Search results for: maximum power control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19022

Search results for: maximum power control

17612 The Effect of Fetal Movement Counting on Maternal Antenatal Attachment

Authors: Esra Güney, Tuba Uçar

Abstract:

Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments.

Keywords: antenatal maternal attachment, fetal movement counting, pregnancy, midwifery

Procedia PDF Downloads 272
17611 Comparing the Knee Kinetics and Kinematics during Non-Steady Movements in Recovered Anterior Cruciate Ligament Injured Badminton Players against an Uninjured Cohort: Case-Control Study

Authors: Anuj Pathare, Aleksandra Birn-Jeffery

Abstract:

Background: The Anterior Cruciate Ligament(ACL) helps stabilize the knee joint minimizing tibial anterior translation. Anterior Cruciate Ligament (ACL) injury is common in racquet sports and often occurs due to sudden acceleration, deceleration or changes of direction. This mechanism in badminton most commonly occurs during landing after an overhead stroke. Knee biomechanics during dynamic movements such as walking, running and stair negotiation, do not return to normal for more than a year after an ACL reconstruction. This change in the biomechanics may lead to re-injury whilst performing non-steady movements during sports, where these injuries are most prevalent. Aims: To compare if the knee kinetics and kinematics in ACL injury recovered athletes return to the same level as those from an uninjured cohort during standard movements used for clinical assessment and badminton shots. Objectives: The objectives of the study were to determine: Knee valgus during the single leg squat, vertical drop jump, net shot and drop shot; Degree of internal or external rotation during the single leg squat, vertical drop jump, net shot and drop shot; Maximum knee flexion during the single leg squat, vertical drop jump and net shot. Methods: This case-control study included 14 participants with three ACL injury recovered athletes and 11 uninjured participants. The participants performed various functional tasks including vertical drop jump, single leg squat; the forehand net shot and the forehand drop shot. The data was analysed using the two-way ANOVA test, and the reliability of the data was evaluated using the Intra Class Coefficient. Results: The data showed a significant decrease in the range of knee rotation in ACL injured participants as compared to the uninjured cohort (F₇,₅₅₆=2.37; p=0.021). There was also a decrease in the maximum knee flexion angles and an increase in knee valgus angles in ACL injured participants although they were not statistically significant. Conclusion: There was a significant decrease in the knee rotation angles in the ACL injured participants which could be a potential cause for re-injury in these athletes in the future. Although the results for decrease in maximum knee flexion angles and increase in knee valgus angles were not significant, this may be due to a limited sample of ACL injured participants; there is potential for it to be identified as a variable of interest in the rehabilitation of ACL injuries. These changes in the knee biomechanics could be vital in the rehabilitation of ACL injured athletes in the future, and an inclusion of sports based tasks, e.g., Net shot along with standard protocol movements for ACL assessment would provide a better measure of the rehabilitation of the athlete.

Keywords: ACL, biomechanics, knee injury, racquet sport

Procedia PDF Downloads 174
17610 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds

Authors: Vinod Kumar, Surjit Angra

Abstract:

The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.

Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness

Procedia PDF Downloads 392
17609 Optimum Turbomachine Preliminary Selection for Power Regeneration in Vapor Compression Cool Production Plants

Authors: Sayyed Benyamin Alavi, Giovanni Cerri, Leila Chennaoui, Ambra Giovannelli, Stefano Mazzoni

Abstract:

Primary energy consumption and emissions of pollutants (including CO2) sustainability call to search methodologies to lower power absorption for unit of a given product. Cool production plants based on vapour compression are widely used for many applications: air conditioning, food conservation, domestic refrigerators and freezers, special industrial processes, etc. In the field of cool production, the amount of Yearly Consumed Primary Energy is enormous, thus, saving some percentage of it, leads to big worldwide impact in the energy consumption and related energy sustainability. Among various techniques to reduce power required by a Vapour Compression Cool Production Plant (VCCPP), the technique based on Power Regeneration by means of Internal Direct Cycle (IDC) will be considered in this paper. Power produced by IDC reduces power need for unit of produced Cool Power by the VCCPP. The paper contains basic concepts that lead to develop IDCs and the proposed options to use the IDC Power. Among various selections for using turbo machines, Best Economically Available Technologies (BEATs) have been explored. Based on vehicle engine turbochargers, they have been taken into consideration for this application. According to BEAT Database and similarity rules, the best turbo machine selection leads to the minimum nominal power required by VCCPP Main Compressor. Results obtained installing the prototype in “ad hoc” designed test bench will be discussed and compared with the expected performance. Forecasts for the upgrading VCCPP, various applications will be given and discussed. 4-6% saving is expected for air conditioning cooling plants and 15-22% is expected for cryogenic plants.

