Search results for: rotor noise
78 Stereological and Morphometric Evaluation of Wound Healing Burns Treated with Ulmo Honey (Eucryphia cordifolia) Unsupplemented and Supplemented with Ascorbic Acid in Guinea Pig (Cavia porcellus)
Authors: Carolina Schencke, Cristian Sandoval, Belgica Vasquez, Mariano Del Sol
Abstract:
Introduction: In a burn injury, the successful repair requires not only the participation of various cells, such as granulocytes and fibroblasts, but also of collagen, which plays a crucial role as a structural and regulatory molecule of scar tissue. Since honey and ascorbic acid have presented a great therapeutic potential to cellular and structural level, experimental studies have proposed its combination in the treatment of wounds. Aim: To evaluate stereological and morphometric parameters of healing wounds, caused by burns, treated with honey Ulmo (Eucryphia cordifolia) unsupplemented, comparing its effect with Ulmo honey supplemented with ascorbic acid. Materials and Methods: Fifteen healthy adult guinea pigs (Cavia porcellus) were used, of both sexes, average weight 450 g from the Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ) at the Universidad de La Frontera, Chile. The animals were divided at random into three groups: positive control (C+), honey only (H) and supplemented honey (SH) and were fed on pellets supplemented with ascorbic acid and water ad libitum, under ambient conditions controlled for temperature, ambient noise and a cycle of 12h light–darkness. The protocol for the experiment was approved by the Scientific Ethics Committee of the Universidad de La Frontera, Chile. The parameters measured were number density per area (NA), volume density (VV), and surface density (SV) of fibroblast; NA and VV of polymorphonuclear cells (PMN) and, evaluation of the content of collagen fibers in the scar dermis. One-way ANOVA was used for statistics analysis and its respective Post hoc tests. Results: The ANOVA analysis for NA, VV and SV of fibroblasts, NA and VV of PMN, and evaluation of collagen content, type I and III, showed that at least one group differs from other (P≤ 0.001). There were differences (P= 0.000) in NA of fibroblast between the groups [C+= 3599.560 mm-2 (SD= 764.461), H= 3355.336 mm-2 (SD= 699.443) and SH= 4253.025 mm-2 (SD= 1041.751)]. The VV and SV of fibroblast increased (P= 0.000) in the SH group [20.400% (SD= 5.897) and 100.876 mm2/mm3 (SD= 29.431), respectively], compared to the C+ [16.324% (SD= 7.719) and 81.676 mm2/mm3 (SD= 28.884), respectively). The mean values of NA and VV of PMN were higher (P= 0.000) in the H [756.875 mm-2 (SD= 516.489) and 2.686% (SD= 2.380), respectively) group. Regarding to the evaluation of the content of collagen fibers, type I and III, the one-way analysis of ANOVA showed a statistically significant difference (P< 0.05). The content of collagen fibers type I was higher in C+ (1988.292 μm2; SD= 1312.379), while the content of collagen fibers type III was higher in SH (1967.163 μm2; SD= 1047.944 μm2) group. Conclusions: The stereological results were correlated with the stage of healing observed for each group. These results suggest that the combination of honey with ascorbic acid potentiate the healing effect, where both participated synergistically.Keywords: ascorbic acid, morphometry, stereology, Ulmo honey
Procedia PDF Downloads 27477 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 13076 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR
Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman
Abstract:
Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography
Procedia PDF Downloads 49675 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 11474 Validating the Micro-Dynamic Rule in Opinion Dynamics Models
Authors: Dino Carpentras, Paul Maher, Caoimhe O'Reilly, Michael Quayle
Abstract:
Opinion dynamics is dedicated to modeling the dynamic evolution of people's opinions. Models in this field are based on a micro-dynamic rule, which determines how people update their opinion when interacting. Despite the high number of new models (many of them based on new rules), little research has been dedicated to experimentally validate the rule. A few studies started bridging this literature gap by experimentally testing the rule. However, in these studies, participants are forced to express their opinion as a number instead of using natural language. Furthermore, some of these studies average data from experimental questions, without testing if differences existed between them. Indeed, it is possible that different topics could show different dynamics. For example, people may be more prone to accepting someone's else opinion regarding less polarized topics. In this work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions using natural language ('agree' or 'disagree') and the certainty of their answer, expressed as a number between 1 and 10. To keep the interaction based on natural language, certainty was not shown to other participants. We then showed to the participant someone else's opinion on the same topic and, after a distraction task, we repeated the measurement. To produce data compatible with standard opinion dynamics models, we multiplied the opinion (encoded as agree=1 and disagree=-1) with the certainty to obtain a single 'continuous opinion' ranging from -10 to 10. By analyzing the topics independently, we observed that each one shows a different initial distribution. However, the