Search results for: platform dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4866

Search results for: platform dynamics

3456 Differences in Production of Knowledge between Internationally Mobile versus Nationally Mobile and Non-Mobile Scientists

Authors: Valeria Aman

Abstract:

The presented study examines the impact of international mobility on knowledge production among mobile scientists and within the sending and receiving research groups. Scientists are relevant to the dynamics of knowledge production because scientific knowledge is mainly characterized by embeddedness and tacitness. International mobility enables the dissemination of scientific knowledge to other places and encourages new combinations of knowledge. It can also increase the interdisciplinarity of research by forming synergetic combinations of knowledge. Particularly innovative ideas can have their roots in related research domains and are sometimes transferred only through the physical mobility of scientists. Diversity among scientists with respect to their knowledge base can act as an engine for the creation of knowledge. It is therefore relevant to study how knowledge acquired through international mobility affects the knowledge production process. In certain research domains, international mobility may be essential to contextualize knowledge and to gain access to knowledge located at distant places. The knowledge production process contingent on the type of international mobility and the epistemic culture of a research field is examined. The production of scientific knowledge is a multi-faceted process, the output of which is mainly published in scholarly journals. Therefore, the study builds upon publication and citation data covered in Elsevier’s Scopus database for the period of 1996 to 2015. To analyse these data, bibliometric and social network analysis techniques are used. A basic analysis of scientific output using publication data, citation data and data on co-authored publications is combined with a content map analysis. Abstracts of publications indicate whether a research stay abroad makes an original contribution methodologically, theoretically or empirically. Moreover, co-citations are analysed to map linkages among scientists and emerging research domains. Finally, acknowledgements are studied that can function as channels of formal and informal communication between the actors involved in the process of knowledge production. The results provide better understanding of how the international mobility of scientists contributes to the production of knowledge, by contrasting the knowledge production dynamics of internationally mobile scientists with those being nationally mobile or immobile. Findings also allow indicating whether international mobility accelerates the production of knowledge and the emergence of new research fields.

Keywords: bibliometrics, diversity, interdisciplinarity, international mobility, knowledge production

Procedia PDF Downloads 299
3455 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 97
3454 GIS Based Project Management Information System for Infrastructure Projects

Authors: Riki Panchal, Debasis Sarkar

Abstract:

This paper describes the work done for the GIS-based project management for different infrastructure projects. It is a review paper which gives the idea of the trends in the construction project management and various models adopted for the betterment of the project planning and execution. Traditional scheduling and progress control techniques such as bar charts and the critical path method fail to provide information pertaining to the spatial aspects of a construction project. An integrated system was developed to represent construction progress not only in terms of a CPM schedule but also in terms of a graphical representation of the construction that is synchronized with the work schedule. Hence, it is suggested to work on the common platform from where all the data can be shared and analyzed.

Keywords: GIS, project management, integrated model, infrastructure project

Procedia PDF Downloads 523
3453 Analytical Validity Of A Tech Transfer Solution To Internalize Genetic Testing

Authors: Lesley Northrop, Justin DeGrazia, Jessica Greenwood

Abstract:

ASPIRA Labs now offers an en-suit and ready-to-implement technology transfer solution to enable labs and hospitals that lack the resources to build it themselves to offer in-house genetic testing. This unique platform employs a patented Molecular Inversion Probe (MIP) technology that combines the specificity of a hybrid capture protocol with the ease of an amplicon-based protocol and utilizes an advanced bioinformatics analysis pipeline based on machine learning. To demonstrate its efficacy, two independent genetic tests were validated on this technology transfer platform: expanded carrier screening (ECS) and hereditary cancer testing (HC). The analytical performance of ECS and HC was validated separately in a blinded manner for calling three different types of variants: SNVs, short indels (typically, <50 bp), and large indels/CNVs defined as multi-exonic del/dup events. The reference set was constructed using samples from Coriell Institute, an external clinical genetic testing laboratory, Maine Molecular Quality Controls Inc. (MMQCI), SeraCare and GIAB Consortium. Overall, the analytical performance showed a sensitivity and specificity of >99.4% for both ECS and HC in detecting SNVs. For indels, both tests reported specificity of 100%, and ECS demonstrated a sensitivity of 100%, whereas HC exhibited a sensitivity of 96.5%. The bioinformatics pipeline also correctly called all reference CNV events resulting in a sensitivity of 100% for both tests. No additional calls were made in the HC panel, leading to a perfect performance (specificity and F-measure of 100%). In the carrier panel, however, three additional positive calls were made outside the reference set. Two of these calls were confirmed using an orthogonal method and were re-classified as true positives leaving only one false positive. The pipeline also correctly identified all challenging carrier statuses, such as positive cases for spinal muscular atrophy and alpha-thalassemia, resulting in 100% sensitivity. After confirmation of additional positive calls via long-range PCR and MLPA, specificity for such cases was estimated at 99%. These performance metrics demonstrate that this tech-transfer solution can be confidently internalized by clinical labs and hospitals to offer mainstream ECS and HC as part of their test catalog, substantially increasing access to quality germline genetic testing for labs of all sizes and resources levels.

Keywords: clinical genetics, genetic testing, molecular genetics, technology transfer

Procedia PDF Downloads 179
3452 An Implementation of a Dual-Spin Spacecraft Attitude Reorientation Using Properties of Its Chaotic Motion

Authors: Anton V. Doroshin

Abstract:

This article contains a description of main ideas for the attitude reorientation of spacecraft (small dual-spin spacecraft, nanosatellites) using properties of its chaotic attitude motion under the action of internal perturbations. The considering method based on intentional initiations of chaotic modes of attitude motion with big amplitudes of the nutation oscillations, and also on the redistributions of the angular momentum between coaxial bodies of the dual-spin spacecraft (DSSC), which perform in the purpose of system’s phase space changing.

Keywords: spacecraft, attitude dynamics, control, chaos

Procedia PDF Downloads 400
3451 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 38
3450 A Regional Innovation System Model Based on the Systems Thinking Approach

Authors: Samara E., Kilintzis P., Katsoras E., Martinidis G.

Abstract:

Regions play an important role in the global economy by driving research and innovation policies through a major tool, the Regional Innovation System (RIS). RIS is a social system that encompasses the systematic interaction of the various organizations that comprise it in order to improve local knowledge and innovation. This article describes the methodological framework for developing and validating a RIS model utilizing system dynamics. This model focuses on the functional structure of the RIS, separating it in six diverse, interacting sub-systems.

Keywords: innovations, regional development, systems thinking, social system

Procedia PDF Downloads 77
3449 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 139
3448 Comparing the ‘Urgent Community Care Team’ Clinical Referrals in the Community with Suggestions from the Clinical Decision Support Software Dem DX

Authors: R. Tariq, R. Lee

Abstract:

Background: Additional demands placed on senior clinical teams with ongoing COVID-19 management has accelerated the need to harness the wider healthcare professional resources and upskill them to take on greater clinical responsibility safely. The UK NHS Long Term Plan (2019)¹ emphasises the importance of expanding Advanced Practitioners’ (APs) roles to take on more clinical diagnostic responsibilities to cope with increased demand. In acute settings, APs are often the first point of care for patients and require training to take on initial triage responsibilities efficiently and safely. Critically, their roles include determining which onward services the patients may require, and assessing whether they can be treated at home, avoiding unnecessary admissions to the hospital. Dem Dx is a Clinical Reasoning Platform (CRP) that claims to help frontline healthcare professionals independently assess and triage patients. It guides the clinician from presenting complaints through associated symptoms to a running list of differential diagnoses, media, national and institutional guidelines. The objective of this study was to compare the clinical referral rates and guidelines adherence registered by the HMR Urgent Community Care Team (UCCT)² and Dem Dx recommendations using retrospective cases. Methodology: 192 cases seen by the UCCT were anonymised and reassessed using Dem Dx clinical pathways. We compared the UCCT’s performance with Dem Dx regarding the appropriateness of onward referrals. We also compared the clinical assessment regarding adherence to NICE guidelines recorded on the clinical notes and the presence of suitable guidance in each case. The cases were audited by two medical doctors. Results: Dem Dx demonstrated appropriate referrals in 85% of cases, compared to 47% in the UCCT team (p<0.001). Of particular note, Dem Dx demonstrated an almost 65% (p<0.001) improvement in the efficacy and appropriateness of referrals in a highly experienced clinical team. The effectiveness of Dem Dx is in part attributable to the relevant NICE and local guidelines found within the platform's pathways and was found to be suitable in 86% of cases. Conclusion: This study highlights the potential of clinical decision support, as Dem Dx, to improve the quality of onward clinical referrals delivered by a multidisciplinary team in primary care. It demonstrated that it could support healthcare professionals in making appropriate referrals, especially those that may be overlooked by providing suitable clinical guidelines directly embedded into cases and clear referral pathways. Further evaluation in the clinical setting has been planned to confirm those assumptions in a prospective study.

