Search results for: solar blind photodetector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1835

Search results for: solar blind photodetector

425 Efficacy and Safety of Electrical Vestibular Stimulation on Adults with Symptoms of Insomnia: A Double-Blind, Randomized, Sham-Controlled Trial

Authors: Teris Cheung, Joyce Yuen Ting Lam, Kwan Hin Fong, Calvin Pak-Wing Cheng, Julie Sittlington, Yu-Tao Xiang, Tim Man Ho Li

Abstract:

Insomnia is one of the most common health problems in the general population. Insomnia can be acute, intermittent, and become chronic, often due to comorbidity with other physical and mental health conditions. Although there are conventional pharmaceutical and psychotherapeutic treatments to treat symptoms of insomnia, however; there is no robust and novel randomized controlled trial (RCT) using transdermal neurostimulation on individuals with insomnia symptoms. This gives us the impetus to execute the first nationwide RCT. Aim: To evaluate the efficacy of Electrical Vestibular Stimulation (VeNS) on individuals with insomnia in Hong Kong. Design: This study was a two-armed, double blinded, randomized, sham-controlled trial. Sampling: 60 community-dwelling adults aged 18 and 60 years with moderate insomnia symptoms or above (Insomnia Severity Index > 14) were recruited. All subjects were computerized randomized into either the active VeNS group or the sham VeNS group on a 1:1 ratio. Intervention: All participants received a home-use VeNS device and used 30-min VeNS sessions during five consecutive days across a 4-week period (total treatment hours: 10). Baseline measurements and post-VeNS evaluation of the psychological outcomes, including 1) insomnia severity, 2) sleep quality, and 3) quality of life were investigated. The short-and long-term sustainability of the VeNS intervention was assessed immediately after poststim and at a 1-month and 3-month follow-up period. Data analysis: A mixed GEE model was used to analyze the repeated measures data. Missing data were managed by multiple imputations. The level of significance was set to p < 0.05. Significance of the study: This is the first trial to examine the efficacy and safety of VeNS among adults with insomnia symptoms in Hong Kong. Findings that emerged were used to determine whether this VeNS device can be considered a self-help technological device to reduce the severity of insomnia in the community setting and to reduce the global disease burden. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT04452981.

Keywords: adults, insomnia, neuromodulation, rct, vestibular stimulation

Procedia PDF Downloads 82
424 Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves

Authors: K. Radha Krishnan, Mirajul Alom

Abstract:

Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder.

Keywords: chlorophyll, color stability, degradation kinetics, drying

Procedia PDF Downloads 399
423 The Effect of Bihemisferic Transcranial Direct Current Stimulation Therapy on Upper Extremity Motor Functions in Stroke Patients

Authors: Dilek Cetin Alisar, Oya Umit Yemisci, Selin Ozen, Seyhan Sozay

Abstract:

New approaches and treatment modalities are being developed to make patients more functional and independent in stroke rehabilitation. One of these approaches is transcranial direct stimulation therapy (tDCS), which aims to improve the hemiplegic upper limb function of stroke patients. tDCS therapy is not in the routine rehabilitation program; however, the studies about tDCS therapy on stroke rehabilitation was increased in recent years. Evaluate the effect of tDCS treatment on upper extremity motor function in patients with subacute stroke was aimed in our study. 32 stroke patients (16 tDCS group, 16 sham groups) who were hospitalized for rehabilitation in Başkent University Physical Medicine and Rehabilitation Clinic between 01.08.2016-20.01-2018 were included in the study. The conventional upper limb rehabilitation program was used for both tDCS and control group patients for 3 weeks, 5 days a week, for 60-120 minutes a day. In addition to the conventional stroke rehabilitation program in the tDAS group, bihemispheric tDCS was administered for 30 minutes daily. Patients were evaluated before treatment and after 1 week of treatment. Functional independence measure self-care score (FIM), Brunnstorm Recovery Stage (BRS), and Fugl-Meyer (FM) upper extremity motor function scale were used. There was no difference in demographic characteristics between the groups. There were no significant differences between BRS and FM scores in two groups, but there was a significant difference FIM score (p=0.05. FIM, BRS, and FM scores are significantly in the tDCS group, when before therapy and after 1 week of therapy, however, no difference is found in the shame group (p < 0,001). When FBS and FM scores were compared, there were statistical significant differences in tDCS group (p < 0,001). In conclusion, this randomized double-blind study showed that bihemispheric tDCS treatment was found to be superior to upper extremity motor and functional enhancement in addition to conventional rehabilitation methods in subacute stroke patients. In order for tDCS therapy to be used routinely in stroke rehabilitation, there is a need for more comprehensive, long-termed, randomized controlled clinical trials in order to find answers to many questions, such as the duration and intensity of treatment.

