Search results for: neural style transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5360

Search results for: neural style transfer

3950 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: Azzedine Abdedou, Khedidja Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: forced convection, porous media, oriented confined jet, fluid mechanics

Procedia PDF Downloads 382
3949 Drought Risk Analysis Using Neural Networks for Agri-Businesses and Projects in Lejweleputswa District Municipality, South Africa

Authors: Bernard Moeketsi Hlalele

Abstract:

Drought is a complicated natural phenomenon that creates significant economic, social, and environmental problems. An analysis of paleoclimatic data indicates that severe and extended droughts are inevitable part of natural climatic circle. This study characterised drought in Lejweleputswa using both Standardised Precipitation Index (SPI) and neural networks (NN) to quantify and predict respectively. Monthly 37-year long time series precipitation data were obtained from online NASA database. Prior to the final analysis, this dataset was checked for outliers using SPSS. Outliers were removed and replaced by Expectation Maximum algorithm from SPSS. This was followed by both homogeneity and stationarity tests to ensure non-spurious results. A non-parametric Mann Kendall's test was used to detect monotonic trends present in the dataset. Two temporal scales SPI-3 and SPI-12 corresponding to agricultural and hydrological drought events showed statistically decreasing trends with p-value = 0.0006 and 4.9 x 10⁻⁷, respectively. The study area has been plagued with severe drought events on SPI-3, while on SPI-12, it showed approximately a 20-year circle. The concluded the analyses with a seasonal analysis that showed no significant trend patterns, and as such NN was used to predict possible SPI-3 for the last season of 2018/2019 and four seasons for 2020. The predicted drought intensities ranged from mild to extreme drought events to come. It is therefore recommended that farmers, agri-business owners, and other relevant stakeholders' resort to drought resistant crops as means of adaption.

Keywords: drought, risk, neural networks, agri-businesses, project, Lejweleputswa

Procedia PDF Downloads 126
3948 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
3947 Intelligent Prediction of Breast Cancer Severity

Authors: Wahab Ali, Oyebade K. Oyedotun, Adnan Khashman

Abstract:

Breast cancer remains a threat to the woman’s world in view of survival rates, it early diagnosis and mortality statistics. So far, research has shown that many survivors of breast cancer cases are in the ones with early diagnosis. Breast cancer is usually categorized into stages which indicates its severity and corresponding survival rates for patients. Investigations show that the farther into the stages before diagnosis the lesser the chance of survival; hence the early diagnosis of breast cancer becomes imperative, and consequently the application of novel technologies to achieving this. Over the year, mammograms have used in the diagnosis of breast cancer, but the inconclusive deductions made from such scans lead to either false negative cases where cancer patients may be left untreated or false positive where unnecessary biopsies are carried out. This paper presents the application of artificial neural networks in the prediction of severity of breast tumour (whether benign or malignant) using mammography reports and other factors that are related to breast cancer.

Keywords: breast cancer, intelligent classification, neural networks, mammography

Procedia PDF Downloads 487
3946 Effective Learning and Testing Methods in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi

Abstract:

When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.

Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning

Procedia PDF Downloads 202
3945 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 16
3944 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 345
3943 Contemporary Army Prints for Women’s Wear Kurti

Authors: Shaleni Bajpai, Nancy Stephan

Abstract:

Various designs of women’s kurtis with different styles, motifs and prints were available in market but none of the kurtis was found in army print. Mostly army prints are used for men’s wear like jackets, trousers, caps, bags. The main colours available in military prints were beige, parrot green, red, dark blue, light blue, orange, bottle green, pink and the original military green colour. As the original camouflage is banned in civil wears so the different variety and colours were used in this study to popularize army prints in women’s wear. The aim of this project was to construct different styles of women kurti’s with various colours of different military prints. Mood board, inspiration and colour board was prepared to design the kurtis. The fabric used for construction was army printed poplin and crepe. The designing and construction of kurti’s were divided into two categories such as - casual and party wear. Casual wear had simple silhouette like a-line, high-low and waist coat style whereas party wear included princess line, panelled and bandhani style. Structured questionnaire was prepared to assess the acceptance of newly designed kurtis with respect to colour combination, overall appearance and cost. Purposively sampling method was adopted for selection of respondents. Opinion was taken from 100 women of various age groups. The result and analysis was presented through graph and percentage. Kurtis in army print of both the categories were appreciated by the respondents.