Keywords: advanced practitioner, clinical reasoning, clinical decision-making, management, multidisciplinary team, referrals, triage

Procedia PDF Downloads 154
3447 Towards a Critical Disentanglement of the ‘Religion’ Nexus in the Global East

Authors: Daan F. Oostveen

Abstract:

‘Religion’ as a term is not native to the Global East. The concept ‘religion’ is both understood in its meaning of ‘religious traditions’, commonly referring to the ‘World Religions’ and in its adjective meaning ‘the religious’ or ‘religiosity’ as a separate domain of human culture, commonly contrasted to the secular. Though neither of these understandings are native to the historical worldviews of East Asia, their development in modern Western scholarship has had an enormous impact on the self-understanding of cultural diversity in the Global East as well. One example is the identification and therefore elevation to the status of World Religion of ‘Buddhism’ which connected formerly dispersed religious practices throughout the Global East and subsumed them under this powerful label. On the other hand, we see how popular religiosity, shamanism and hybrid cultural expressions have become excluded from genuine religion; this had an immense impact on the sense of legitimacy of these practices, which became sometimes labeled as superstition are rejected as magic. Our theoretical frameworks on religion in the Global East do not always consider the complex power dynamics between religious actors, both elites and lay expressions of religion in everyday life, governments and religious studies scholars. In order to get a clear image of how religiosity functions in the context of the Global East, we have to take into account these power dynamics. What is important in particular is the issue of religious identity or absence of religious identity. The self-understanding of religious actors in the Global East is often very different from what scholars of religion observe. Religious practice, from an etic perspective, is often unrelated to religious identification from an emic perspective. But we also witness the rise of Christian churches in the Global East, in which religious identity and belonging does play a pivotal role. Finally, religion in the Global East has since the beginning of the 20th Century been conceptualized as the ‘other’ or republicanism or Marxist-Maoist ideology. It is important not to deny the key role of colonial thinking in the process of religion formation in the Global East. In this paper, it is argued that religious realities constituted emerging as a result from our theory of religion, and that these religious realities in turn inform our theory. Therefore, the relationship between phenomenology of religion and theory of religion can never be disentangled. In fact, we have to acknowledge that our conceptualizations of religious diversity are always already influenced by our valuation of those cultural expressions that we have come to call ‘religious’.

Keywords: global east, religion, religious belonging, secularity

Procedia PDF Downloads 140
3446 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 445
3445 In-silico DFT Study, Molecular Docking, ADMET Predictions, and DMS of Isoxazolidine and Isoxazoline Analogs with Anticancer Properties

Authors: Moulay Driss Mellaoui, Khadija Zaki, Khalid Abbiche, Abdallah Imjjad, Rachid Boutiddar, Abdelouahid Sbai, Aaziz Jmiai, Souad El Issami, Al Mokhtar Lamsabhi, Hanane Zejli

Abstract:

This study presents a comprehensive analysis of six isoxazolidine and isoxazoline derivatives, leveraging a multifaceted approach that combines Density Functional Theory (DFT), AdmetSAR analysis, and molecular docking simulations to explore their electronic, pharmacokinetic, and anticancer properties. Through DFT analysis, using the B3LYP-D3BJ functional and the 6-311++G(d,p) basis set, we optimized molecular geometries, analyzed vibrational frequencies, and mapped Molecular Electrostatic Potentials (MEP), identifying key sites for electrophilic attacks and hydrogen bonding. Frontier Molecular Orbital (FMO) analysis and Density of States (DOS) plots revealed varying stability levels among the compounds, with 1b, 2b, and 3b showing slightly higher stability. Chemical potential assessments indicated differences in binding affinities, suggesting stronger potential interactions for compounds 1b and 2b. AdmetSAR analysis predicted favorable human intestinal absorption (HIA) rates for all compounds, highlighting compound 3b superior oral effectiveness. Molecular docking and molecular dynamics simulations were conducted on isoxazolidine and 4-isoxazoline derivatives targeting the EGFR receptor (PDB: 1JU6). Molecular docking simulations confirmed the high affinity of these compounds towards the target protein 1JU6, particularly compound 3b, among the isoxazolidine derivatives, compound 3b exhibited the most favorable binding energy, with a g score of -8.50 kcal/mol. Molecular dynamics simulations over 100 nanoseconds demonstrated the stability and potential of compound 3b as a superior candidate for anticancer applications, further supported by structural analyses including RMSD, RMSF, Rg, and SASA values. This study underscores the promising role of compound 3b in anticancer treatments, providing a solid foundation for future drug development and optimization efforts.

Keywords: isoxazolines, DFT, molecular docking, molecular dynamic, ADMET, drugs.

Procedia PDF Downloads 52
3444 Leader Self-sacrifice in Sports Organizations

Authors: Stefano Ruggieri, Rubinia C. Bonfanti

Abstract:

Research on leadership in sports organizations has proved extremely fruitful in recent decades, favoring the growing and diffusion of figures such as mental coaches, trainers, etc. Recent scholarly attention on organizations has been directed towards the phenomenon of leader self-sacrifice, wherein leaders who display such behavior are perceived by their followers as more effective, charismatic, and legitimate compared to those who prioritize self-interest. This growing interest reflects the importance of leaders who prioritize the collective welfare over personal gain, as they inspire greater loyalty, trust, and dedication among their followers, ultimately fostering a more cohesive and high-performing team environment. However, there is limited literature on the mechanisms through which self-sacrifice influences both group dynamics (such as cohesion and team identification) and individual factors (such as self-competence). The aim of the study is to analyze the impact of the leader self-sacrifice on cohesion, team identification and self-competence. Team identification is a crucial determinant of individual identity, delineated by the extent to which a team member aligns with a specific organizational team rather than broader social collectives. This association motivates members to synchronize their actions with the collective interests of the group, thereby fostering cohesion among its constituents, and cultivating a shared sense of purpose and unity within the team. In the domain of team sports, particularly soccer and water polo, two studies involving 447 participants (men = 238, women = 209) between 22 and 35 years old (M = 26.36, SD = 5.51) were conducted. The first study employed a correlational methodology to investigate the predictive capacity of self-sacrifice on cohesion, team identification, self-efficacy, and self-competence. The second study utilized an experimental design to explore the relationship between team identification and self-sacrifice. Together, these studies provided comprehensive insights into the multifaceted nature of leader self-sacrifice and its profound implications for group cohesion and individual well-being within organizational settings. The findings underscored the pivotal role of leader self-sacrifice in not only fostering stronger bonds among team members but also in enhancing critical facets of group dynamics, ultimately contributing to the overall effectiveness and success of the team.