Keywords: cortical stimulation, motor function, rehabilitation, stroke

Procedia PDF Downloads 127
422 Adaptive Architecture: Reformulation of Socio-Ecological Systems

Authors: Pegah Zamani

Abstract:

This multidisciplinary study interrogates the reformulation of socio-ecological systems by bringing different disciplines together and incorporating ecological, social, and technological components to the sustainable design. The study seeks for a holistic sustainable system to understand the multidimensional impact of the evolving innovative technologies on responding to the variable socio-environmental conditions. Through a range of cases, from the vernacular built spaces to the sophisticated optimized systems, the research unfolds how far the environmental elements would impact the performance of a sustainable building, its micro-climatic ecological requirements, and its human inhabitation. As a product of the advancing technologies, an optimized and environmentally responsive building offers new identification, and realization of the built space through reformulating the connection to its internal and external environments (such as solar, thermal, and airflow), as well as its dwellers. The study inquires properties of optimized buildings, by bringing into the equation not only the environmental but also the socio-cultural, morphological, and phenomenal factors. Thus, the research underlines optimized built space as a product and practice which would not be meaningful without addressing and dynamically adjusting to the diversity and complexity of socio-ecological systems.

Keywords: ecology, morphology, socio-ecological systems, sustainability

Procedia PDF Downloads 204
421 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System

Authors: Safia Bashir, Zulfiqar Memon

Abstract:

During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.

Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system

Procedia PDF Downloads 158
420 Encoding the Design of the Memorial Park and the Family Network as the Icon of 9/11 in Amy Waldman's the Submission

Authors: Masami Usui

Abstract:

After 9/11, the American literary scene was confronted with new perspectives that enabled both writers and readers to recognize the hidden aspects of their political, economic, legal, social, and cultural phenomena. There appeared an argument over new and challenging multicultural aspects after 9/11 and this argument is presented by a tension of space related to 9/11. In Amy Waldman’s the Submission (2011), designing both the memorial park and the family network has a significant meaning in establishing the progress of understanding from multiple perspectives. The most intriguing and controversial topic of racism is reflected in the Submission, where one young architect’s blind entry to the competition for the memorial of Ground Zero is nominated, yet he is confronted with strong objections and hostility as soon as he turns out to be a Muslim named Mohammad Khan. This ‘Khan’ issue, immediately enlarged into a social controversial issue on American soil, causes repeated acts of hostility to Muslim women by ignorant citizens all over America. His idea of the park is to design a new concept of tracing the cultural background of the open space. Against his will, his name is identified as the ‘ingredient’ of the networking of the resistant community with his supporters: on the other hand, the post 9/11 hysteria and victimization is presented in such family associations as the Angry Family Members and Grieving Family Members. These rapidly expanding networks, whether political or not, constructed by the internet, embody the contemporary societal connection and representation. The contemporary quest for the significance of human relationships is recognized as a quest for global peace. Designing both the memorial park and the communication networks strengthens a process of facing the shared conflicts and healing the survivors’ trauma. The tension between the idea and networking of the Garden for the memorial site and the collapse of Ground Zero signifies the double mission of the site: to establish the space to ease the wounded and to remember the catastrophe. Reading the design of these icons of 9/11 in the Submission means that decoding the myth of globalization and its representations in this century.