dynamics (i.e., the properties of the opinion change) appear to be similar between all topics. This suggested that the same micro-dynamic rule could be applied to unpolarized topics. Another important result is that participants that change opinion tend to maintain similar levels of certainty. This is in contrast with typical micro-dynamics rules, where agents move to an average point instead of directly jumping to the opposite continuous opinion. As expected, in the data, we also observed the effect of social influence. This means that exposing someone with 'agree' or 'disagree' influenced participants to respectively higher or lower values of the continuous opinion. However, we also observed random variations whose effect was stronger than the social influence’s one. We even observed cases of people that changed from 'agree' to 'disagree,' even if they were exposed to 'agree.' This phenomenon is surprising, as, in the standard literature, the strength of the noise is usually smaller than the strength of social influence. Finally, we also built an opinion dynamics model from the data. The model was able to explain more than 80% of the data variance. Furthermore, by iterating the model, we were able to produce polarized states even starting from an unpolarized population. This experimental approach offers a way to test the micro-dynamic rule. This also allows us to build models which are directly grounded on experimental results.Keywords: experimental validation, micro-dynamic rule, opinion dynamics, update rule
Procedia PDF Downloads 16273 A Preliminary Analysis of The Effect After Cochlear Implantation in the Unilateral Hearing Loss
Authors: Haiqiao Du, Qian Wang, Shuwei Wang, Jianan Li
Abstract:
Purpose: The aim is to evaluate the effect of cochlear implantation (CI) in patients with unilateral hearing loss, with a view to providing data support for the selection of therapeutic interventions for patients with single-sided deafness (SSD)/asymmetric hearing loss (AHL) and the broadening of the indications for CI. Methods: The study subjects were patients with unilateral hearing loss who underwent cochlear implantation surgery in our hospital in August 2022 and were willing to cooperate with the test and were divided into 2 groups: SSD group and AHL group. The enrolled patients were followed up for hearing level, tinnitus changes, speech recognition ability, sound source localization ability, and quality of life at five-time points: preoperatively, and 1, 3, 6, and 12 months after postoperative start-up. Results: As of June 30, 2024, a total of nine patients completed follow-up, including four in the SSD group and five in the AHL group. The mean postoperative hearing aid thresholds on the CI side were 31.56 dB HL and 34.75 dB HL in the two groups, respectively. Of the four patients with preoperative tinnitus symptoms (three patients in the SSD group and one patient in the AHL group), all showed a degree of reduction in Tinnitus Handicap Inventory (THI) scores, except for one patient who showed no change. In both the SSD and AHL groups, the sound source localization results (expressed as RMS error values, with smaller values indicating better ability) were 66.87° and 77.41° preoperatively and 29.34° and 54.60° 12 months after postoperative start-up, respectively, which showed that the ability to localize the sound source improved significantly with longer implantation time. The level of speech recognition was assessed by 3 test methods: speech recognition rate of monosyllabic words in a quiet environment and speech recognition rate of different sound source directions at 0° and 90° (implantation side) in a noisy environment. The results of the 3 tests were 99.0%, 72.0%, and 36.0% in the preoperative SSD group and 96.0%, 83.6%, and 73.8% in the AHL group, respectively, whereas they fluctuated in the postoperative period 3 months after start-up, and stabilized at 12 months after start-up to 99.0%, 100.0%, and 100.0% in the SSD group and 99.5%, 96.0%, and 99.0%. Quality of life was subjectively evaluated by three tests: the Speech Spatial Quality of Sound Auditory Scale (SSQ-12), the Quality-of-Life Bilateral Listening Questionnaire (QLBHE), and the Nijmegen Cochlear Implantation Inventory (NCIQ). The results of the SSQ-12 (with a 10-point score out of 10) showed that the scores of preoperative and postoperative 12 months after start-up were 6.35 and 6.46 in the SSD group, while they were 5.61 and 9.83 in the AHL group. The QLBHE scores (100 points out of 100) were 61.0 and 76.0 in the SSD group and 53.4 and 63.7 in the AHL group for the preoperative versus the postoperative 12 months after start-up. Conclusion: Patients with unilateral hearing loss can benefit from cochlear implantation: CI implantation is effective in compensating for the hearing on the affected side and reduces the accompanying tinnitus symptoms; there is a significant improvement in sound source localization and speech recognition in the presence of noise; and the quality of life is improved.Keywords: single-sided deafness, asymmetric hearing loss, cochlear implant, unilateral hearing loss
Procedia PDF Downloads 1472 A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower
Authors: Soo-Yong Cho, Chong-Hyun Cho, Chae-Whan Rim, Sang-Kyu Choi, Jin-Gyun Kim, Ju-Seok Nam
Abstract:
Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall.Keywords: CFD, performance, VAWT, wind power tower
