Search results for: online and distance learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10743

Search results for: online and distance learning

9333 Building in Language Support in a Hong Kong Chemistry Classroom with English as a Medium of Instruction: An Exploratory Study

Authors: Kai Yip Michael Tsang

Abstract:

Science writing has played a crucial part in science assessments. This paper reports a study in an area that has received little research attention – how Language across the Curriculum (LAC, i.e. science language and literacy) learning activities in science lessons can increase the science knowledge development of English as a foreign language (EFL) students in Hong Kong. The data comes from a school-based interventional study in chemistry classrooms, with written data from questionnaires, assessments and teachers’ logs and verbal data from interviews and classroom observations. The effectiveness of the LAC teaching and learning activities in various chemistry classrooms were compared and evaluated, with discussion of some implications. Students in the treatment group with lower achieving students received LAC learning and teaching activities while students in the control group with higher achieving students received conventional learning and teaching activities. After the study, they performed better in control group in formative assessments. Moreover, they had a better attitude to learning chemistry content with a richer language support. The paper concludes that LAC teaching and learning activities yielded positive learning outcomes among chemistry learners with low English ability.

Keywords: science learning and teaching, content and language integrated learning, language across the curriculum, English as a foreign language

Procedia PDF Downloads 190
9332 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping

Authors: Delowar Hossain, Genci Capi

Abstract:

This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.

Keywords: deep learning, genetic algorithm, object recognition, robot grasping

Procedia PDF Downloads 353
9331 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 153
9330 Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce

Authors: Sadia Idrees, Gianpaolo Vignali, Simeon Gill

Abstract:

The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands.

Keywords: e-commerce, mass customization, virtual size and fit, web 3.0 technology

Procedia PDF Downloads 141
9329 Digital Learning and Entrepreneurship Education: Changing Paradigms

Authors: Shivangi Agrawal, Hsiu-I Ting

Abstract:

Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g., online entrepreneurship education courses and programs) and other digital tools (e.g., digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.

Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19

Procedia PDF Downloads 259
9328 Rumour Containment Using Monitor Placement and Truth Propagation

Authors: Amrah Maryam

Abstract:

The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks.

Keywords: online social networks, monitor placement, independent cascade model, spread of misinformation

Procedia PDF Downloads 161
9327 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 57
9326 Voting Representation in Social Networks Using Rough Set Techniques

Authors: Yasser F. Hassan

Abstract:

Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.

Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices

Procedia PDF Downloads 393
9325 Design of Intelligent Scaffolding Learning Management System for Vocational Education

Authors: Seree Chadcham, Niphon Sukvilai

Abstract:

This study is the research and development which is intended to: 1) design of the Intelligent Scaffolding Learning Management System (ISLMS) for vocational education, 2) assess the suitability of the Design of Intelligent Scaffolding Learning Management System for Vocational Education. Its methods are divided into 2 phases. Phase 1 is the design of the ISLMS for Vocational Education and phase 2 is the assessment of the suitability of the design. The samples used in this study are work done by 15 professionals in the field of Intelligent Scaffolding, Learning Management System, Vocational Education, and Information and Communication Technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ISLMS for vocational education consists of 2 main components which are: 1) the Intelligent Learning Management System for Vocational Education, 2) the Intelligent Scaffolding Management System. The result of the system suitability assessment from the professionals is in the highest range.

Keywords: intelligent, scaffolding, learning management system, vocational education

Procedia PDF Downloads 795
9324 Natural Interaction Game-Based Learning of Elasticity with Kinect

Authors: Maryam Savari, Mohamad Nizam Ayub, Ainuddin Wahid Abdul Wahab

Abstract:

Game-based Learning (GBL) is an alternative that provides learners with an opportunity to experience a volatile environment in a safe and secure place. A volatile environment requires a different technique to facilitate learning and prevent injury and other hazards. Subjects involving elasticity are always considered hazardous and can cause injuries,for instance a bouncing ball. Elasticity is a topic that necessitates hands-on practicality for learners to experience the effects of elastic objects. In this paper the scope is to investigate the natural interaction between learners and elastic objects in a safe environment using GBL. During interaction, the potentials of natural contact in the process of learning were explored and gestures exhibited during the learning process were identified. GBL was developed using Kinect technology to teach elasticity to primary school children aged 7 to 12. The system detects body gestures and defines the meanings of motions exhibited during the learning process. The qualitative approach was deployed to constantly monitor the interaction between the student and the system. Based on the results, it was found that Natural Interaction GBL (Ni-GBL) is engaging for students to learn, making their learning experience more active and joyful.

