Search results for: score prediction
2742 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder
Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa
Abstract:
Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami
Procedia PDF Downloads 4982741 Application of Raman Spectroscopy for Ovarian Cancer Detection: Comparative Analysis of Fresh, Formalin-Fixed, and Paraffin-Embedded Samples
Authors: Zeinab Farhat, Nicolas Errien, Romuald Wernert, Véronique Verriele, Frédéric Amiard, Philippe Daniel
Abstract:
Ovarian cancer, also known as the silent killer, is the fifth most common cancer among women worldwide, and its death rate is higher than that of other gynecological cancers. The low survival rate of women with high-grade serous ovarian carcinoma highlights the critical need for the development of new methods for early detection and diagnosis of the disease. The aim of this study was to evaluate if Raman spectroscopy combined with chemometric methods such as Principal Component Analysis (PCA) could differentiate between cancerous and normal tissues from different types of samples, such as paraffin embedding, chemical deparaffinized, formalin-fixed and fresh samples of the same normal and malignant ovarian tissue. The method was applied specifically to two critical spectral regions: the signature region (860-1000 〖cm〗^(-1)) and the high-frequency region (2800-3100 〖cm〗^(-1) ). The mean spectra of paraffin-embedded in normal and malignant tissues showed almost similar intensity. On the other hand, the mean spectra of normal and cancer tissues from chemical deparaffinized, formalin-fixed, and fresh samples show significant intensity differences. These spectral differences reflect variations in the molecular composition of the tissues, particularly lipids and proteins. PCA, which was applied to distinguish between cancer and normal tissues, was performed on whole spectra and on selected regions—the PCA score plot of paraffin-embedded shows considerable overlap between the two groups. However, the PCA score of chemicals deparaffinized, formalin-fixed, and fresh samples showed a good discrimination of tissue types. Our findings were validated by analyses of a set of samples whose status (normal and cancerous) was not previously known. The results of this study suggest that Raman Spectroscopy associated with PCA methods has the capacity to provide clinically significant differentiation between normal and cancerous ovarian tissues.Keywords: Raman spectroscopy, ovarian cancer, signal processing, Principal Component Analysis, classification
Procedia PDF Downloads 302740 Detecting Covid-19 Fake News Using Deep Learning Technique
Authors: AnjalI A. Prasad
Abstract:
Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.Keywords: BERT, CNN, LSTM, RNN
Procedia PDF Downloads 2062739 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 1302738 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing
Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin
Abstract:
Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care
Procedia PDF Downloads 1222737 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle
Authors: Megan Weisbart
Abstract:
Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.Keywords: burnout, NICU, nurse, wellness
Procedia PDF Downloads 882736 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 912735 Method for Improving Antidepressants Adherence in Patients with Depressive Disorder: Systemic Review and Meta-Analysis
Authors: Juntip Kanjanasilp, Ratree Sawangjit, Kanokporn Meelap, Kwanchanok Kruthakool
Abstract:
Depression is a common mental health disorder. Antidepressants are effective pharmacological treatments, but most patients have low medication adherence. This study aims to systematic review and meta-analysis what method increase the antidepressants adherence efficiently and improve clinical outcome. Systematic review of articles of randomized controlled trials obtained by a computerized literature search of The Cochrane, Library, Pubmed, Embase, PsycINFO, CINAHL, Education search, Web of Science and ThaiLIS (28 December 2017). Twenty-three studies were included and assessed the quality of research by ROB 2.0. The results reported that printing media improved in number of people who had medication adherence statistical significantly (p= 0.018), but education, phone call, and program utilization were no different (p=0.172, p=0.127, p=0.659). There was no significant difference in pharmacist’s group, health care team’s group and physician’s group (p=0.329, p=0.070, p=0.040). Times of intervention at 1 month and 6 months improved medication adherence significantly (p= 0.0001, p=0.013). There was significantly improved adherence