Keywords: Refrigeration Plant, Vapour Pressure Amplifier, Compressor, Expander, Turbine, Turbomachinery Selection, Power Saving

Procedia PDF Downloads 426
17608 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 214
17607 Ultrasonic Extraction of Phenolics from Leaves of Shallots and Peels of Potatoes for Biofortification of Cheese

Authors: Lila Boulekbache-Makhlouf, Fatiha Brahmi

Abstract:

This study was carried out with the aim of enriching fresh cheese with the food by-products, which are the leaves of shallots and the peels of potatoes. Firstly, the conditions for extracting the total polyphenols using ultrasound are optimized. Then, the contents of total polyphenols PPT , flavonoids and antioxidant activity were evaluated for the extracts obtained by adopting the optimal parameter. On the other hand, we have carried out some physicochemical, microbiological and sensory analyzes of the cheese produced. The maximum total polyphenols value of 70.44 mg GAE gallic acid equivalent / g of dry matter DM of shallot leaves was reached with 40% (v/v) ethanol, an extraction time of 90 min and a temperature of 10 °C. While, the maximum TPP total polyphenols content of potato peels of 45.03 ± 4.16 mg gallic acid equivalent / g of dry matter DM was obtained using an ethanol /water mixture (40%, v/v), a time of 30 min and a temperature of 60 °C and the flavonoid contents were 13.99 and 7.52 QE quercetin equivalent/g dry matter DM, respectively. From the antioxidant tests, we deduced that the potato peels present a higher antioxidant power with the concentration of extracts causing a 50% inhibition IC50s of 125.42 ± 2.78 μg/mL for 2,2-diphényl 1-picrylhydrazyle DPPH, of 87.21 ± 7.72 μg/mL for phosphomolybdate and 200.77 ± 13.38 μg/mL for iron chelation, compared with the results obtained for shallot leaves which were 204.29 ± 0.09, 45.85 ± 3,46 and 1004.10 ± 145.73 μg/mL, respectively. The results of the physicochemical analyzes have shown that the formulated cheese was compliant with standards. Microbiological analyzes show that the hygienic quality of the cheese produced was satisfactory. According to the sensory analysis, the experts liked the cheese enriched with the powder and pieces of the leaves of the shallots.

Keywords: shallots leaves, potato peels, ultrasound extraction, phenolics, cheese

Procedia PDF Downloads 91
17606 Developing Variable Repetitive Group Sampling Control Chart Using Regression Estimator

Authors: Liaquat Ahmad, Muhammad Aslam, Muhammad Azam

Abstract:

In this article, we propose a control chart based on repetitive group sampling scheme for the location parameter. This charting scheme is based on the regression estimator; an estimator that capitalize the relationship between the variables of interest to provide more sensitive control than the commonly used individual variables. The control limit coefficients have been estimated for different sample sizes for less and highly correlated variables. The monitoring of the production process is constructed by adopting the procedure of the Shewhart’s x-bar control chart. Its performance is verified by the average run length calculations when the shift occurs in the average value of the estimator. It has been observed that the less correlated variables have rapid false alarm rate.

Keywords: average run length, control charts, process shift, regression estimators, repetitive group sampling

Procedia PDF Downloads 566
17605 Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle

Authors: Mousa Meratizaman, Sina Monadizadeh, Majid Amidpour

Abstract:

One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance.