Keywords: American literature, cultural studies, globalization, literature of catastrophe

Procedia PDF Downloads 533
419 Data, Digital Identity and Antitrust Law: An Exploratory Study of Facebook’s Novi Digital Wallet

Authors: Wanjiku Karanja

Abstract:

Facebook has monopoly power in the social networking market. It has grown and entrenched its monopoly power through the capture of its users’ data value chains. However, antitrust law’s consumer welfare roots have prevented it from effectively addressing the role of data capture in Facebook’s market dominance. These regulatory blind spots are augmented in Facebook’s proposed Diem cryptocurrency project and its Novi Digital wallet. Novi, which is Diem’s digital identity component, shall enable Facebook to collect an unprecedented volume of consumer data. Consequently, Novi has seismic implications on internet identity as the network effects of Facebook’s large user base could establish it as the de facto internet identity layer. Moreover, the large tracts of data Facebook shall collect through Novi shall further entrench Facebook's market power. As such, the attendant lock-in effects of this project shall be very difficult to reverse. Urgent regulatory action is therefore required to prevent this expansion of Facebook’s data resources and monopoly power. This research thus highlights the importance of data capture to competition and market health in the social networking industry. It utilizes interviews with key experts to empirically interrogate the impact of Facebook’s data capture and control of its users’ data value chains on its market power. This inquiry is contextualized against Novi’s expansive effect on Facebook’s data value chains. It thus addresses the novel antitrust issues arising at the nexus of Facebook’s monopoly power and the privacy of its users’ data. It also explores the impact of platform design principles, specifically data portability and data portability, in mitigating Facebook’s anti-competitive practices. As such, this study finds that Facebook is a powerful monopoly that dominates the social media industry to the detriment of potential competitors. Facebook derives its power from its size, annexure of the consumer data value chain, and control of its users’ social graphs. Additionally, the platform design principles of data interoperability and data portability are not a panacea to restoring competition in the social networking market. Their success depends on the establishment of robust technical standards and regulatory frameworks.

Keywords: antitrust law, data protection law, data portability, data interoperability, digital identity, Facebook

Procedia PDF Downloads 123
418 Insulation and Architectural Design to Have Sustainable Buildings in Iran

Authors: Ali Bayati, Jamileh Azarnoush

Abstract:

Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities shows one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also Reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In the construction industry, we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaptation with the environment is critical. Otherwise, the isolation should be use and mention in the long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.

Keywords: building design, construction masonry, insulation, sustainable construction

Procedia PDF Downloads 540
417 Short Arc Technique for Baselines Determinations

Authors: Gamal F.Attia

Abstract:

The baselines are the distances and lengths of the chords between projections of the positions of the laser stations on the reference ellipsoid. For the satellite geodesy, it is very important to determine the optimal length of orbital arc along which laser measurements are to be carried out. It is clear that for the dynamical methods long arcs (one month or more) are to be used. According to which more errors of modeling of different physical forces such as earth's gravitational field, air drag, solar radiation pressure, and others that may influence the accuracy of the estimation of the satellites position, at the same time the measured errors con be almost completely excluded and high stability in determination of relative coordinate system can be achieved. It is possible to diminish the influence of the errors of modeling by using short-arcs of the satellite orbit (several revolutions or days), but the station's coordinates estimated by different arcs con differ from each other by a larger quantity than statistical zero. Under the semidynamical ‘short arc’ method one or several passes of the satellite in one of simultaneous visibility from both ends of the chord is known and the estimated parameter in this case is the length of the chord. The comparison of the same baselines calculated with long and short arcs methods shows a good agreement and even speaks in favor of the last one. In this paper the Short Arc technique has been explained and 3 baselines have been determined using the ‘short arc’ method.

Keywords: baselines, short arc, dynamical, gravitational field

Procedia PDF Downloads 463
416 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050

Authors: Farzaneh Sasanpour, Saeed Amini Varaki

Abstract:

Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.

Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran

Procedia PDF Downloads 67
415 Reducing Energy Consumption in Architectural Spaces by Optimizing Natural Light Transmission

Authors: Parisa Javid

Abstract:

In architecture, daylight contributes to humans' mental and physical well-being and reduces the consumption of fossil fuels. Accordingly, Iran's rich architecture has valuable achievements and experiences that should be recognized and introduced to the Iranian and international architecture communities. There are many ways to reduce energy consumption in buildings, but electricity accounts for a large part of that consumption. Lighting up spaces with natural light is a significant factor in reducing energy consumption and preventing electricity dissipation. Aside from being expensive, electric lighting systems cause excessive heat and physical injury (eyes). This study is based on library records and documents. Modern lighting systems are used to reduce energy consumption in the interior of a building to allow for optimal transmission of natural light. It discusses how to use natural light in architecture and the benefits of natural light in buildings. Solar energy can be used more efficiently, and electrical power can be saved in residential, administrative, commercial, and educational buildings by using new methods such as light tubes and mirror directors. Modern lighting systems, natural light, and reduced energy consumption are keywords for these systems, which quickly return their investment.

Keywords: modern lighting systems, natural light, reduced energy consumption

Procedia PDF Downloads 98
414 Proposed Location of Grid Connected Wind-Pv Hybrid System Based on Load Flow and Voltage Stability Indices Study

Authors: Bazilah Ismail, Muhammad Mat Naain, Ibrahim Alhamrouni, Lilik Jamilatul Awalin, Fadi Albatsh, Mohd Fairuz Abdul Hamid

Abstract:

Rapid depletion and prices of the conventional energy sources have stimulated the development of the renewable energy source (RES). Due to the unpredicted and intermittent nature of RES, the hybrid renewable energy system (HRES) is the best solution to complement the nature of the respective sources, and the combination of the wind and solar energy is rapidly gaining popularity. The significant challenges on the operation and planning of the grid system with a high HRES penetration has become an important subject since the location of HRES plant give impact towards the existing system. This paper aims to propose the location of the grid connected Wind-PV hybrid plant (WPHP) based on load flow and voltage stability indices study. Several case studies are carried out using IEEE 14 bus system, and the system is modeled and tested in DigSILENT PowerFactory.

Keywords: hybrid renewable energy system, wind farm, photovoltaic system, voltage stability and load flow

Procedia PDF Downloads 315
413 Knowledge Co-Production on Future Climate-Change-Induced Mass-Movement Risks in Alpine Regions

Authors: Elisabeth Maidl

Abstract:

The interdependence of climate change and natural hazard goes along with large uncertainties regarding future risks. Regional stakeholders, experts in natural hazards management and scientists have specific knowledge, resp. mental models on such risks. This diversity of views makes it difficult to find common and broadly accepted prevention measures. If the specific knowledge of these types of actors is shared in an interactive knowledge production process, this enables a broader and common understanding of complex risks and allows to agree on long-term solution strategies. Previous studies on mental models confirm that actors with specific vulnerabilities perceive different aspects of a topic and accordingly prefer different measures. In bringing these perspectives together, there is the potential to reduce uncertainty and to close blind spots in solution finding. However, studies that examine the mental models of regional actors on future concrete mass movement risks are lacking so far. The project tests and evaluates the feasibility of knowledge co-creation for the anticipatory prevention of climate change-induced mass movement risks in the Alps. As a key element, mental models of the three included groups of actors are compared. Being integrated into the research program Climate Change Impacts on Alpine Mass Movements (CCAMM2), this project is carried out in two Swiss mountain regions. The project is structured in four phases: 1) the preparatory phase, in which the participants are identified, 2) the baseline phase, in which qualitative interviews and a quantitative pre-survey are conducted with actors 3) the knowledge-co-creation phase, in which actors have a moderated exchange meeting, and a participatory modelling workshop on specific risks in the region, and 4) finally a public information event. Results show that participants' mental models are based on the place of origin, profession, believes, values, which results in narratives on climate change and hazard risks. Further, the more intensively participants interact with each other, the more likely is that they change their views. This provides empirical evidence on how changes in opinions and mindsets can be induced and fostered.