Keywords: army, kurti, casual wear, party wear

Procedia PDF Downloads 302
3942 Effect of Parenting Style on Aggression and Empathy in Children Between the Age of 10-12

Authors: Debangana Mukherjee

Abstract:

This study delves into the pivotal role of parenting styles in shaping the development of aggression and empathy in children aged 10 to 12. Using a sample of 300 school students, we employed self-assessment questionnaires and scales to investigate correlations between parenting styles—authoritative, authoritarian, permissive, and neglectful—and behavioural traits, focusing on aggression and empathy as primary outcomes. The findings underscore the intricate relationships between parenting styles, aggressive behaviours, and empathetic tendencies. Notably, certain parenting approaches demonstrated strong correlations with specific behavioural outcomes. For instance, authoritarian parenting showed associations with increased aggression and reduced empathy, while authoritative parenting exhibited the opposite trend. These correlations emphasize the potential impact of parenting styles on children's behavioural development during this critical transitional phase. However, this study is limited by its correlational nature, which does not imply causation. The complexities of human behaviour, the limited scope of analysis, and the need for further research into causative relationships and cultural influences call for a nuanced understanding of these dynamics. Moving forward, longitudinal studies, causality investigations, consideration of cultural diversity, and exploration of additional variables could enrich our understanding of the interplay between parenting styles, empathy, and aggression. Validating these findings across diverse populations and refining interventions could pave the way for nurturing healthy behavioural development in children.

Keywords: aggression, correlational nature, empathy, longitudinal studies, parenting style

Procedia PDF Downloads 56
3941 Electrochemical Radiofrequency Scanning Tunneling Microscopy Measurements for Fingerprinting Single Electron Transfer Processes

Authors: Abhishek Kumar, Mohamed Awadein, Georg Gramse, Luyang Song, He Sun, Wolfgang Schofberger, Stefan Müllegger

Abstract:

Electron transfer is a crucial part of chemical reactions which drive everyday processes. With the help of an electro-chemical radio frequency scanning tunneling microscopy (EC-RF-STM) setup, we are observing single electron mediated oxidation-reduction processes in molecules like ferrocene and transition metal corroles. Combining the techniques of scanning microwave microscopy and cyclic voltammetry allows us to monitor such processes with attoampere sensitivity. A systematic study of such phenomena would be critical to understanding the nano-scale behavior of catalysts, molecular sensors, and batteries relevant to the development of novel material and energy applications.

Keywords: radiofrequency, STM, cyclic voltammetry, ferrocene

Procedia PDF Downloads 480
3940 Evolution under Length Constraints for Convolutional Neural Networks Architecture Design

Authors: Ousmane Youme, Jean Marie Dembele, Eugene Ezin, Christophe Cambier

Abstract:

In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.

Keywords: CNN architecture, genetic algorithm, evolution algorithm, length constraints

Procedia PDF Downloads 128
3939 Effect of Flow Holes on Heat Release Performance of Extruded-Type Heat Sink

Authors: Jung Hyun Kim, Gyo Woo Lee

Abstract:

In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5°C by the holes.