in single intervention (p=0.027) but no different in multiple interventions (p=0.154). When we analyzed medication adherence with the mean score, no improved adherence was found, not relevant with who gives the intervention and times to intervention. However, the multiple interventions group was statistically significant improved medication adherence (p=0.040). Phone call and the physician’s group were statistically significant improved clinical outcomes in number of improved patients (0.025 and 0.020, respectively). But in the pharmacist’s group and physician’s group were not found difference in the mean score of clinical outcomes (p=0.993, p=0.120, respectively). Times to intervention and number of intervention were not significant difference than usual care. The overall intervention can increase antidepressant adherence, especially the printing media, and the appropriate timing of the intervention is at least 6 months. For effective treatment, the provider should have experience and expert in caring for patients with depressive disorders, such as a psychiatrist. Medical personnel should have knowledge in caring for these patients also.Keywords: depression, medication adherence, clinical outcomes, systematic review, meta-analysis
Procedia PDF Downloads 1352734 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3432733 Tele-Rehabilitation for Multiple Sclerosis: A Case Study
Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani
Abstract:
Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities
Procedia PDF Downloads 1822732 Impact of Gaming Environment in Education
Authors: Md. Ataur Rahman Bhuiyan, Quazi Mahabubul Hasan, Md. Rifat Ullah
Abstract:
In this research, we did explore the effectiveness of the gaming environment in education and compared it with the traditional education system. We take several workshops in both learning environments. We measured student’s performance by providing a grading score (by professional academics) on their attitude in different criteria. We also collect data from survey questionnaires to understand student’s experiences towards education and study. Finally, we examine the impact of the different learning environments by applying statistical hypothesis tests, the T-test, and the ANOVA test.Keywords: gamification, game-based learning, education, statistical analysis, human-computer interaction
Procedia PDF Downloads 2332731 The Effect of Tele Rehabilitation Training on Complications of Hip Osteoarthritis: A Quasi-Experimental Study
Authors: Mahnaz Seyedoshohadaee, Azadeh Nematolahi, Parsa Rahimi
Abstract:
Introduction: Rehabilitation training after hip joint surgery is one of the priorities of nursing, which can be helpful in today's world with the advancement of technology. This study was conducted with the aim of the effect of Tele rehabilitation Education on outcomes of hip osteoarthritis. Methods: The present study was a semi-experimental study that was conducted on patients after hip replacement in the first half of 2023. To perform the work, 70 patients who were available were included in the study and were divided into two intervention and control groups by a nonrandom method. Inclusion criteria included: a maximum of 6 months had passed since the hip joint replacement, age between 30-70 years, the ability to follow instructions by the subject, the absence of accompanying orthopedic lesions such as fractures, and having access to the Internet, a smartphone, and the Skype program. Exclusion criteria were severe speech disorder and non-participation in a training session. The research tool included a demographic profile form and Hip disability and osteoarthritis outcome score (HOOS), which were completed by the patients before and after the training. Training for people in the intervention group in 4 sessions, including introduction of the disease, risk factors, symptoms, management of disease symptoms, medication, diet, appropriate exercises and pain relief methods, one session per week for 30 to 45 minutes in the groups 4 to 6 people were offered through Skype software. SPSS version 22 statistical software was used to analyze the data. Results: The average score of osteoarthritis outcomes in the patients before the intervention was 112.74±29.64 in the test group and 110.41±16.34 in the control group, which had no significant difference (P=0.682). After the intervention, it reached 85.25±21.43 and 109.94±15.74, respectively, and this difference was significant (P<0.001). The comparison of the average scores of osteoarthritis results in the test group indicated a significant difference from the pre-test to the post-test time (p<0.001). But in the control group, this difference was not significant (p=0.130). Conclusion: The results showed that Tele rehabilitation Education has a positive effect on reducing the outcomes of hip osteoarthritis, so it is recommended that nurses use Tele rehabilitation Education in their training in order to empower patients.Keywords: training, rehabilitation, hip osteoarthritides, patient, complications