Keywords: cohesion, leadership, self-sacrifice, sports organizations, team-identification

Procedia PDF Downloads 51
3443 Longitudinal Profile of Antibody Response to SARS-CoV-2 in Patients with Covid-19 in a Setting from Sub–Saharan Africa: A Prospective Longitudinal Study

Authors: Teklay Gebrecherkos

Abstract:

Background: Serological testing for SARS-CoV-2 plays an important role in epidemiological studies, in aiding the diagnosis of COVID-19 and assess vaccine responses. Little is known about the dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. Methods: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune assays (LFIAs) and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. Results: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in the positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increase in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly from 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested within a median time of 11 (IQR: 9–15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6–11) vs. 15 (IQR: 13–21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibodies at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. Conclusions: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of serum assays before implementation. Factors associated with failure to seroconvert need further research.

Keywords: COVID-19, antibody, rapid diagnostic tests, ethiopia

Procedia PDF Downloads 87
3442 Monitoring Key Biomarkers Related to the Risk of Low Breastmilk Production in Women, Leading to a Positive Impact in Infant’s Health

Authors: R. Sanchez-Salcedo, N. H. Voelcker

Abstract:

Currently, low breast milk production in women is one of the leading health complications in infants. Recently, It has been demonstrated that exclusive breastfeeding, especially up to a minimum of 6 months, significantly reduces respiratory and gastrointestinal infections, which are the main causes of death in infants. However, the current data shows that a high percentage of women stop breastfeeding their children because they perceive an inadequate supply of milk, and only 45% of children are breastfeeding under 6 months. It is, therefore, clear the necessity to design and develop a biosensor that is sensitive and selective enough to identify and validate a panel of milk biomarkers that allow the early diagnosis of this condition. In this context, electrochemical biosensors could be a powerful tool for assessing all the requirements in terms of reliability, selectivity, sensitivity, cost efficiency and potential for multiplex detection. Moreover, they are suitable for the development of POC devices and wearable sensors. In this work, we report the development of two types of sensing platforms towards several biomarkers, including miRNAs and hormones present in breast milk and dysregulated in this pathological condition. The first type of sensing platform consists of an enzymatic sensor for the detection of lactose, one of the main components in milk. In this design, we used gold surface as an electrochemical transducer due to the several advantages, such as the variety of strategies available for its rapid and efficient functionalization with bioreceptors or capture molecules. For the second type of sensing platform, nanoporous silicon film (pSi) was chosen as the electrode material for the design of DNA sensors and aptasensors targeting miRNAs and hormones, respectively. pSi matrix offers a large superficial area with an abundance of active sites for the immobilization of bioreceptors and tunable characteristics, which increase the selectivity and specificity, making it an ideal alternative material. The analytical performance of the designed biosensors was not only characterized in buffer but also validated in minimally treated breastmilk samples. We have demonstrated the potential of an electrochemical transducer on pSi and gold surface for monitoring clinically relevant biomarkers associated with the heightened risk of low milk production in women. This approach, in which the nanofabrication techniques and the functionalization methods were optimized to increase the efficacy of the biosensor highly provided a foundation for further research and development of targeted diagnosis strategies.

Keywords: biosensors, electrochemistry, early diagnosis, clinical markers, miRNAs

Procedia PDF Downloads 25
3441 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform

Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy

Abstract:

A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.

Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing

Procedia PDF Downloads 176
3440 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons

Authors: Said Boularouk, Didier Josselin, Eitan Altman

Abstract:

In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.

Keywords: TTS, ontology, open street map, visually impaired

Procedia PDF Downloads 301
3439 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines

Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang

Abstract:

The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.

Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy

Procedia PDF Downloads 483
3438 An Incremental Refinement Approach to a Development of Dynamic Host Configuration Protocol (DHCP) Using Event-B

Authors: Rajaa Filali, Mohamed Bouhdadi

Abstract:

This paper presents an incremental development of the Dynamic Host Configuration Protocol (DHCP) in Event-B. DHCP is widely used communication protocol, which provides a standard mechanism to obtain configuration parameters. The specification is performed in a stepwise manner and verified through a series of refinements. The Event-B formal method uses the Rodin platform to modeling and verifying some properties of the protocol such as safety, liveness and deadlock freedom. To model and verify the protocol, we use the formal technique Event-B which provides an accessible and rigorous development method. This interaction between modelling and proving reduces the complexity and helps to eliminate misunderstandings, inconsistencies, and specification gaps.