Keywords: heat sink, forced convection, heat transfer, performance evaluation, flow holes

Procedia PDF Downloads 533
3938 The Developmental Model of Teaching and Learning Clinical Practicum at Postpartum Ward for Nursing Students by Using VARK Learning Styles

Authors: Wanwadee Neamsakul

Abstract:

VARK learning style is an effective method of learning that could enhance all skills of the students like visual (V), auditory (A), read/write (R), and kinesthetic (K). This learning style benefits the students in terms of professional competencies, critical thinking and lifelong learning which are the desirable characteristics of the nursing students. This study aimed to develop a model of teaching and learning clinical practicum at postpartum ward for nursing students by using VARK learning styles, and evaluate the nursing students’ opinions about the developmental model. A methodology used for this study was research and development (R&D). The model was developed by focus group discussion with five obstetric nursing instructors who have experiences teaching Maternal Newborn and Midwifery I subject. The activities related to practices in the postpartum (PP) ward including all skills of VARK were assigned into the matrix table. The researcher asked the experts to supervise the model and adjusted the model following the supervision. Subsequently, it was brought to be tried out with the nursing students who practiced on the PP ward. Thirty third year nursing students from one of the northern Nursing Colleges, Academic year 2015 were purposive sampling. The opinions about the satisfaction of the model were collected using a questionnaire which was tested for its validity and reliability. Data were analyzed using descriptive statistics. The developed model composed of 27 activities. Seven activities were developed as enhancement of visual skills for the nursing students (25.93%), five activities as auditory skills (18.52%), six activities as read and write skills (22.22%), and nine activities as kinesthetic skills (33.33%). Overall opinions about the model were reported at the highest level of average satisfaction (mean=4.63, S.D=0.45). In the aspects of visual skill (mean=4.80, S.D=0.45) was reported at the highest level of average satisfaction followed by auditory skill (mean=4.62, S.D=0.43), read and write skill (mean=4.57, S.D=0.46), and kinesthetic skill (mean=4.53, S.D=0.45) which were reported at the highest level of average satisfaction, respectively. The nursing students reported that the model could help them employ all of their skills during practicing and taking care of the postpartum women and newborn babies. They could establish self-confidence while providing care and felt proud of themselves by the benefits of the model. It can be said that using VARK learning style to develop the model could enhance both nursing students’ competencies and positive attitude towards the nursing profession. Consequently, they could provide quality care for postpartum women and newborn babies effectively in the long run.

Keywords: model, nursing students, postpartum ward, teaching and learning clinical practicum

Procedia PDF Downloads 150
3937 The Relationship between Knowledge Management Processes and Strategic Thinking at the Organization Level

Authors: Bahman Ghaderi, Hedayat Hosseini, Parviz Kafche

Abstract:

The role of knowledge management processes in achieving the strategic goals of organizations is crucial. To this end, understanding the relationship between knowledge management processes and different aspects of strategic thinking (followed by long-term organizational planning) should be considered. This research examines the relationship between each of the five knowledge management processes (creation, storage, transfer, audit, and deployment) with each dimension of strategic thinking (vision, creativity, thinking, communication and analysis) in one of the major sectors of the food industry in Iran. In this research, knowledge management and its dimensions (knowledge acquisition, knowledge storage, knowledge transfer, knowledge auditing, and finally knowledge utilization) as independent variables and strategic thinking and its dimensions (creativity, systematic thinking, vision, strategic analysis, and strategic communication) are considered as the dependent variable. The statistical population of this study consisted of 245 managers and employees of Minoo Food Industrial Group in Tehran. In this study, a simple random sampling method was used, and data were collected by a questionnaire designed by the research team. Data were analyzed using SPSS 21 software. LISERL software is also used for calculating and drawing models and graphs. Among the factors investigated in the present study, knowledge storage with 0.78 had the most effect, and knowledge transfer with 0.62 had the least effect on knowledge management and thus on strategic thinking.

Keywords: knowledge management, strategic thinking, knowledge management processes, food industry

Procedia PDF Downloads 170
3936 Digital Recording System Identification Based on Audio File

Authors: Michel Kulhandjian, Dimitris A. Pados

Abstract:

The objective of this work is to develop a theoretical framework for reliable digital recording system identification from digital audio files alone, for forensic purposes. A digital recording system consists of a microphone and a digital sound processing card. We view the cascade as a system of unknown transfer function. We expect same manufacturer and model microphone-sound card combinations to have very similar/near identical transfer functions, bar any unique manufacturing defect. Input voice (or other) signals are modeled as non-stationary processes. The technical problem under consideration becomes blind deconvolution with non-stationary inputs as it manifests itself in the specific application of digital audio recording equipment classification.