Keywords: solid oxide fuel cell, thermodynamic simulation, multi effect desalination, gas turbine hybrid cycle

Procedia PDF Downloads 379
17604 The Effect of Chloride Dioxide and High Concentration of CO2 Gas Injection on the Quality and Shelf-Life for Exporting Strawberry 'Maehyang' in Modified Atmosphere Condition

Authors: Hyuk Sung Yoon, In-Lee Choi, Mohammad Zahirul Islam, Jun Pill Baek, Ho-Min Kang

Abstract:

The strawberry ‘Maehyang’ cultivated in South Korea has been increased to export to Southeast Asia. The degradation of quality often occurs in strawberries during short export period. Botrytis cinerea has been known to cause major damage to the export strawberries and the disease was caused during shipping and distribution. This study was conducted to find out the sterilized effect of chlorine dioxide(ClO2) gas and high concentration of CO2 gas injection for ‘Maehyang’ strawberry and it was packaged with oxygen transmission rate (OTR) films. The strawberry was harvested at 80% color changed stage and packaged with OTR film and perforated film (control). The treatments were a MAP used by with 20,000 cc·m-2·day·atm OTR film and gas injection in packages. The gas type of ClO2 and CO2 were injected into OTR film packages, and treatments were 6 mg/L ClO2, 15% CO2, and they were combined. The treated strawberries were stored at 3℃ for 30 days. Fresh weight loss rate was less than 1% in all OTR film packages but it was more than 15% in a perforated film treatment that showed severe deterioration of visual quality during storage. Carbon dioxide concentration within a package showed approximately 15% of the maximum CO2 concentration in all treatments except control until the 21st day, it was the tolerated range of maximum CO2 concentration of strawberry in recommended CA or MA conditions. But, it increased to almost 50% on the 30th day. Oxygen concentration showed a decrease down to approximately 0% in all treatments except control for 25 days. Ethylene concentration was shown to be steady until the 17th day, but it quickly increased on the 17th day and dropped down on the final storage day (30th day). All treatments did not show any significant differences in gas treatments. Firmness increased in CO2 (15%) and ClO2 (6mg/L) + CO2 (15%) treatments during storage. It might be the effect of high concentration CO2 known by reducing decay and cell wall degradation. The soluble solid decreased in all treatments during storage. These results were caused to use up the sugar by the increase of respiration during storage. The titratable acidity showed a similarity in all treatments. Incidence of fungi was 0% in CO2 (15%) and ClO2 (6mg/L)+ CO2 (15%), but was more than 20% in a perforated film treatment. Consequently, The result indicates that Chloride Dioxide(ClO2) and high concentration of CO2 inhibited fungi growth. Due to the fact that fresh weight loss rate and incidence of fungi were lower, the ClO2(6mg/L)+ CO2(15%) prove to be most efficient in sterilization. These results suggest that Chloride Dioxide (ClO2) and high concentration of CO2 gas injection treatments were an effective decontamination technique for improving the safety of strawberries.

Keywords: chloride dioxide, high concentration of CO2, modified atmosphere condition, oxygen transmission rate films

Procedia PDF Downloads 339
17603 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: agriculture, human factors, product design, soil moisture control

Procedia PDF Downloads 172
17602 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell

Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh

Abstract:

Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.

Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity

Procedia PDF Downloads 143
17601 Ties of China and the United States Regarding to the Shanghai Cooperation Organization on the Basis of Soft Power Theory

Authors: Shabnam Dadparvar, Laijin Shen

Abstract:

After a period of conflict between Russia and the West, new signs of confrontation between the United States and China are observed. China, as the most populous country in the world with a high rate of economic growth, neither stands the hegemonic power of the United States nor has the intention of direct confrontation with it. By raising the costs of the United States’ leadership at the international level, China seeks to find a better status without direct confrontation with the US. Meanwhile, the Shanghai Cooperation Organization (SCO), as a soft balancing strategy against the hegemony of the United States is used as a tool to reach this goal. The authors by using a descriptive-analytical method try to explain the policies of China and the United States on Shanghai Cooperation Organization as well as confrontation between these two countries within the framework of 'balance of soft power theory'.