Keywords: DHCP protocol, Event-B, refinement, proof obligation, Rodin

Procedia PDF Downloads 233
3437 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine

Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.

Keywords: diesel fuel, CFD, evaporation, multiphase

Procedia PDF Downloads 349
3436 Teaching and Learning Physics via GPS and WikiS

Authors: Hashini E. Mohottala

Abstract:

We report the combine use of Wikispaces (WikiS) and Group Problem Solving (GPS) sessions conducted in the introductory level physics classes. As a part of this new teaching tool, some essay type problems were posted on the WikiS in weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but the steps. Wikispace is used as a platform for students to meet online and create discussions. Each week students were further evaluated on problem solving skills opening up more opportunity for peer interaction through GPS. Each group was given a different problem to solve and the answers were graded. Students developed a set of skills in decision-making, problem solving, communication, negotiation, critical and independent thinking and teamwork through the combination of WikiS and GPS.

Keywords: group problem solving (GPS), wikispace (WikiS), physics education, learning

Procedia PDF Downloads 420
3435 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 277
3434 Conceptualizing of Priorities in the Dynamics of Public Administration Contemporary Reforms

Authors: Larysa Novak-Kalyayeva, Aleksander Kuczabski, Orystlava Sydorchuk, Nataliia Fersman, Tatyana Zemlinskaia

Abstract:

The article presents the results of the creative analysis and comparison of trends in the development of the theory of public administration during the period from the second half of the 20th to the beginning of the 21st century. The process of conceptualization of the priorities of public administration in the dynamics of reforming was held under the influence of such factors as globalization, integration, information and technological changes and human rights is examined. The priorities of the social state in the concepts of the second half of the 20th century are studied. Peculiar approaches to determining the priorities of public administration in the countries of "Soviet dictatorship" in Central and Eastern Europe in the same period are outlined. Particular attention is paid to the priorities of public administration regarding the interaction between public power and society and the development of conceptual foundations for the modern managerial process. There is a thought that the dynamics of the formation of concepts of the European governance is characterized by the sequence of priorities: from socio-economic and moral-ethical to organizational-procedural and non-hierarchical ones. The priorities of the "welfare state" were focused on the decent level of material wellbeing of population. At the same time, the conception of "minimal state" emphasized priorities of human responsibility for their own fate under the conditions of minimal state protection. Later on, the emphasis was placed on horizontal ties and redistribution of powers and competences of "effective state" with its developed procedures and limits of responsibility at all levels of government and in close cooperation with the civil society. The priorities of the contemporary period are concentrated on human rights in the concepts of "good governance" and all the following ones, which recognize the absolute priority of public administration with compliance, provision and protection of human rights. There is a proved point of view that civilizational changes taking place under the influence of information and technological imperatives also stipulate changes in priorities, redistribution of emphases and update principles of managerial concepts on the basis of publicity, transparency, departure from traditional forms of hierarchy and control in favor of interactivity and inter-sectoral interaction, decentralization and humanization of managerial processes. The necessity to permanently carry out the reorganization, by establishing the interaction between different participants of public power and social relations, to establish a balance between political forces and social interests on the basis of mutual trust and mutual understanding determines changes of social, political, economic and humanitarian paradigms of public administration and their theoretical comprehension. The further studies of theoretical foundations of modern public administration in interdisciplinary discourse in the context of ambiguous consequences of the globalizational and integrational processes of modern European state-building would be advisable. This is especially true during the period of political transformations and economic crises which are the characteristic of the contemporary Europe, especially for democratic transition countries.