Keywords: blind system identification, audio fingerprinting, blind deconvolution, blind dereverberation

Procedia PDF Downloads 304
3935 Hero’s Journey in the Poetry of Mahdi Akhavsn Sales and T. S. Eliot: A Comparative Study

Authors: Mahin Pourmorad Naseri

Abstract:

Myths have been an inseparable aspect of man’s life in all nations and cultures across the world over time; however, it seems that the form and use of myths in the poetry of the 20th century have gained a new meaning and purpose. Among the poets of the time, T. S. Eliot in English and Mahdi Akhavan Sales in Persian are the two mostly referred to in this regard. In this paper, the pattern of heroic journey as the main theme in the poetry of Akhavan and Eliot will be reviewed, compared, and contrasted. Attempts have been made to find out how the myth of the hero’s journey has been reflected in the century’s well-known poetry and if myth allusions in these poems confirm or reject Campbell’s claim that mythology can be an appropriate psychological cure for man’s loneliness in today’s life. T. S. Eliot (1888-1965), the English poet, essayist, playwright, publisher, and critic, is mostly known for his modernist poetry and the extensive allusions to mythologies and world literary masterpieces. At the same time, Mahdi Akhavan Sales (1929-1990) Iranian poet, one of the pioneers of modern Persian poetry, is also most well-known for his epic poetic style (Khorasani Style) and also his high amount of allusions to myths, especially Zoroastrian mythology, and his myth-making technique. Although their greatly different cultural background may cause the similarities in their poetic style and themes not to attract attention, at first sight, reading the poems closely through the light of the 20th century’s life context and literary movements reveal interesting similarities in the way they understand and apply myth in their poetry. The present paper reviews the theme of the hero’s journey in Akhavan’s Chavooshi and Eliot’s “Journey of the Magi” from the perspective of Campbell’s notion of mono-myth or the pattern of mythic hero’s journey. The poems will be reviewed in search of the steps of the inward journey the heroes make, the goals they pursue, and how successful they are in achieving the goals. The findings of the study reveal that while the difference in the social context of the poets makes the small differences in the stages of the journey, both journeys end in a gloomy atmosphere for the disappointedly isolated hero who is finally left alone in the godless and materialistic world of 20th century. It is also evident that both poets meant to fulfill their responsibility of reviving mythology in writing the poems.

Keywords: myth, Akhavan, Eliot, poetry, hero's journey

Procedia PDF Downloads 100
3934 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 126
3933 Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed

Authors: Zhao Wang, Hong Yan

Abstract:

In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved.

Keywords: gas-particle flow, unified gas-kinetic scheme, momentum transfer, shock-induced fluidization

Procedia PDF Downloads 262
3932 Turbulent Channel Flow Synthesis using Generative Adversarial Networks

Authors: John M. Lyne, K. Andrea Scott

Abstract:

In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.

Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network

Procedia PDF Downloads 206
3931 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 563
3930 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network

Authors: Donya Ashtiani Haghighi, Amirali Baniasadi

Abstract:

Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.

Keywords: capsule network, dropout, hyperparameter tuning, classification

Procedia PDF Downloads 77
3929 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning

Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath

Abstract:

The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.

Keywords: BLIP, fMRI, latent diffusion model, neural perception.

Procedia PDF Downloads 68
3928 Effect of Parenting Style on Aggression and Empathy in Children Between the Ages of 10-12

Authors: Debangana Mukherjee

Abstract:

This study delves into the pivotal role of parenting styles in shaping the development of aggression and empathy in children aged 10 to 12. Using a sample of 300 school students, we employed self-assessment questionnaires and scales to investigate correlations between parenting styles—authoritative, authoritarian, permissive, and neglectful—and behavioural traits, focusing on aggression and empathy as primary outcomes. The findings underscore the intricate relationships between parenting styles, aggressive behaviours, and empathetic tendencies. Notably, certain parenting approaches demonstrated strong correlations with specific behavioural outcomes. For instance, authoritarian parenting showed associations with increased aggression and reduced empathy, while authoritative parenting exhibited the opposite trend. These correlations emphasize the potential impact of parenting styles on children's behavioural development during this critical transitional phase. However, this study is limited by its correlational nature, which does not imply causation. The complexities of human behaviour, the limited scope of analysis, and the need for further research into causative relationships and cultural influences call for a nuanced understanding of these dynamics. Moving forward, longitudinal studies, causality investigations, consideration of cultural diversity, and exploration of additional variables could enrich our understanding of the interplay between parenting styles, empathy, and aggression. Validating these findings across diverse populations and refining interventions could pave the way for nurturing healthy behavioural development in children.

Keywords: aggression, correlational nature, empathy, longitudinal studies, parenting style

Procedia PDF Downloads 53
3927 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction

Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz

Abstract:

In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.

Keywords: software quality, fuzzy logic, perception, prediction

Procedia PDF Downloads 317
3926 Improving the Teaching of Mathematics at University Using the Inverted Classroom Model: A Case in Greece

Authors: G. S. Androulakis, G. Deli, M. Kaisari, N. Mihos

Abstract:

Teaching practices at the university level have changed and developed during the last decade. Implementation of inverted classroom method in secondary education consists of a well-formed basis for academic teachers. On the other hand, distance learning is a well-known field in education research and widespread as a method of teaching. Nonetheless, the new pandemic found many Universities all over the world unprepared, which made adaptations to new methods of teaching a necessity. In this paper, we analyze a model of an inverted university classroom in a distance learning context. Thus, the main purpose of our research is to investigate students’ difficulties as they transit to a new style of teaching and explore their learning development during a semester totally different from others. Our teaching experiment took place at the Business Administration department of the University of Patras, in the context of two courses: Calculus, a course aimed at first-year students, and Statistics, a course aimed at second-year students. Second-year students had the opportunity to attend courses in the university classroom. First-year students started their semester with distance learning. Using a comparative study of these two groups, we explored significant differences in students’ learning procedures. Focused group interviews, written tests, analyses of students’ dialogues were used in a mixed quantity and quality research. Our analysis reveals students’ skills, capabilities but also a difficulty in following, non-traditional style of teaching. The inverted classroom model, according to our findings, offers benefits in the educational procedure, even in a distance learning environment.

Keywords: distance learning, higher education, inverted classroom, mathematics teaching

Procedia PDF Downloads 133
3925 The Effect of Type of Nanoparticles on the Quenching Process

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Harun Cifci

Abstract:

In this study, the experiments were carried out to determine the best coolant for the quenching process among water-based silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. After the spherical test specimen was heated at high temperatures, it was suddenly plunged into the nanofluid suspensions. All experiments were performed at saturated conditions and under atmospheric pressure. Using the temperature-time data of the specimen, the cooling curves were obtained. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles.

Keywords: quenching, nanofluid, pool boiling, heat transfer

Procedia PDF Downloads 293
3924 Effect of Permeability on Glass Fiber Reinforced Plastic Laminate Produced by Vacuum Assisted Resin Transfer Molding Process

Authors: Nagri Sateesh, Kundavarapu Vengalrao, Kopparthi Phaneendra Kumar

Abstract:

Vacuum assisted resin transfer molding (VARTM) is one of the manufacturing technique that is viable for production of fiber reinforced polymer composite components suitable for aerospace, marine and commercial applications. However, the repeatable quality of the product can be achieved by critically fixing the process parameters such as Vacuum Pressure (VP) and permeability of the preform. The present investigation is aimed at studying the effect of permeability for production of Glass Fiber Reinforced Plastic (GFRP) components with consistent quality. The VARTM mould is made with an acrylic transparent top cover to observe and record the resin flow pattern. Six layers of randomly placed glass fiber under five different vacuum pressures VP1 = 0.013, VP2 = 0.026, VP3 = 0.039, VP4 = 0.053 and VP5 = 0.066 MPa were studied. The laminates produced by this process under the above mentioned conditions were characterized with ASTM D procedures so as to study the effect of these process parameters on the quality of the laminate. Moreover, as mentioned there is a considerable effect of permeability on the impact strength and the void content in the laminates under different vacuum pressures. SEM analysis of the impact tested fractured GFRP composites showed the bonding of fiber and matrix.