Keywords: balance of soft power, Central Asia, Shanghai cooperation organization, terrorism

Procedia PDF Downloads 371
17600 Effectiveness Assessment of a Brazilian Larvicide on Aedes Control

Authors: Josiane N. Muller, Allan K. R. Galardo, Tatiane A. Barbosa, Evan P. Ferro, Wellington M. Dos Santos, Ana Paula S. A. Correa, Edinaldo C. Rego, Jose B. P. Lima

Abstract:

The susceptibility status of an insect population to any larvicide depends on several factors such includes genetic constitution, environmental conditions and others. The mosquito Aedes aegypti is the primary vector of three important viral diseases, Zika, Dengue, and Chikungunya. The frequent outbreaks of those diseases in different parts of Brazil demonstrate the importance of testing the susceptibility of vectors in different environments. Since the control of this mosquito leads to the control of disease, alternatives for vector control that value the different Brazilian environmental conditions are needed for effective actions. The aim of this study was to evaluate a new commercial formulation of Bacillus thuringiensis israelenses (DengueTech: Brazilian innovative technology) in the Brazilian Legal Amazon considering the climate conditions. Semi-field tests were conducted in the Institute of Scientific and Technological Research of the State of Amapa in two different environments, one in a shaded area and the other exposed to sunlight. The mosquito larvae were exposed to larvicide concentration and a control; each group was tested in three containers of 40 liters each. To assess persistence 50 third instar larvae of Aedes aegypti laboratory lineages (Rockefeller) and 50 larvae of Aedes aegypti collected in the municipality of Macapa, Brazil’s Amapa state, were added weekly and after 24 hours the mortality was assessed. In total 16 tests were performed, where 12 were done with replacement of water (1/5 of the volume, three times per week). The effectiveness of the product was determined through mortality of ≥ 80%, as recommend by the World Health Organization. The results demonstrated that high-water temperatures (26-35 °C) on the containers influenced the residual time of the product, where the maximum effect achieved was 21 days in the shaded area; and no effectiveness of 60 days was found in any of the tests, as expected according to the larvicide company. The test with and without water replacement did not present significant differences in the mortality rate. Considering the different environments and climate, these results stimulate the need to test larvicide and its effectiveness in specific environmental settings in order to identify the parameters required for better results. Thus, we see the importance of semi-field researches considering the local climate conditions for a successful control of Aedes aegypti.

Keywords: Aedes aegypti, bioassay, larvicida, vector control

Procedia PDF Downloads 129
17599 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: agro-industrial waste, biomass, briquettes, combustion

Procedia PDF Downloads 206
17598 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion

Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri

Abstract:

In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.

Keywords: finite element, honeycomb FRP sandwich panel, torsion, civil engineering

Procedia PDF Downloads 418
17597 Three Phase PWM Inverter for Low Rating Energy Efficient Systems

Authors: Nelson Lujara

Abstract:

The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) array-powered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.

Keywords: energy, inverter, losses, photovoltaic

Procedia PDF Downloads 640
17596 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 209
17595 Biomechanical Assessment of Esophageal Elongation

Authors: Marta Kozuń, Krystian Toczewski, Sylwester Gerus, Justyna Wolicka, Kamila Boberek, Jarosław Filipiak, Dariusz Patkowski

Abstract:

Long gap esophageal atresia is a congenital defect and is a challenge for pediatric surgeons all over the world. There are different surgical techniques in use to treat atresia. One of them is esophageal elongation but the optimal suture placement technique to achieve maximum elongation with low-risk complications is still unknown. The aim of the study was to characterize the process of esophageal elongation from the biomechanical point of view. Esophagi of white Pekin Duck was used as a model based on the size of this animal which is similar to a newborn (2.5-4kg). The specimens were divided into two groups: the control group (CG) and the group with sutures (SG). The esophagi of the control group were mounted in the grips of the MTS Tytron 250 testing machine and tensile test until rupture was performed. The loading speed during the test was 10mm/min. Then the SG group was tested. Each esophagus was cut into two equal parts and that were fused together using surgical sutures. The distance between both esophagus parts was 20mm. Ten both ends were mounted on the same testing machine and the tensile test with the same parameters was conducted. For all specimens, force and elongation were recorded. The biomechanical properties, i.e., the maximal force and maximal elongation, were determined on the basis of force-elongation curves. The maximal elongation was determined at the point of maximal force. The force achieved with the suture group was 10.1N±1.9N and 50.3N±11.6N for the control group. The highest elongation was also obtained for the control group: 18mm±3mm vs. 13.5mm ±2.4mm for the suture group. The presented study expands the knowledge of elongation of esophagi. It is worth emphasizing that the duck esophagus differs from the esophagus of a newborn, i.e., its wall lacks striated muscle cells. This is why the parts of animal esophagi used in the research are may characterized by different biomechanical properties in comparison with newborn tissue.

