaration. The study protocol was approved by the institutional non-interventional ethics committee. The study population was divided into four groups as normal-body mass index (N-BMI), obese (OB), morbid obese (MO) and MetS, which were composed of 35, 44, 75 and 33 children, respectively. Age- and gender-adjusted BMI percentile values were used for the classification of groups. The children in MetS group were selected based upon the nature of the MetS components described as MetS criteria. Anthropometric measurements, laboratory analysis and statistical evaluation confined to study population were performed. Body mass index values were calculated. A circumference index, advanced Donma circumference index (ADCI) was introduced as WC*HC/NC. The statistical significance degree was chosen as p value smaller than 0.05. Body mass index values were 17.7±2.8, 24.5±3.3, 28.8±5.7, 31.4±8.0 kg/m2, for N-BMI, OB, MO, MetS groups, respectively. The corresponding values for ADCI were 165±35, 240±42, 270±55, and 298±62. Significant differences were obtained between BMI values of N-BMI and OB, MO, MetS groups (p=0.001). Obese group BMI values also differed from MO group BMI values (p=0.001). However, the increase in MetS group compared to MO group was not significant (p=0.091). For the new index, significant differences were obtained between N-BMI and OB, MO, MetS groups (p=0.001). Obese group ADCI values also differed from MO group ADCI values (p=0.015). A significant difference between MO and MetS groups was detected (p=0.043). The correlation coefficient value and the significance check of the correlation was found between BMI and ADCI as r=0.0883 and p=0.001 upon consideration of all participants. In conclusion, in spite of the strong correlation between BMI and ADCI values obtained when all groups were considered, ADCI, but not BMI, was the index, which was capable of differentiating cases with morbid obesity from cases with morbid obesity and MetS.

Keywords: anthropometry, body mass index, child, circumference, metabolic syndrome, obesity

Procedia PDF Downloads 58