Keywords: climate change, knowledge-co-creation, participatory process, natural hazard risks

Procedia PDF Downloads 69
412 The Use of Remote Sensing in the Study of Vegetation Jebel Boutaleb, Setif, Algeria

Authors: Khaled Missaoui, Amina Beldjazia, Rachid Gharzouli, Yamna Djellouli

Abstract:

Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground. Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be differentiated by their spectral reflectance signatures in the remotely sensed images. In this work, we are interested to study the distribution of vegetation in the massif forest of Boutaleb (North East of Algeria) which suffered between 1998 and 1999 very large fires. In this case, we use remote sensing with Landsat images from two dates (1984 and 2000) to see the results of these fires. Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. Normalized Difference Vegetation Index (NDVI) is calculated with ENVI 4.7 from Band 3 and 4. The results showed a very important floristic diversity in this forest. The comparison of NDVI from the two dates confirms that there is a decrease of the density of vegetation in this area due to repeated fires.

Keywords: remote sensing, boutaleb, diversity, forest

Procedia PDF Downloads 560
411 Optimal Sizes of Battery Energy Storage Systems for Economic Operation in Microgrid

Authors: Sirus Mohammadi, Sara Ansari, Darush dehghan, Habib Hoshyari

Abstract:

Batteries for storage of electricity from solar and wind generation farms are a key element in the success of sustainability. In recent years, due to large integration of Renewable Energy Sources (RESs) like wind turbine and photovoltaic unit into the Micro-Grid (MG), the necessity of Battery Energy Storage (BES) has increased dramatically. The BES has several benefits and advantages in the MG-based applications such as short term power supply, power quality improvement, facilitating integration of RES, ancillary service and arbitrage. This paper presents the cost-based formulation to determine the optimal size of the BES in the operation management of MG. Also, some restrictions, i.e. power capacity of Distributed Generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve and load demand satisfaction should be considered as well. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG.

Keywords: microgrid, energy storage system, optimal sizing, net present value

Procedia PDF Downloads 493
410 Saving the Decolonized Subject from Neglected Tropical Diseases: Public Health Campaign and Household-Centred Sanitation in Colonial West Africa, 1900-1960

Authors: Adebisi David Alade

Abstract:

In pre-colonial West Africa, the deadliness of the climate vis-a- vis malaria and other tropical diseases to Europeans turned the region into the “white man’s grave.” Thus, immediately after the partition of Africa in 1885, civilisatrice and mise en valeur not only became a pretext for the establishment of colonial rule; from a medical point of view, the control and possible eradication of disease in the continent emerged as one of the first concerns of the European colonizers. Though geared toward making Africa exploitable, historical evidence suggests that some colonial Water, Sanitation and Hygiene (WASH) policies and projects reduced certain tropical diseases in some West African communities. Exploring some of these disease control interventions by way of historical revisionism, this paper challenges the orthodox interpretation of colonial sanitation and public health measures in West Africa. This paper critiques the deployment of race and class as analytical tools for the study of colonial WASH projects, an exercise which often reduces the complexity and ambiguity of colonialism to the binary of colonizer and the colonized. Since West Africa presently ranks high among regions with Neglected Tropical Diseases (NTDs), it is imperative to decentre colonial racism and economic exploitation in African history in order to give room for Africans to see themselves in other ways. Far from resolving the problem of NTDs by fiat in the region, this study seeks to highlight important blind spots in African colonial history in an attempt to prevent post-colonial African leaders from throwing away the baby with the bath water. As scholars researching colonial sanitation and public health in the continent rarely examine its complex meaning and content, this paper submits that the outright demonization of colonial rule across space and time continues to build ideological wall between the present and the past which not only inhibit fruitful borrowing from colonial administration of West Africa, but also prevents a wide understanding of the challenges of WASH policies and projects in most West African states.

Keywords: colonial rule, disease control, neglected tropical diseases, WASH

Procedia PDF Downloads 187
409 Residential Building Facade Retrofit

Authors: Galit Shiff, Yael Gilad

Abstract:

The need to retrofit old buildings lies in the fact that buildings are responsible for the main energy use and CO₂ emission. Existing old structures are more dominant in their effect than new energy-efficient buildings. Nevertheless not every case of urban renewal that aims to replace old buildings with new neighbourhoods necessarily has a financial or sustainable justification. Façade design plays a vital role in the building's energy performance and the unit's comfort conditions. A retrofit façade residential methodology and feasibility applicative study has been carried out for the past four years, with two projects already fully renovated. The intention of this study is to serve as a case study for limited budget façade retrofit in Mediterranean climate urban areas. The two case study buildings are set in Israel. However, they are set in different local climatic conditions. One is in 'Sderot' in the south of the country, and one is in' Migdal Hahemek' in the north of the country. The building typology is similar. The budget of the projects is around $14,000 per unit and includes interventions at the buildings' envelope while tenants are living in. Extensive research and analysis of the existing conditions have been done. The building's components, materials and envelope sections were mapped, examined and compared to relevant updated standards. Solar radiation simulations for the buildings in their surroundings during winter and summer days were done. The energy rate of each unit, as well as the building as a whole, was calculated according to the Israeli Energy Code. The buildings’ facades were documented with the use of a thermal camera during different hours of the day. This information was superimposed with data about the electricity use and the thermal comfort that was collected from the residential units. Later in the process, similar tools were further used in order to compare the effectiveness of different design options and to evaluate the chosen solutions. Both projects showed that the most problematic units were the ones below the roof and the ones on top of the elevated entrance floor (pilotis). Old buildings tend to have poor insulation on those two horizontal surfaces which require treatment. Different radiation levels and wall sections in the two projects influenced the design strategies: In the southern project, there was an extreme difference in solar radiations levels between the main façade and the back elevation. Eventually, it was decided to invest in insulating the main south-west façade and the side façades, leaving the back north-east façade almost untouched. Lower levels of radiation in the northern project led to a different tactic: a combination of basic insulation on all façades, together with intense treatment on areas with problematic thermal behavior. While poor execution of construction details and bad installation of windows in the northern project required replacing them all, in the southern project it was found that it is more essential to shade the windows than replace them. Although the buildings and the construction typology was chosen for this study are similar, the research shows that there are large differences due to the location in different climatic zones and variation in local conditions. Therefore, in order to reach a systematic and cost-effective method of work, a more extensive catalogue database is needed. Such a catalogue will enable public housing companies in the Mediterranean climate to promote massive projects of renovating existing old buildings, drawing on minimal analysis and planning processes.

Keywords: facade, low budget, residential, retrofit

Procedia PDF Downloads 208
408 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method

Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud

Abstract:

Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.

Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator

Procedia PDF Downloads 344
407 Effect of Labisia pumila var. alata with a Structured Exercise Program in Women with Polycystic Ovarian Syndrome

Authors: D. Maryama AG. Daud, Zuliana Bacho, Stephanie Chok, DG. Mashitah PG. Baharuddin, Mohd Hatta Tarmizi, Nathira Abdul Majeed, Helen Lasimbang

Abstract:

Lifestyle, physical activity, food intake, genetics and medication are contributing factors for people getting obese. Which in some of the obese people were a low or non-responder to exercise. And obesity is very common clinical feature in women affected by Polycystic Ovarian Syndrome (PCOS). Labisia pumila var. alata (LP) is a local herb which had been widely used by Malay women in treating menstrual irregularities, painful menstruation and postpartum well-being. Therefore, this study was carried out to investigate the effect of LP with a structured exercise program on anthropometric, body composition and physical fitness performance of PCOS patients. By using a single blind and parallel study design, where by subjects were assigned into a 16-wk structured exercise program (3 times a week) interventions; (LP and exercise; LPE, and exercise only; E). All subjects in the LPE group were prescribed 200mg LP; once a day, for 16 weeks. The training heart rate (HR) was monitored based on a percentage of the maximum HR (HRmax) achieved during submaximal exercise test that was conducted at wk-0 and wk-8. The progression of aerobic exercise intensity from 25–30 min at 60 – 65% HRmax during the first week to 45 min at 75–80% HRmax by the end of this study. Anthropometric (body weight, Wt; waist circumference, WC; and hip circumference, HC), body composition (fat mass, FM; percentage body fat, %BF; Fat Free Mass, FFM) and physical fitness performance (push up to failure, PU; 1-minute Sit Up, SU; and aerobic step test, PVO2max) were measured at wk-0, wk-4, wk-8, wk-12, and wk-16. This study found that LP does not have a significant effect on body composition, anthropometric and physical fitness performance of PCOS patients underwent a structured exercise program. It means LP does not improve exercise responses of PCOS patients towards anthropometric, body composition and physical fitness performance. The overall data shows exercise responses of PCOS patients is by increasing their aerobic endurance and muscle endurance performances, there is a significant reduction in FM, PBF, HC, and Wt significantly. Therefore, exercise program for PCOS patients have to focus on aerobic fitness, and muscle endurance.