Keywords: elasticity, Game-Based Learning (GBL), kinect technology, natural interaction

Procedia PDF Downloads 483
9323 Ten Minutes Neighbourhood as a Basic PlanningUnit for Happiness in Egypt

Authors: Abeer Elshater

Abstract:

This paper pursues the relationship between the inhabitants’ happiness and the right to the city in an Egyptian neighbourhood status quo. Although the optimum of getting the services comes from ten mints walking in a suitable ambiance, the happiness is not acquired. The research objective is, first, to review the literature that get a guideline of 10 minutes neighbourhoods. Second make a comparative content analysis to recent online articles to the right to the city. Third is to test the concluded principles in Egyptian neighbourhood settings. The idea of ten minutes neighbourhood is manageable. The hypothesis concerns a compliant design. The logic of people who live close to within ten minutes’ walk to essential settings in their area can minimize several problems and maximize a healthy lifestyle. The supposed issue makes the right to the city affect the relationship between ten minutes neighbourhood and citizen happiness. This assumption can be intervention through site observation and oriented questionnaire. The contribution comes from presenting new planning units in away suits the current context of the old cities in MENA region based on ten-minute walking or less distance with a reference to the right to the city. This planning unit can find it way to citizens' happiness.

Keywords: happiness, ten-minute neighbourhood, urban design, well-being

Procedia PDF Downloads 401
9322 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications

Authors: Dejenie Birile Gemeda, Wilhelm Stork

Abstract:

The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.

Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines

Procedia PDF Downloads 143
9321 The Design of Intelligent Classroom Management System with Raspberry PI

Authors: Sathapath Kilaso

Abstract:

Attendance checking in the classroom for student is object to record the student’s attendance in order to support the learning activities in the classroom. Despite the teaching trend in the 21st century is the student-center learning and the lecturer duty is to mentor and give an advice, the classroom learning is still important in order to let the student interact with the classmate and the lecturer or for a specific subject which the in-class learning is needed. The development of the system prototype by applied the microcontroller technology and embedded system with the “internet of thing” trend and the web socket technique will allow the lecturer to be alerted immediately whenever the data is updated.

Keywords: arduino, embedded system, classroom, raspberry PI

Procedia PDF Downloads 374
9320 Bi-Objective Optimization for Sustainable Supply Chain Network Design in Omnichannel

Authors: Veerpaul Maan, Gaurav Mishra

Abstract:

The evolution of omnichannel has revolutionized the supply chain of the organizations by enhancing customer shopping experience. For these organizations need to develop well-integrated multiple distribution channels to leverage the benefits of omnichannel. To adopt an omnichannel system in the supply chain has resulted in structuring and reconfiguring the practices of the traditional supply chain distribution network. In this paper a multiple distribution supply chain network (MDSCN) have been proposed which integrates online giants with a local retailers distribution network in uncertain environment followed by sustainability. To incorporate sustainability, an additional objective function is added to reduce the carbon content through minimizing the travel distance of the product. Through this proposed model, customers are free to access product and services as per their choice of channels which increases their convenience, reach and satisfaction. Further, a numerical illustration is being shown along with interpretation of results to validate the proposed model.

Keywords: sustainable supply chain network, omnichannel, multiple distribution supply chain network, integrate multiple distribution channels

Procedia PDF Downloads 223
9319 Teachers’ Involvement in their Designed Play Activities in a Chinese Context

Authors: Shu-Chen Wu

Abstract:

This paper will present a study by the author which investigates Chinese teachers’ perspectives on learning at play and their teaching activities in the designed play activities. It asks the question of how Chinese teachers understand learning at play and how they design play activities in the classroom. Six kindergarten teachers in Hong Kong were invited to select and record exemplary play episodes which contain the largest amount of learning elements in their own classrooms. Applying video-stimulated interview, eight teachers in two focus groups were interviewed to elicit their perspectives on designing play activity and their teaching activities. The findings reveal that Chinese teachers have a very structured representation of learning at play, and the phenomenon of uniformity of teachers’ act was found. The contributions of which are important and useful for professional practices and curricular policies.

Keywords: learning at play, teacher involvement, video-stimulated interview, uniformity

Procedia PDF Downloads 142
9318 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University

Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M.Anandhavalli, K. Gauthaman

Abstract:

Social Media (SM) are websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly college students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.