Keywords: concepts of public administration, democratic transition countries, human rights, the priorities of public administration, theory of public administration

Procedia PDF Downloads 179
3433 Online Guidance and Counselling Needs and Preferences of University Undergraduates in a Nigerian University

Authors: Olusegun F. Adebowale

Abstract:

Research has confirmed that the emergence of information technology is significantly reflected in the field of psychology and its related disciplines due to its widespread use at reasonable price and its user-friendliness. It is consequently affecting ordinary life in many areas like shopping, advertising, corresponding and educating. Specifically the innovations of computer technology led to several new forms of communication, all with implications and applicability for counselling and psychotherapy practices. This is premise on which online counselling is based. Most institutions of higher learning in Nigeria have established their presence on the Internet and have deployed a variety of applications through ICT. Some are currently attempting to include counselling services in such applications with the belief that many counselling needs of students are likely to be met. This study therefore explored different challenges and preferences students present in online counselling interaction in a given Nigerian university with the view to guide new universities that may want to invest into these areas as to necessary preparations and referral requirements. The study is a mixed method research incorporating qualitative and quantitative methodologies to sample the preferences and concerns students express in online interaction. The sample comprised all the 876 students who visited the university online counselling platform either voluntarily, by invitation or by referral. The instrument for data collection was the online counselling platform of the university 'OAU Online counsellors'. The period of data collection spanned between January 2011 and October 2012. Data were analysed quantitatively (using percentages and Mann-Whitney U test) and qualitatively (using Interpretative Phenomenological Analysis (IPA)). The results showed that the students seem to prefer real-time chatting as their online medium of communicating with the online counsellor. The majority of students resorted to e-mail when their effort to use real-time chatting were becoming thwarted. Also, students preferred to enter into online counselling relationships voluntarily to other modes of entry. The results further showed that the prevalent counselling needs presented by students during online counselling sessions were mainly in the areas of social interaction and academic/educational concerns. Academic concerns were found to be prevalent, in form of course offerings, studentship matters and academic finance matters. The personal/social concerns were in form of students’ welfare, career related concerns and relationship matters. The study concludes students’ preferences include voluntary entry into online counselling, communication by real-time chatting and a specific focus on their academic concerns. It also recommends that all efforts should be made to encourage students’ voluntary entry into online counselling through reliable and stable internet infrastructure that will be able to support real-time chatting.

Keywords: online, counselling, needs, preferences

Procedia PDF Downloads 293
3432 Through the Robot’s Eyes: A Comparison of Robot-Piloted, Virtual Reality, and Computer Based Exposure for Fear of Injections

Authors: Bonnie Clough, Tamara Ownsworth, Vladimir Estivill-Castro, Matt Stainer, Rene Hexel, Andrew Bulmer, Wendy Moyle, Allison Waters, David Neumann, Jayke Bennett

Abstract:

The success of global vaccination programs is reliant on the uptake of vaccines to achieve herd immunity. Yet, many individuals do not obtain vaccines or venipuncture procedures when needed. Whilst health education may be effective for those individuals who are hesitant due to safety or efficacy concerns, for many of these individuals, the primary concern relates to blood or injection fear or phobia (BII). BII is highly prevalent and associated with a range of negative health impacts, both at individual and population levels. Exposure therapy is an efficacious treatment for specific phobias, including BII, but has high patient dropout and low implementation by therapists. Whilst virtual reality approaches exposure therapy may be more acceptable, they have similarly low rates of implementation by therapists and are often difficult to tailor to an individual client’s needs. It was proposed that a piloted robot may be able to adequately facilitate fear induction and be an acceptable approach to exposure therapy. The current study examined fear induction responses, acceptability, and feasibility of a piloted robot for BII exposure. A Nao humanoid robot was programmed to connect with a virtual reality head-mounted display, enabling live streaming and exploration of real environments from a distance. Thirty adult participants with BII fear were randomly assigned to robot-pilot or virtual reality exposure conditions in a laboratory-based fear exposure task. All participants also completed a computer-based two-dimensional exposure task, with an order of conditions counterbalanced across participants. Measures included fear (heart rate variability, galvanic skin response, stress indices, and subjective units of distress), engagement with a feared stimulus (eye gaze: time to first fixation and a total number of fixations), acceptability, and perceived treatment credibility. Preliminary results indicate that fear responses can be adequately induced via a robot-piloted platform. Further results will be discussed, as will implications for the treatment of BII phobia and other fears. It is anticipated that piloted robots may provide a useful platform for facilitating exposure therapy, being more acceptable than in-vivo exposure and more flexible than virtual reality exposure.