Keywords: polycystic ovarian syndrome, Labisia pumila var. alata, body composition, aerobic endurance, muscle endurance, anthropometric

Procedia PDF Downloads 208
406 Thermal Behavior of the Extensive Green Roofs in Riyadh City

Authors: Ashraf Muharam, Nasser Al-Hemiddi, El Sayed Amer

Abstract:

Green roof is one of sustainable practice for reducing the environmental impact of a building. Green roofs are vegetation roofs that are partially or completely covered building's roof. It can provide multiple environmental benefits such as mitigation of urban heat island effect and protecting buildings against solar radiation. In Riyadh city buildings consume about 70 % of the total energy used in the building for cooling and heating because of the Riyadh's harsh and tropical climate. So, the study aim was identifying the thermal performance of extensive green roof and comparing its performance with concrete roof performance during summer season. The experimental validations results indicated that the extensive green roofs system was better than concrete roof system for lowering the indoor air temperature. It could reduce the indoor air temperature from 2°C to 5.5°C compared to the concrete roof system. Also, the finding of this study demonstrated that extensive green roof system could reduce 12% to 33% of energy consumption of air conditioning in Riyadh city during summer seasons by using environmentally friendly insulation.

Keywords: thermal performance, green roof system, concrete roof system, tropical climatic, internal temperatures

Procedia PDF Downloads 408
405 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain

Authors: Carlos A. Domínguez Torres, Antonio Domínguez Delgado

Abstract:

In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modeling of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show that the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.

Keywords: passive cooling, ventilated façades, energy-efficient building, CFD, FEM

Procedia PDF Downloads 355
404 The Application of Sensory Integration Techniques in Science Teaching Students with Autism

Authors: Joanna Estkowska

Abstract:

The Sensory Integration Method is aimed primarily at children with learning disabilities. It can also be used as a complementary method in treatment of children with cerebral palsy, autistic, mentally handicapped, blind and deaf. Autism is holistic development disorder that manifests itself in the specific functioning of a child. The most characteristic are: disorders in communication, difficulties in social relations, rigid patterns of behavior and impairment in sensory processing. In addition to these disorders may occur abnormal intellectual development, attention deficit disorders, perceptual disorders and others. This study was focused on the application sensory integration techniques in science education of autistic students. The lack of proper sensory integration causes problems with complicated processes such as motor coordination, movement planning, visual or auditory perception, speech, writing, reading or counting. Good functioning and cooperation of proprioceptive, tactile and vestibular sense affect the child’s mastery of skills that require coordination of both sides of the body and synchronization of the cerebral hemispheres. These include, for example, all sports activities, precise manual skills such writing, as well as, reading and counting skills. All this takes place in stages. Achieving skills from the first stage determines the development of fitness from the next level. Any deficit in the scope of the first three stages can affect the development of new skills. This ultimately reflects on the achievements at school and in further professional and personal life. After careful analysis symptoms from the emotional and social spheres appear to be secondary to deficits of sensory integration. During our research, the students gained knowledge and skills in the classroom of experience by learning biology, chemistry and physics with application sensory integration techniques. Sensory integration therapy aims to teach the child an adequate response to stimuli coming to him from both the outside world and the body. Thanks to properly selected exercises, a child can improve perception and interpretation skills, motor skills, coordination of movements, attention and concentration or self-awareness, as well as social and emotional functioning.

Keywords: autism spectrum disorder, science education, sensory integration, special educational needs

Procedia PDF Downloads 184
403 Periodical System of Isotopes

Authors: Andriy Magula

Abstract:

With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.

Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction

Procedia PDF Downloads 17
402 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance

Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi

Abstract:

This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.

Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building

Procedia PDF Downloads 31
401 Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method

Authors: S. Nandal, R. Bhargava

Abstract:

The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures.