Keywords: long gap atresia treatment, esophageal elongation, biomechanical properties, soft tissue

Procedia PDF Downloads 100
17594 Achievable Average Secrecy Rates over Bank of Parallel Independent Fading Channels with Friendly Jamming

Authors: Munnujahan Ara

Abstract:

In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers.

Keywords: fading parallel channels, wire-tap channel, OFDM, secrecy capacity, power allocation

Procedia PDF Downloads 512
17593 Antagonistic Effect of Indigenous Plant Extracts toward Dusky Cotton Bug, Oxycarenus laetus

Authors: Muhammad Rafiq Shahid, Ali Hassan, Umm-e- Rubab, Muhammad Nadeem

Abstract:

Insecticidal property of plant extracts was assessed toward dusky bug of cotton. Plant extracts consisted of bari pata (Ziziphus jajuba), Ak (Calotropis gigantean), Tobacco (Nicotiana tabacum), Bakine (Melia azedarach),Kanar (Nerium oleander),Kurtuma (Mitragyna speciosa) and one Control was also included with distilled water treatment. Forced feeding experiment was used to determine the antibiotic effect of bug plant extracts on dusky bug whereas Multi-choice experiment to determine the antixenosis/ repellent property of botanicals. It is evident from the results that mortality and antibiosis percentage of dusky bug due to the use of botanicals ranged from 15-95% and 20-87.3% respectively that was maximum in tobacoo extract followed by bakain and kurtama, minimum was on Ak, kanair and bakain extract. Non preference ranged from 14.28 to 85.7 where maximum non preference of dusky bug was found on bakain and kurtama followed by ak and kanair however minimum was on Bari pata extract. It was further found that local plant extract possessed insecticidal property toward dusky bug as well as also possesses repellency effect toward dusky bug, thus should be included in integrated pest management program of cotton in order to minimize the ill effects of pesticides it is compulsory to adopt eco-friendly methods of insect pest management.

Keywords: botanical extract, insecticidal and repellency activity, Gossypium hirsutum, oxycarenus laetus

Procedia PDF Downloads 474
17592 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 112
17591 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV

Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol

Abstract:

In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.

Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing

Procedia PDF Downloads 441
17590 Optimal MPPT Charging Battery System for Photovoltaic Standalone Applications

Authors: Kelaiaia Mounia Samira, Labar Hocine, Mesbah Tarek, Kelaiaia samia

Abstract:

The photovoltaic panel produces green power, and because of its availability across the globe, it can supply isolated loads (site away of the electrical network or difficult of access). Unfortunately this energy remains very expensive. The most application of these types of power needs storage devices, the Lithium batteries are commonly used because of its powerful storage capability. Using a solar panel or an array of panels without a controller that can perform MPPT will often result in wasted power, which results in the need to install more panels for the same power requirement. For devices that have the battery connected directly to the panel, this will also result in premature battery failure or capacity loss. In this paper it is proposed a modified P&O algorithm for the MPPT which takes in account the battery’s internal resistance vs temperature and stage of charging. Of course the temperature variation and irradiation of the PV panel are also introduced.

Keywords: modeling, battery, MPPT, charging, PV Panel

Procedia PDF Downloads 525
17589 Magneto-Convective Instability in a Horizontal Power-Law Nanofluid Saturated Porous Layer

Authors: Norazuwin Najihah Mat Tahir, Fuziyah Ishak, Seripah Awang Kechil

Abstract:

The onset of the convective instability in the horizontal through flow of a power-law nanofluid saturated by porous layer heated from below under the influences of magnetic field are investigated in this study. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both traveling wave and oscillatory convection. The effects of the power-law index, Lewis number and Peclet number on the stability of the system were investigated. The Lewis number stabilizes while the power-law index and Peclet number destabilize the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field.