Keywords: anxiety, digital mental health, exposure therapy, phobia, robot, virtual reality

Procedia PDF Downloads 81
3431 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 459
3430 Media in Architecture-Intervention and Visual Experience in Religious Space

Authors: Jorge Duarte de Sá

Abstract:

The appearance of the new media technologies has opened new fields of intervention in architecture creating a new dynamic communication in the relationship between public and space, where are present technological devices that enable a new sensory experience, aesthetic and even spiritual. This connection makes relevant the idea of rehabilitate architectonic spaces with new media technologies such as sacred spaces. This research aims to create a media project integrated in sacred spaces that combine Architecture, Art and New Technologies, exploring new perspectives and different dynamics in space.

Keywords: media, architecture, religious spaces, projections, contemplation

Procedia PDF Downloads 355
3429 Digitalized Public Sector Practices: Opportunities for Open Innovation in Rwanda

Authors: Reem Abou Refaie, Christoph Meinel

Abstract:

The paper explores the impact of the COVID-19 crisis on the internal as well as external digitalized work practices of public service providers as part of a Public-Private Partnership Model. It focuses on the effect of uncertainty on generating Open Innovation practices. Our inquiry relies on semi-structured interviews (n=14) from a case study of Rwanda’s Public Service Delivery System in the context of research cooperation with IremboGov, the country’s One-Stop-Shop Platform for public services. It presents four propositions on harnessing opportunities for OI in the context of the public sector beyond the pandemic response. Practitioners can find characterizations of OI opportunities and gain insights on fostering OI in Public Sector Organizations.

Keywords: open innovation, digital transformation, public sector, Rwanda

Procedia PDF Downloads 133
3428 A Telecoupling Lens to Study Global Sustainability Entanglements along Supply Chains: The Case of Dutch-Kenyan Rose Trade

Authors: Klara Strecker

Abstract:

During times of globalization, socioeconomic systems have become connected across the world through global supply chains. As a result, consumption and production locations have increasingly become spatially decoupled. This decoupling leads to complex entanglements of systems and sustainability challenges across distances -entanglements which can be conceptualized as telecouplings. Through telecouplings, people and environments across the world have become closely connected, bringing challenges as well as opportunities. Some argue that telecoupling dynamics started taking shape during times of colonization when resources were first traded across the world. An example of such a telecoupling is that of the rose. Every third rose sold in Europe is grown in Kenya and enters the European market through the Dutch flower auction system. Many Kenyan farms are Dutch-owned, closely entangling Kenya and the Netherlands through the trade of roses. Furthermore, the globalization of the flower industry and the resulting shift of production away from the Netherlands and towards Kenya has led to significant changes in the Dutch horticulture sector. However, the sustainability effects of this rose telecoupling is limited neither to the horticulture sector nor to the Netherlands and Kenya. Alongside the flow of roses between these countries come complex financial, knowledge-based, and regulatory flows. The rose telecoupling also creates spillover effects to other countries, such as Ethiopia, and other industries, such as Kenyan tourism. Therefore, telecoupling dynamics create complex entanglements that cut across sectors, environments, communities, and countries, which makes effectively governing and managing telecouplings and their sustainability implications challenging. Indeed, sustainability can no longer be studied in spatial and temporal isolation. This paper aims to map the rose telecoupling’s complex environmental and social interactions to identify points of tension guiding sustainability-targeted interventions. Mapping these interactions will provide a more holistic understanding of the sustainability challenges involved in the Dutch-Kenyan rose trade. This interdisciplinary telecoupling approach reframes and integrates interdisciplinary knowledge about the rose trade between the Netherlands, Kenya, and beyond.

Keywords: Dutch-Kenyan rose trade, globalization, socio-ecological system, sustainability, telecoupling

Procedia PDF Downloads 109
3427 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 100