Keywords: heat transfer, meshfree methods, nanofluid, trapezoidal enclosure

Procedia PDF Downloads 158
400 Semiconducting Nanostructures Based Organic Pollutant Degradation Using Natural Sunlight for Water Remediation

Authors: Ankur Gupta, Jayant Raj Saurav, Shantanu Bhattacharya

Abstract:

In this work we report an effective water filtration system based on the photo catalytic performance of semiconducting dense nano-brushes under natural sunlight. During thin-film photocatalysis usually performed by a deposited layer of photocatalyst, a stagnant boundary layer is created near the catalyst which adversely affects the rate of adsorption because of diffusional restrictions. One strategy that may be used is to disrupt this laminar boundary layer by creating a super dense nanostructure near the surface of the catalyst. Further it is adequate to fabricate a structured filter element for a through pass of the water with as grown nanostructures coming out of the surface of such an element. So, the dye remediation is performed through solar means. This remediation was initially limited to lower efficiency because of diffusional restrictions but has now turned around as a fast process owing to the development of the filter materials with standing out dense nanostructures. The effect of increased surface area due to microholes on fraction adsorbed is also investigated and found that there is an optimum value of hole diameter for maximum adsorption.

Keywords: nano materials, photocatalysis, waste water treatment, water remediation

Procedia PDF Downloads 339
399 Insulation, Sustainable Construction, and Architectural Design to Reduce Energy Consumption in Sustainable Buildings

Authors: Gholamreza Namavar, Ali Bayati

Abstract:

Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities show one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In construction industry we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaption with environment is critical. Otherwise, the isolation should be use and mention in long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.

Keywords: architectural design, insulation, sustainable construction, reducing energy consumption

Procedia PDF Downloads 252
398 Crater Pattern on the Moon and Origin of the Moon

Authors: Xuguang Leng

Abstract:

The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth.

Keywords: moon, origin, crater, pattern

Procedia PDF Downloads 97
397 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou

Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan

Abstract:

Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.

Keywords: outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD

Procedia PDF Downloads 448
396 Effects of the Compressive Eocene Tectonic Phase in the Bou Kornine-Ressas-Messella Structure and Surroundings (Northern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya

Abstract:

The Messalla-Ressas-Bou Kornine (MRB) and Hammamet Korbous (HK) major trending North-South fault zones provide a good opportunity to show the effects of the Eocene compressive phase in northern Tunisia. They acted as paleogeographical boundaries during the Mesozoic and belonged to a significant strike-slip corridor called the «North-South Axis,» extending from the Saharan platform at the South to the Gulf of Tunis at the North. Our study area is situated in a relay zone between two significant strike-slip faults (HK and MRB), separating the Atlas domain from the Pelagian Block. We used a multidisciplinary approach, including fieldwork, stress inversion, and geophysical profiles, to argue the shortening event that affected the study region. The MRB and HK contractional duplex is a privileged area for a local stress field and stress nucleation. The stress inversion of fault slip data reveals an Eocene compression with NW-SE trending SHmax, reactivating most of the ancient Mesozoic normal faults in the region. This shortening phase is represented in the MRB belt by an angular unconformity between the Upper Eocene over various Cretaceous strata. The stress inversion data reveal a compressive tectonic with an average NW-SE trending Shmax. The major N-S faults are reactivated under this shortening as sinistral oblique faults. The orientation of SHmax deviates from NW-SE to E-W near the preexisting deep faults of MRB and HK. This E-W stress direction generated the emerging overlap of Ressas-Messella and blind thrust faults in the Cretaceous deposits. The connection of the sub-meridian reverse faults in depth creates "flower structures" under an E-W local compressive stress. In addition, we detected a reorientation of the SHmax into an N-S direction in the central part of the MRB - HK contractional duplex, creating E-W reverse faults and overlapping zones. Finally, the Eocene compression constituted the first major tectonic phase which inverted the Mesozoic preexisting extensive fault system in Northern Tunisia.

Keywords: Tunisia, eocene compression, tectonic stress field, Bou Kornine-Ressas-Messella

Procedia PDF Downloads 71