Procedia PDF Downloads 38771 Educational Infrastructure a Barrier for Teaching and Learning Architecture
Authors: Alejandra Torres-Landa López
Abstract:
Introduction: Can architecture students be creative in spaces conformed by an educational infrastructure build with paradigms of the past?, this question and others related are answered in this paper as it presents the PhD research: An anthropic conflict in Mexican Higher Education Institutes, problems and challenges of the educational infrastructure in teaching and learning History of Architecture. This research was finished in 2013 and is one of the first studies conducted nationwide in Mexico that analysis the educational infrastructure impact in learning architecture; its objective was to identify which elements of the educational infrastructure of Mexican Higher Education Institutes where architects are formed, hinder or contribute to the teaching and learning of History of Architecture; how and why it happens. The methodology: A mixed methodology was used combining quantitative and qualitative analysis. Different resources and strategies for data collection were used, such as questionnaires for students and teachers, interviews to architecture research experts, direct observations in Architecture classes, among others; the data collected was analyses using SPSS and MAXQDA. The veracity of the quantitative data was supported by the Cronbach’s Alpha Coefficient, obtaining a 0.86, figure that gives the data enough support. All the above enabled to certify the anthropic conflict in which Mexican Universities are. Major findings of the study: Although some of findings were probably not unknown, they haven’t been systematized and analyzed with the depth to which it’s done in this research. So, it can be said, that the educational infrastructure of most of the Higher Education Institutes studied, is a barrier to the educational process, some of the reasons are: the little morphological variation of space, the inadequate control of lighting, noise, temperature, equipment and furniture, the poor or none accessibility for disable people; as well as the absence, obsolescence and / or insufficiency of information technologies are some of the issues that generate an anthropic conflict understanding it as the trouble that teachers and students have to relate between them, in order to achieve significant learning). It is clear that most of the educational infrastructure of Mexican Higher Education Institutes is anchored to paradigms of the past; it seems that they respond to the previous era of industrialization. The results confirm that the educational infrastructure of Mexican Higher Education Institutes where architects are formed, is perceived as a "closed container" of people and data; infrastructure that becomes a barrier to teaching and learning process. Conclusion: The research results show it's time to change the paradigm in which we conceive the educational infrastructure, it’s time to stop seen it just only as classrooms, workshops, laboratories and libraries, as it must be seen from a constructive, urban, architectural and human point of view, taking into account their different dimensions: physical, technological, documental, social, among others; so the educational infrastructure can become a set of elements that organize and create spaces where ideas and thoughts can be shared; to be a social catalyst where people can interact between each other and with the space itself.Keywords: educational infrastructure, impact of space in learning architecture outcomes, learning environments, teaching architecture, learning architecture
Procedia PDF Downloads 41270 The Confluence between Autism Spectrum Disorder and the Schizoid Personality
Authors: Murray David Schane
Abstract:
Though years of clinical encounters with patients with autism spectrum disorders and those with a schizoid personality the many defining diagnostic features shared between these conditions have been explored and current neurobiological differences have been reviewed; and, critical and different treatment strategies for each have been devised. The paper compares and contrasts the apparent similarities between autism spectrum disorders and the schizoid personality are found in these DSM descriptive categories: restricted range of social-emotional reciprocity; poor non-verbal communicative behavior in social interactions; difficulty developing and maintaining relationships; detachment from social relationships; lack of the desire for or enjoyment of close relationships; and preference for solitary activities. In this paper autism, fundamentally a communicative disorder, is revealed to present clinically as a pervasive aversive response to efforts to engage with or be engaged by others. Autists with the Asperger presentation typically have language but have difficulty understanding humor, irony, sarcasm, metaphoric speech, and even narratives about social relationships. They also tend to seek sameness, possibly to avoid problems of social interpretation. Repetitive behaviors engage many autists as a screen against ambient noise, social activity, and challenging interactions. Also in this paper, the schizoid personality is revealed as a pattern of social avoidance, self-sufficiency and apparent indifference to others as a complex psychological defense against a deep, long-abiding fear of appropriation and perverse manipulation. Neither genetic nor MRI studies have yet located the explanatory data that identifies