Keywords: permeability, vacuum assisted resin transfer molding (VARTM), ASTM D standards, SEM

Procedia PDF Downloads 160
3923 Reading against the Grain: Transcodifying Stimulus Meaning

Authors: Aba-Carina Pârlog

Abstract:

On translating, reading against the grain results in a wrong effect in the TL. Quine’s ocular irradiation plays an important part in the process of understanding and translating a text. The various types of textual radiation must be rendered by the translator by paying close attention to the types of field that produce it. The literary work must be seen as an indirect cause of an expressive effect in the TL that is supposed to be similar to the effect it has in the SL. If the adaptive transformative codes are so flexible that they encourage the translator to repeatedly leave out parts of the original work, then a subversive pattern emerges which changes the entire book. In this case, the translator is a writer per se who decides what goes in and out of the book, how the style is to be ciphered and what elements of ideology are to be highlighted. Figurative language must not be flattened for the sake of clarity or naturalness. The missing figurative elements make the translated text less interesting, less challenging and less vivid which reflects poorly on the writer. There is a close connection between style and the writer’s person. If the writer’s style is very much changed in a translation, the translation is useless as the original writer and his / her imaginative world can no longer be discovered. Then, a different writer appears and his / her creation surfaces. Changing meaning considered as a “negative shift” in translation defines one of the faulty transformative codes used by some translators. It is a dangerous tool which leads to adaptations that sometimes reflect the original less than the reader would wish to. It contradicts the very essence of the process of translation which is that of making a work available in a foreign language. Employing speculative aesthetics at the level of a text indicates the wish to create manipulative or subversive effects in the translated work. This is generally achieved by adding new words or connotations, creating new figures of speech or using explicitations. The irradiation patterns of the original work are neglected and the translator creates new meanings, implications, emphases and contexts. Again s/he turns into a new author who enjoys the freedom of expressing his / her ideas without the constraints of the original text. The stimulus meaning of a text is very important for a translator which is why reading against the grain is unadvisable during the process of translation. By paying attention to the waves of the SL input, a faithful literary work is produced which does not contradict general knowledge about foreign cultures and civilizations. Following personal common sense is essential in the field of translation as well as everywhere else.

Keywords: stimulus meaning, substance of expression, transformative code, translation

Procedia PDF Downloads 446
3922 Dynamical and Thermal Study of Twin Impinging Jets a Vertical Plate with Various Jet Velocities and Impinging Distance

Authors: Louaifi Hamaili Samira, Mataoui Amina, Cheraitia Tadjeddine

Abstract:

This investigation proposes a numerical analysis of two turbulent parallel jets impinging a heated plate. The heat transfer enhancement is carried out according of the main parameters of the jet-wall interaction. The numerical solution of the stationary equations (RANS) is performed by the finite volume method using the k - ε model. A parametric study is performed to evaluate simultaneously the effect of nozzle-plate distance and velocity ratios in the range 0≤λ≤1. It is found that good local cooling is obtained for λ= 0.25 when the impinging distance is between 4w and 8w than for velocity ratios λ=1 and λ= 0.75. On the other hand, for impinging distances exceeding 8w, the velocity ratio λ =0.75 is more appropriate for good local cooling of the plate.

Keywords: two unequal jets, turbulence, mixing, heat transfer, CFD

Procedia PDF Downloads 32
3921 Effect of the Applied Bias on Mini-Band Structures in Dimer Fibonacci InAs/Ga1-XInXAs Superlattices

Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata

Abstract:

The effect of a uniform electric field across multi-barrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the mini-band structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the mini-band structure, which becomes increasingly important (Wannier-Stark Effect).

Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact Airy function and transfer matrix formalism, bioinformatics

Procedia PDF Downloads 289