Keywords: convection, instability, magnetic field, nanofluid, power-law

Procedia PDF Downloads 268
17588 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles

Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh

Abstract:

This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.

Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs

Procedia PDF Downloads 213
17587 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.

Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components

Procedia PDF Downloads 608
17586 Optimization of Coefficients of Fractional Order Proportional-Integrator-Derivative Controller on Permanent Magnet Synchronous Motors Using Particle Swarm Optimization

Authors: Ali Motalebi Saraji, Reza Zarei Lamuki

Abstract:

Speed control and behavior improvement of permanent magnet synchronous motors (PMSM) that have reliable performance, low loss, and high power density, especially in industrial drives, are of great importance for researchers. Because of its importance in this paper, coefficients optimization of proportional-integrator-derivative fractional order controller is presented using Particle Swarm Optimization (PSO) algorithm in order to improve the behavior of PMSM in its speed control loop. This improvement is simulated in MATLAB software for the proposed optimized proportional-integrator-derivative fractional order controller with a Genetic algorithm and compared with a full order controller with a classic optimization method. Simulation results show the performance improvement of the proposed controller with respect to two other controllers in terms of rising time, overshoot, and settling time.

Keywords: speed control loop of permanent magnet synchronous motor, fractional and full order proportional-integrator-derivative controller, coefficients optimization, particle swarm optimization, improvement of behavior

Procedia PDF Downloads 146
17585 Prioritized Processor-Sharing with a Maximum Permissible Sojourn Time

Authors: Yoshiaki Shikata

Abstract:

A prioritized processor-sharing (PS) system with a maximum permissible sojourn time (MPST) is proposed. In this PS system, a higher-priority request is allocated a larger service ratio than a lower-priority request. Moreover, each request receiving service is guaranteed the maximum permissible sojourn time determined by each priority class, regardless of its service time. Arriving requests that cannot receive service due to this guarantee are rejected. We further propose a guarantee method for implementing such a system, and discuss performance evaluation procedures for the resulting system. Practical performance measures, such as the relationships between the loss probability or mean sojourn time of each class request and the maximum permissible sojourn time are evaluated via simulation. At the arrival of each class request, its acceptance or rejection is judged using extended sojourn times of all requests receiving service in the server. As the MPST increases, the mean sojourn time increases almost linearly. However, the logarithm of the loss probability decreases almost linearly. Moreover with an MPST, the difference in the mean sojourn time for different MPSTs increases with the traffic rate. Conversely, the difference in the loss probability for different MPSTs decreases as the traffic rate increases.

Keywords: prioritized processor sharing, priority ratio, permissible sojourn time, loss probability, mean sojourn time, simulation

Procedia PDF Downloads 192
17584 Study of Transformer and Motor Winding under Pulsed Power Application

Authors: Arijit Basuray, Saibal Chatterjee

Abstract:

Pulsed Power in the form of Recurrent Surge Generator (RSG) can be used for testing various parameters of Motor or Transformer windings including inter-turn, interlayer insulation. Windings with solid insulation in motor and transformer have many interfaces and undesirable defects, and these defects can be exposed under this nondestructive testing methodology. Due to rapid development in power electronics variable frequency drives (VFD), Dry Type or cast resin Transformer used with PWM Sine wave inverters for solar power, solid insulation system used nowadays are shifting more and more to a high-frequency application. Authors have used the recurrent surge generator for testing winding integrity as well as Partial Discharge(PD) at fast rising voltage enabling PD measurement at closer situation under which the insulation system is supposed to work. Authors have discussed test results on a different system with recurrent surge voltages of different rise time.

Keywords: fast rising voltage, partial discharge, pulsed power, recurrent surge generator, solid insulation

Procedia PDF Downloads 273
17583 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data

Procedia PDF Downloads 423