Keywords: social media, Web 2.0, perceived ease of use, perceived usefulness, collaborative Learning

Procedia PDF Downloads 508
9317 The Use of Flipped Classroom as a Teaching Method in a Professional Master's Program in Network, in Brazil

Authors: Carla Teixeira, Diana Azevedo, Jonatas Bessa, Maria Guilam

Abstract:

The flipped classroom is a blended learning modality that combines face-to-face and virtual activities of self-learning, mediated by digital information and communication technologies, which reverses traditional teaching approaches and presents, as a presupposition, the previous study of contents by students. In the following face-to-face activities, the contents are discussed, producing active learning. This work aims to describe the systematization process of the use of flipped classrooms as a method to develop complementary national activities in PROFSAÚDE, a professional master's program in the area of public health, offered as a distance learning course, in the network, in Brazil. The complementary national activities were organized with the objective of strengthening and qualifying students´ learning process. The network gathers twenty-two public institutions of higher education in the country. Its national coordination conducted a survey to detect complementary educational needs, supposed to improve the formative process and align important content sums for the program nationally. The activities were organized both asynchronously, making study materials available in Google classrooms, and synchronously in a tele presential way, organized on virtual platforms to reach the largest number of students in the country. The asynchronous activities allowed each student to study at their own pace and the synchronous activities were intended for deepening and reflecting on the themes. The national team identified some professors' areas of expertise, who were contacted for the production of audiovisual content such as video classes and podcasts, guidance for supporting bibliographic materials and also to conduct synchronous activities together with the technical team. The contents posted in the virtual classroom were organized by modules and made available before the synchronous meeting; these modules, in turn, contain “pills of experience” that correspond to reports of teachers' experiences in relation to the different themes. In addition, activity was proposed, with questions aimed to expose doubts about the contents and a learning challenge, as a practical exercise. Synchronous activities are built with different invited teachers, based on the participants 'discussions, and are the forum where teachers can answer students' questions, providing feedback on the learning process. At the end of each complementary activity, an evaluation questionnaire is available. The responses analyses show that this institutional network experience, as pedagogical innovation, provides important tools to support teaching and research due to its potential in the participatory construction of learning, optimization of resources, the democratization of knowledge and sharing and strengthening of practical experiences on the network. One of its relevant aspects was the thematic diversity addressed through this method.

Keywords: active learning, flipped classroom, network education experience, pedagogic innovation

Procedia PDF Downloads 159
9316 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar

Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour

Abstract:

This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.

Keywords: digital technology, inquiry-based learning, mathematics and science education, professional development

Procedia PDF Downloads 142
9315 Socio-Motor Experience between Affectivity and Movement from Harry Potter to Lord of the Rings

Authors: Manuela Gamba, Niki Mandolesi

Abstract:

Teenagers today have little knowledge about how to move or play together. The adults who are part of sports culture must find an effective way to foster this essential ability. Our research in Italy uses a 'holistic model' based on fantasy literature to explore the relationships between the game identities and self-identities of young people and the achievement of psycho-motor, emotional and social well-being in the realms of sport and education. Physical activity projects were carried out in schools and extra-curricular associations in Rome, combining outdoor activities and distance learning. This holistic and malleable game model is inspired by fantasy accounts of the journeys taken in The Lord of Rings and Harry Potter books. We know that many have a lot of resistance to the idea of using fantasy and play as a pedagogical tool, but the results obtained in this experience are surprising. Our interventions and investigations focused on promoting self-esteem, awareness, a sense of belonging, social integration, cooperation, well-being, and informed decision making: a basis for healthy and effective citizenship. For teenagers, creative thinking is the right stimulus to involve and compare the story of characters to their own journey through social and self-reflective identity analysis. We observed how important it is to engage students emotionally as well as cognitively and that enabling them to play with identity through relationships with peers. There is a need today for a multidisciplinary synthesis of analog and digital values, especially in response to recent distance-living experiences. There is a need for a global reconceptualization of free time and nature in the human experience.

Keywords: awareness, creativity, identity, play

Procedia PDF Downloads 190
9314 Effective Learning and Testing Methods in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi

Abstract:

When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.

Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning

Procedia PDF Downloads 202
9313 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 94
9312 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
9311 Learning Motivation Factors for Pre-Cadets in Armed Forces Academies Preparatory School, Ministry of Defense

Authors: Prachya Kamonphet

Abstract:

The purposes of this research were to study the learning motivation factors for Pre-cadets in Armed Forces Academies Preparatory School, Ministry of Defense. The subjects were 320 Pre-cadets (from all 3-year classes of Pre-cadets, the academic year 2015). The research instruments were questionnaires. The collected data were analyzed by means of Descriptive Statistic and One-Way Analysis of Variance. The results of this study were as follows: The relation between the Pre-cadets’ average grade and the motivation in studying was significance.In the aspect of the environment related to Pre-cadets’ families and the motivation in studying.In the aspect of the environment related to Pre-cadets’ studying, it was found that teaching method, learning place, educational media, relationship between teachers and Pre-cadets, relationship between Pre-cadets and their friends, and relationship between Pre-cadets and the commanders were significant.