Procedia PDF Downloads 162730 Implementation of Deep Neural Networks for Pavement Condition Index Prediction
Authors: M. Sirhan, S. Bekhor, A. Sidess
Abstract:
In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction
Procedia PDF Downloads 1382729 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras
Abstract:
Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality
Procedia PDF Downloads 3462728 Possibilities of Psychodiagnostics in the Context of Highly Challenging Situations in Military Leadership
Authors: Markéta Chmelíková, David Ullrich, Iva Burešová
Abstract:
The paper maps the possibilities and limits of diagnosing selected personality and performance characteristics of military leadership and psychology students in the context of coping with challenging situations. Individuals vary greatly inter-individually in their ability to effectively manage extreme situations, yet existing diagnostic tools are often criticized mainly for their low predictive power. Nowadays, every modern army focuses primarily on the systematic minimization of potential risks, including the prediction of desirable forms of behavior and the performance of military commanders. The context of military leadership is well known for its life-threatening nature. Therefore, it is crucial to research stress load in the specific context of military leadership for the purpose of possible anticipation of human failure in managing extreme situations of military leadership. The aim of the submitted pilot study, using an experiment of 24 hours duration, is to verify the possibilities of a specific combination of psychodiagnostic to predict people who possess suitable equipment for coping with increased stress load. In our pilot study, we conducted an experiment of 24 hours duration with an experimental group (N=13) in the bomb shelter and a control group (N=11) in a classroom. Both groups were represented by military leadership students (N=11) and psychology students (N=13). Both groups were equalized in terms of study type and gender. Participants were administered the following test battery of personality characteristics: Big Five Inventory 2 (BFI-2), Short Dark Triad (SD-3), Emotion Regulation Questionnaire (ERQ), Fatigue Severity Scale (FSS), and Impulsive Behavior Scale (UPPS-P). This test battery was administered only once at the beginning of the experiment. Along with this, they were administered a test battery consisting of the Test of Attention (d2) and the Bourdon test four times overall with 6 hours ranges. To better simulate an extreme situation – we tried to induce sleep deprivation - participants were required to try not to fall asleep throughout the experiment. Despite the assumption that a stay in an underground bomb shelter will manifest in impaired cognitive performance, this expectation has been significantly confirmed in only one measurement, which can be interpreted as marginal in the context of multiple testing. This finding is a fundamental insight into the issue of stress management in extreme situations, which is crucial for effective military leadership. The results suggest that a 24-hour stay in a shelter, together with sleep deprivation, does not seem to simulate sufficient stress for an individual, which would be reflected in the level of cognitive performance. In the context of these findings, it would be interesting in future to extend the diagnostic battery with physiological indicators of stress, such as: heart rate, stress score, physical stress, mental stress ect.Keywords: bomb shelter, extreme situation, military leadership, psychodiagnostic
Procedia PDF Downloads 912727 Understanding and Political Participation in Constitutional Monarchy of Dusit District Residents
Authors: Sudaporn Arundee
Abstract:
The purposes of this research were to study in three areas: (1) to study political understanding and participating of the constitutional monarchy, (2) to study the level of participation. This paper drew upon data collected from 395 Dusit residents by using questionnaire. In addition, a simple random sampling was utilized to collect data. The findings revealed that 94 percent of respondents had a very good understanding of constitution monarchy with a mean of 4.8. However, the respondents overall had a very low level of participation with the mean score of 1.69 and standard deviation of .719.Keywords: political participation, constitutional monarchy, management and social sciences
Procedia PDF Downloads 2522726 The Effect of Modified Posterior Shoulder Stretching Exercises on Posterior Shoulder Tightness, Shoulder Pain, and Dysfunction in Patients with Subacromial Impingement
Authors: Ozge Tahran, Sevgi Sevi Yesilyaprak
Abstract:
Objective: The aim of the study was to investigate the effect of the Wilk’s modified two different stretching exercises on posterior shoulder tightness, pain, and dysfunction in patients with subacromial impingement syndrome (SIS). Method: This study was carried out on 67 patients who have more than 15° difference in shoulder internal rotation range of motion between two sides and had been diagnosed as SIS. Before treatment, all patients were randomly assigned into three groups. Standard physiotherapy programme was applied to the Group 3 (n=23), standard physiotherapy program with Wilk’s modified cross-body stretching exercises were applied to Group 1 (n=22), and standard physiotherapy program with Wilk’s modified sleeper stretching exercises were applied to Group 2 (n= 23). All the patients received 20 sessions of physiotherapy during 4 weeks, 5 days in a week by a physiotherapist. The patients continued their exercises at home at the weekends. Pain severity, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality with Constant and Murley Score (CMS) and disability level with The Disabilities of the Arm, Shoulder and Hand Score (QuickDASH) were evaluated before and after physiotherapy programme. Results: Before treatment, demographic and anthropometric characteristics were similar in groups and there was no statistical difference (p > 0.05). It was determined that pain severity decreased, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality, and disability were improved after physiotherapy in both groups (p < 0.05). Group 1 and 2 had better results in terms of reduction of pain severity during activity, increase in shoulder rotation range of motion, posterior shoulder mobility and upper extremity functionality and improvement in upper extremity disability, compared to Group 3 (p < 0.05). Conclusion: Modified posterior shoulder stretching exercises in addition to standard physiotherapy programme is more effective for reduction of pain during activity, to improve shoulder rotation range of motion, posterior shoulder mobility, and upper extremity functionality in patients with SIS compared to standard physiotherapy programme alone.Keywords: modified posterior shoulder stretching exercises, posterior shoulder tightness, shoulder complex, subacromial impingement syndrome
Procedia PDF Downloads 1792725 Tablet Computer Based Cognitive Rehabilitation Program, Injini, for Children with Cognitive Impairment
Authors: Eun Jae Ko, In Young Sung, Eui Soo Joeng
Abstract:
Cognitive impairment is commonly encountered problem in children with various clinical diseases, including Down syndrome, autism spectrum disorder, brain injury, and others. Cognitive impairment limits participation in education and society, and this further hinders development in cognition. However, young children with cognitive impairment tend not to respond well to traditional cognitive treatments, therefore alternative treatment choices are need. As a cognitive training program, touch screen technology can easily be applied to very young children by involving visual and auditory support. Injini was developed as tablet computer based cognitive rehabilitation program for young children or individuals with severe cognitive impairment, which targeted on cognitive ages of 18 to 36 months. The aim of this study was to evaluate the efficacy of a tablet computer based cognitive rehabilitation program (Injini) for children with cognitive impairment. 38 children between cognitive ages of 18 to 36 months confirmed by cognitive evaluations were recruited and randomly assigned to the intervention group (n=20) and the control group (n=18). The intervention group received tablet computer based cognitive rehabilitation program (Injini) for 30 minutes per session, twice a week, over a period of 12 weeks, in addition to the traditional rehabilitation program. The control group received traditional rehabilitation program only. Mental score of Bayley Scales of Infant Development II (BSID II), Pediatric Evaluation of Disability Inventory (PEDI), Laboratory Temperament Assessment Battery (Lab-TAB), Early Childhood Behavior Questionnaire (ECBQ), and Goal Attainment Scale (GAS) were evaluated before and after 12 weeks of therapeutic intervention. When comparing the baseline characteristics, there was no significant difference between the two groups in the measurements of cognitive function. After 12 weeks of treatment, both group showed improvements in all measurements. However, in comparison of improvements after treatment, the intervention group showed more improvements in the mental score of BSID II, social function domain of PEDI, observation domain of Lab-TAB, and GAS, as compared to the control group. Application of the tablet computer based cognitive rehabilitation program (Injini) would be beneficial for improvement of cognitive function in young children with cognitive impairment.Keywords: cognitive therapy, computer-assisted therapy, early intervention, tablets