Keywords: learning motivation factors, learning motivation, armed forces academies preparatory school, learning

Procedia PDF Downloads 242
9310 The Impact of Culture in Teaching English, the Case Study of Preparatory School of Sciences and Techniques

Authors: Nouzha Yasmina Soulimane-Benhabib

Abstract:

Language is a medium of communication and a means of expression that is why today the learning of foreign languages especially the English language has become a basic necessity for every student who is ambitious. It is known that culture and language are inseparable and complementary, however, in the process of teaching a foreign language, teachers used to focus mainly on preparing adequate syllabi for ESP students, yet, some parameters should be considered. For instance; the culture of the target language may play an important role since students attitudes towards a foreign language enhance their learning or vice versa. The aim of this study is to analyse how culture could influence the teaching of a foreign language, we have taken the example of the English language as it is considered as the second foreign language in Algeria after French. The study is conducted at the Preparatory School of Sciences and Techniques, Tlemcen where twenty-five students participated in this research. The reasons behind learning the English language are various, and since English is the most widely-spoken language in the world, it is the language of research and education and it is used in many other fields, we have to take into consideration one important factor which is the social distance between the culture of the Algerian learner and the culture of the target language, this gap may lead to a culture shock. Two steps are followed in this research: The first one is to collect data from those students who are studying at the Preparatory School under the form of questionnaire and an interview is submitted to six of them in order to reinforce our research and get effective and precise results, and the second step is to analyse these data taking into consideration the diversity of the learners within this institution. The results obtained show that learners’ attitudes towards the English community and culture are mixed and it may influence their curiosity and attention to learn. Despite of big variance between Algerian and European cultures, some of the students focused mainly on the benefits of the English language since they need it in their studies, research and a future carrier, however, the others manifest their reluctance towards this language and this is mainly due to the profound impact of the English culture which is different from the Algerian one.

Keywords: Algeria, culture, English, impact

Procedia PDF Downloads 388
9309 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 230
9308 Vector Quantization Based on Vector Difference Scheme for Image Enhancement

Authors: Biji Jacob

Abstract:

Vector quantization algorithm which uses minimum distance calculation for codebook generation, a time consuming calculation performed on each pixel values leads to computation complexity. The codebook is updated by comparing the distance of each vector to their centroid vector and measure for their closeness. In this paper vector quantization is modified based on vector difference algorithm for image enhancement purpose. In the proposed scheme, vector differences between the vectors are considered as the new generation vectors or new codebook vectors. The codebook is updated by comparing the new generation vector with a threshold value having minimum error with the parent vector. The minimum error decides the fitness of each newly generated vector. Thus the codebook is generated in an adaptive manner and the fitness value is determined for the suppression of the degraded portion of the image and thereby leads to the enhancement of the image through the adaptive searching capability of the vector quantization through vector difference algorithm. Experimental results shows that the vector difference scheme efficiently modifies the vector quantization algorithm for enhancing the image with peak signal to noise ratio (PSNR), mean square error (MSE), Euclidean distance (E_dist) as the performance parameters.

Keywords: codebook, image enhancement, vector difference, vector quantization

Procedia PDF Downloads 267
9307 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species

Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu

Abstract:

Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.

Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species

Procedia PDF Downloads 362
9306 The Use of Bimodal Subtitles on Netflix English Movies in Enhancing Vocabulary

Authors: John Lloyd Angolluan, Jennile Caday, Crystal Mae Estrella, Reike Alliyah Taladua, Zion Michael Ysulat

Abstract:

One of the requirements of having the ability to communicate in English is by having adequate vocabulary. Nowadays, people are more engaged in watching movie streams on which they can watch movies in a very portable way, such as Netflix. Wherein Netflix became global demand for online media has taken off in recent years. This research aims to know whether the use of bimodal subtitles on Netflix English movies can enhance vocabulary. This study is quantitative and utilizes a descriptive method, and this study aims to explore the use of bimodal subtitles on Netflix English movies to enhance the vocabulary of students. The respondents of the study were the selected Second-year English majors of Rizal Technological University Pasig and Boni Campus using the purposive sampling technique. The researcher conducted a survey questionnaire through the use of Google Forms. In this study, the weighted mean was used to evaluate the student's responses to the statement of the problems of the study of the use of bimodal subtitles on Netflix English movies. The findings of this study revealed that the bimodal subtitle on Netflix English movies enhanced students’ vocabulary learning acquisition by providing learners with access to large amounts of real and comprehensible language input, whether accidentally or intentionally, and it turns out that bimodal subtitles on Netflix English movies help students recognize vocabulary, which has a positive impact on their vocabulary building. Therefore, the researchers advocate that watching English Netflix movies enhances students' vocabulary by using bimodal subtitled movie material during their language learning process, which may increase their motivation and the usage of bimodal subtitles in learning new vocabulary. Bimodal subtitles need to be incorporated into educational film activities to provide students with a vast amount of input to expand their vocabulary.

Keywords: bimodal subtitles, Netflix, English movies, vocabulary, subtitle, language, media

Procedia PDF Downloads 85
9305 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
9304 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines

Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki

Abstract:

The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.

Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development

Procedia PDF Downloads 76