Procedia PDF Downloads 2852724 Anxiety and Self-Perceived L2 Proficiency: A Comparison of Which Can Better Predict L2 Pronunciation Performance
Authors: Jiexuan Lin, Huiyi Chen
Abstract:
The development of L2 pronunciation competence remains understudied in the literature and it is not clear what may influence learners’ development of L2 pronunciation. The present study was an attempt to find out which of the two common factors in L2 acquisition, i.e., foreign language anxiety or self-perceived L2 proficiency, can better predict Chinese EFL learners’ pronunciation performance. 78 first-year English majors, who had received a three-month pronunciation training course, were asked to 1) fill out a questionnaire on foreign language classroom anxiety, 2) self-report their L2 proficiency in general, in speaking and in pronunciation, and 3) complete an oral and a written test on their L2 pronunciation (the score of the oral part indicates participants’ pronunciation proficiency in oral production, and the score of the written part indexes participants’ ability in applying pronunciation knowledge in comprehension.) Results showed that the pronunciation scores were negatively correlated with the anxiety scores, and were positively correlated with the self-perceived pronunciation proficiency. But only the written scores in the L2 pronunciation test, not the oral scores, were positively correlated with the L2 self-perceived general proficiency. Neither the oral nor the written scores in the L2 pronunciation test had a significant correlation with the self-perceived speaking proficiency. Given the fairly strong correlations, the anxiety scores and the self-perceived pronunciation proficiency were put in regression models to predict L2 pronunciation performance. The anxiety factor alone accounted for 13.9% of the variance and the self-perceived pronunciation proficiency alone explained 12.1% of the variance. But when both anxiety scores and self-perceived pronunciation proficiency were put in a stepwise regression model, only the anxiety scores had a significant and unique contribution to the L2 pronunciation performance (4.8%). Taken together, the results suggested that the learners’ anxiety level could better predict their L2 pronunciation performance, compared with the self-perceived proficiency levels. The obtained data have the following pedagogical implications. 1) Given the fairly strong correlation between anxiety and L2 pronunciation performance, the instructors who are interested in predicting learners’ L2 pronunciation proficiency may measure their anxiety level, instead of their proficiency, as the predicting variable. 2) The correlation of oral scores (in the pronunciation test) with pronunciation proficiency, rather than with speaking proficiency, indicates that a) learners after receiving some amounts of training are to some extent able to evaluate their own pronunciation ability, implying the feasibility of incorporating self-evaluation and peer comments in course instruction; b) the ‘proficiency’ measure used to predict pronunciation performance should be used with caution. The proficiency of specific skills seemingly highly related to pronunciation (i.e., speaking in this case) may not be taken for granted as an effective predictor for pronunciation performance. 3) The correlation between the written scores with general L2 proficiency is interesting.Keywords: anxiety, Chinese EFL learners, L2 pronunciation, self-perceived L2 proficiency
Procedia PDF Downloads 3622723 Association of Post-Traumatic Stress Disorder with Work Performance amongst Emergency Medical Service Personnel, Karachi, Pakistan
Authors: Salima Kerai, Muhammad Islam, Uzma Khan, Nargis Asad, Junaid Razzak, Omrana Pasha
Abstract:
Background: Pre-hospital care providers are exposed to various kinds of stressors. Their daily exposure to diverse critical and traumatic incidents can lead to stress reactions like Post-Traumatic Stress Disorder (PTSD). Consequences of PTSD in terms of work loss can be catastrophic because of its compound effect on families, which affect them economically, socially and emotionally. Therefore, it is critical to assess the association between PTSD and Work performance in Emergency Medical Service (EMS) if exist any. Methods: This prospective observational study was carried out at AMAN EMS in Karachi, Pakistan. EMS personnel were screened for potential PTSD using impact of event scale-revised (IES-R). Work performance was assessed on basis of five variables; number of late arrivals to work, number of days absent, number of days sick, adherence to protocol and patient satisfaction survey over the period of 3 months. In order to model outcomes like number of late arrivals to work, days absent and days late; negative binomial regression was used whereas logistic regression was applied for adherence to protocol and linear for patient satisfaction scores. Results: Out of 536 EMS personnel, 525 were found to be eligible, of them 518 consented. However data on 507 were included because 7 left the job during study period. The mean score of PTSD was found to be 24.0 ± 12.2. However, weak and insignificant association was found between PTSD and work performance measures: number of late arrivals (RRadj 0.99; 95% CI 0.98-1.00), days absent (RRadj 0.98; 95% CI 0.96-0.99), days sick (Rradj 0.99; 95% CI 0.98 to 1.00), adherence to protocol (ORadj 1.01: 95% CI 0.99 to 1.04) and patient satisfaction (0.001% score; 95% CI -0.03% to 0.03%). Conclusion: No association was found between PTSD and Work performance in the selected EMS population in Karachi Pakistan. Further studies are needed to explore the phenomenon of resiliency in these populations. Moreover, qualitative work is required to explore perceptions and feelings like willingness to go to work, readiness to carry out job responsibilities.Keywords: trauma, emergency medical service, stress, pakistan
Procedia PDF Downloads 3402722 A Correlation Analysis of an Effective Music Education with Students’ Mathematical Performance
Authors: Yoon Suh Song
Abstract:
Though music education can broaden one’s capacity for mathematical performance, many countries lag behind in music education. Little empirical evidence is found to identify the connection between math and music. Therefore, this research was set out to explore what music-related variables are associated with mathematical performance. The result of our analysis is as follows: A Pearson's Correlation analysis revealed that PISA math score is strongly correlated with students' Intelligence Quotient (IQ). This lays the foundation for further research as to what factors in students’ IQ lead to a better performance in math.Keywords: music education, mathematical performance, education, IQ
Procedia PDF Downloads 2142721 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 562720 The Prediction of Evolutionary Process of Coloured Vision in Mammals: A System Biology Approach
Authors: Shivani Sharma, Prashant Saxena, Inamul Hasan Madar
Abstract:
Since the time of Darwin, it has been considered that genetic change is the direct indicator of variation in phenotype. But a few studies in system biology in the past years have proposed that epigenetic developmental processes also affect the phenotype thus shifting the focus from a linear genotype-phenotype map to a non-linear G-P map. In this paper, we attempt at explaining the evolution of colour vision in mammals by taking LWS/ Long-wave sensitive gene under consideration.Keywords: evolution, phenotypes, epigenetics, LWS gene, G-P map
Procedia PDF Downloads 5232719 Effectiveness of Psychosocial Interventions in Preventing Postpartum Depression among Teenage Mothers: Systematic Review and Meta-Analysis of Randomized Controlled Trials
Authors: Lebeza Alemu Tenaw, Fei Wan Ngai
Abstract:
Background: Postpartum depression is the most common mental health disorder that occurs after childbirth, and it is more prevalent among teenage mothers compared to adults. Although there is emerging evidence suggesting psychosocial interventions can decrease postpartum depression, there are no consistent findings regarding the effectiveness of these interventions, especially for teenage mothers. The current review aimed to investigate the effectiveness of psychosocial interventions in preventing postpartum depression among teenage mothers. Methods: The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) manual was implemented to select articles from online databases. The articles were searched using the Population, Intervention, Control, and Outcome (PICO) model. The quality of the articles was assessed using the Cochrane Collaboration Risk of Bias assessment tool. The statistical analyses were performed using Stata 17, and the effect size was estimated using the standard mean difference score of depression between the intervention and control groups. Heterogeneity between the studies was assessed through the I2 statistic and Q statistic, while the publication bias was evaluated using the asymmetry of the funnel plot and Egger's test. Results: In this systematic review, a total of nine articles were included. While psychosocial interventions demonstrated in reducing the risk of postpartum depression compared to usual maternal care, it is important to note that the mean difference score of depression was significant in only three of the included studies. The overall meta-analysis finding revealed that psychosocial interventions were effective in preventing postpartum depression, with a pooled effect size of -0.5 (95% CI: -0.95, -0.06) during the final time postpartum depression assessment. The heterogeneity level was found to be substantial, with an I2 value of 82.3%. However, no publication bias was observed. Conclusion: The review findings suggest that psychosocial interventions initiated during the late antenatal and early postnatal periods effectively prevent postpartum depression. The interventions were found to be more beneficial during the first three months of the postpartum period. However, this review also highlighted that there is a scarcity of interventional studies conducted in low-income countries, indicating the need for further studies in diverse communities.Keywords: teenage pregnancy, postpartum depression, review
Procedia PDF Downloads 512718 The Effectiveness of E-Training on the Attitude and Skill Competencies of Vocational High School Teachers during Covid-19 Pandemic in Indonesia
Authors: Sabli, Eddy Rismunandar, Akhirudin, Nana Halim, Zulfikar, Nining Dwirosanti, Wila Ningsih, Pipih Siti Sofiah, Danik Dania Asadayanti, Dewi Eka Arini Algozi, Gita Mahardika Pamuji, Ajun, Mangasa Aritonang, Nanang Rukmana, Arief Rachman Wonodhipo, Victor Imanuel Nahumury, Lili Husada, Wawan Saepul Irwan, Al Mukhlas Fikri
Abstract:
Covid-19 pandemic has widely impacted the lives. An adaptive strategy must be quickly formulated to maintain the quality of education, especially by vocational school which technical skill competencies are highly needed. This study aimed to evaluate the effectiveness of e-training on the attitude and skill competencies of vocational high school teachers in Indonesia. A total of 720 Indonesian vocational high school teachers with various programs, including hospitality, administration, online business and marketing, culinary arts, fashion, cashier, tourism, haircut, and accounting participated e-training for a month. The training used electronic learning management system to provide materials (modules, presentation slides, and tutorial videos), tasks, and evaluations. Tutorial class was carried out by video conference meeting. Attitude and skill competencies were evaluated before and after the training. Meanwhile, the teachers also gave satisfactory feedback on the quality of the organizer and tutors. Data analysis used paired sample t-test and Anova with Tukey’s post hoc test. The results showed that e-training significantly increased the score of attitude and skill competencies of the teachers (p <0,05). Moreover, the remarkable increase was found among hospitality (57,5%), cashier (50,1%), and online business and marketing (48,7%) teachers. However, the effect among fashion, tourism and haircut teachers was less obvious. In addition, the satisfactory score on the quality of the organizer and tutors were 88,9 (very good), and 93,5 (excellence), respectively. The study concludes that a well-organized e-training could increase the attitude and skill competencies of Indonesian vocational high school teachers during Covid-19 pandemic.Keywords: E-training, skill, teacher, vocational high school
Procedia PDF Downloads 1512717 The Effect of Bihemisferic Transcranial Direct Current Stimulation Therapy on Upper Extremity Motor Functions in Stroke Patients
Authors: Dilek Cetin Alisar, Oya Umit Yemisci, Selin Ozen, Seyhan Sozay
Abstract:
New approaches and treatment modalities are being developed to make patients more functional and independent in stroke rehabilitation. One of these approaches is transcranial direct stimulation therapy (tDCS), which aims to improve the hemiplegic upper limb function of stroke patients. tDCS therapy is not in the routine rehabilitation program; however, the studies about tDCS therapy on stroke rehabilitation was increased in recent years. Evaluate the effect of tDCS treatment on upper extremity motor function in patients with subacute stroke was aimed in our study. 32 stroke patients (16 tDCS group, 16 sham groups) who were hospitalized for rehabilitation in Başkent University Physical Medicine and Rehabilitation Clinic between 01.08.2016-20.01-2018 were included in the study. The conventional upper limb rehabilitation program was used for both tDCS and control group patients for 3 weeks, 5 days a week, for 60-120 minutes a day. In addition to the conventional stroke rehabilitation program in the tDAS group, bihemispheric tDCS was administered for 30 minutes daily. Patients were evaluated before treatment and after 1 week of treatment. Functional independence measure self-care score (FIM), Brunnstorm Recovery Stage (BRS), and Fugl-Meyer (FM) upper extremity motor function scale were used. There was no difference in demographic characteristics between the groups. There were no significant differences between BRS and FM scores in two groups, but there was a significant difference FIM score (p=0.05. FIM, BRS, and FM scores are significantly in the tDCS group, when before therapy and after 1 week of therapy, however, no difference is found in the shame group (p < 0,001). When FBS and FM scores were compared, there were statistical significant differences in tDCS group (p < 0,001). In conclusion, this randomized double-blind study showed that bihemispheric tDCS treatment was found to be superior to upper extremity motor and functional enhancement in addition to conventional rehabilitation methods in subacute stroke patients. In order for tDCS therapy to be used routinely in stroke rehabilitation, there is a need for more comprehensive, long-termed, randomized controlled clinical trials in order to find answers to many questions, such as the duration and intensity of treatment.Keywords: cortical stimulation, motor function, rehabilitation, stroke
Procedia PDF Downloads 1282716 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites
Authors: Yung-Chung Chuang
Abstract:
The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics
Procedia PDF Downloads 1452715 Postpartum Female Sexual Dysfunctions in Hungary: A Cross-Sectional Study
Authors: Katalin Szöllősi, László Szabó
Abstract:
Introduction and purpose: Even though female sexual dysfunctions are common among women in the postpartum period, the profile of these disturbances has not been well investigated in Hungary yet. The aim of the study was to evaluate the postpartum female sexual functions in Hungary. This research sought to investigate the possible predictor factors which can influence postpartum female sexual functions. Method and sample: This was a cross-sectional study, including patients from two maternity clinics in Budapest. 113 women were recruited into our study 3 months after their childbirth. 53 had vaginal birth, 60 had a caesarian section. Data were collected from medical reports in addition by using self-developed questions and validated questionnaires in order to measure important predictors which may be responsible for postpartum sexual dysfunctions such as mode of delivery, parity, urinary incontinence and body image. Sexual functions were evaluated by the Hungarian version of the Female Sexual Function Index (FSFI). The Hungarian version of Body Image Questionnaire-Short Form14 (BSQ-SF14) was applied for assessing body image. Results: 82,3% of the participants began to have sexual intercourse within three months postpartum. 53,98% of the participants reported sexual dysfunctions (cut-off FSFI score 26,55). According to our results mode of delivery, parity, hemorrhoids, time of intercourse, resumption was not associated with female sexual dysfunctions. We found correlation at a tendential level between urinary incontinence and sexual dysfunctions (p=0,003, R=0,26). We found a negative correlation at a tendential level between the total score of BSQ-SF14 and FSFI (p=0,03, R=-0,269). Only 32,74% of women reported discussing sexual life with health care professionals. However, 67,25% of them would have had the need to be asked about their postpartum health issues. Conclusions and recommendations: The prevalence of female sexual dysfunctions were relatively high after childbirth. We found that incontinence and body image was associated with sexual dysfunctions; other risk factors remained unknown. Despite regular contact with health care professionals, women rarely get any information about postpartum sexual health issues. The high prevalence of dysfunctions indicates the need for further investigation to address other risk factors and proper counselling of women after childbirth.Keywords: body image, postpartum, sexual dysfunction, urinary incontinence
Procedia PDF Downloads 1112714 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 972713 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 241