the cause or the neurobiology of autism. Similarly, studies of the schizoid have yet to group that condition with those found in schizophrenia. Through presentations of clinical examples, the treatment of autists of the Asperger type is revealed to address the autist’s extreme social aversion which also precludes the experience of empathy. Autists will be revealed as forming social attachments but without the capacity to interact with mutual concern. Empathy will be shown be teachable and, as social avoidance relents, understanding of the meaning and signs of empathic needs that autists can recognize and acknowledge. Treatment of schizoids will be shown to revolve around joining empathically with the schizoid’s apprehensions about interpersonal, interactive proximity. Models of both autism and schizoid personality traits have yet to be replicated in animals, thereby eliminating the role of translational research in providing the kind of clues to behavioral patterns that can be related to genetic, epigenetic and neurobiological measures. But as these clinical examples will attest, treatment strategies have significant impact.Keywords: autism spectrum, schizoid personality traits, neurobiological implications, critical diagnostic distinctions
Procedia PDF Downloads 11469 COVID Prevention and Working Environmental Risk Prevention and Buisness Continuety among the Sme’s in Selected Districts in Sri Lanka
Authors: Champika Amarasinghe
Abstract:
Introduction: Covid 19 pandemic was badly hit to the Sri Lankan economy during the year 2021. More than 65% of the Sri Lankan work force is engaged with small and medium scale businesses which no doubt that they had to struggle for their survival and business continuity during the pandemic. Objective: To assess the association of adherence to the new norms during the Covid 19 pandemic and maintenance of healthy working environmental conditions for business continuity. A cross sectional study was carried out to assess the OSH status and adequacy of Covid 19 preventive strategies among the 200 SME’S in selected two districts in Sri Lanka. These two districts were selected considering the highest availability of SME’s. Sample size was calculated, and probability propionate to size was used to select the SME’s which were registered with the small and medium scale development authority. An interviewer administrated questionnaire was used to collect the data, and OSH risk assessment was carried out by a team of experts to assess the OSH status in these industries. Results: According to the findings, more than 90% of the employees in these industries had a moderate awareness related to COVID 19 disease and preventive strategies such as the importance of Mask use, hand sainting practices, and distance maintenance, but the only forty percent of them were adhered to implementation of these practices. Furthermore, only thirty five percent of the employees and employers in these SME’s new the reasons behind the new norms, which may be the reason for reluctance to implement these strategies and reluctance to adhering to the new norms in this sector. The OSH risk assessment findings revealed that the working environmental organization while maintaining the distance between two employees was poor due to the inadequacy of space in these entities. More than fifty five percent of the SME’s had proper ventilation and lighting facilities. More than eighty five percent of these SME’s had poor electrical safety measures. Furthermore, eighty two percent of them had not maintained fire safety measures. Eighty five percent of them were exposed to heigh noise levels and chemicals where they were not using any personal protectives nor any other engineering controls were not imposed. Floor conditions were poor, and they were not maintaining the occupational accident nor occupational disease diseases. Conclusions: Based on the findings, proper awareness sessions were carried out by NIOSH. Six physical training sessions and continues online trainings were carried out to overcome these issues, which made a drastic change in their working environments and ended up with hundred percent implementation of the Covid 19 preventive strategies, which intern improved the worker participation in the businesses. Reduced absentees and improved business opportunities, and continued their businesses without any interruption during the third episode of Covid 19 in Sri Lanka.Keywords: working environment, Covid 19, occupational diseases, occupational accidents
Procedia PDF Downloads 8868 Assessment of Five Photoplethysmographic Methods for Estimating Heart Rate Variability
Authors: Akshay B. Pawar, Rohit Y. Parasnis
Abstract:
Heart Rate Variability (HRV) is a widely used indicator of the regulation between the autonomic nervous system (ANS) and the cardiovascular system. Besides being non-invasive, it also has the potential to predict mortality in cases involving critical injuries. The gold standard method for determining HRV is based on the analysis of RR interval time series extracted from ECG signals. However, because it is much more convenient to obtain photoplethysmogramic (PPG) signals as compared to ECG signals (which require the attachment of several electrodes to the body), many researchers have used pulse cycle intervals instead of RR intervals to estimate HRV. They have also compared this method with the gold standard technique. Though most of their observations indicate a strong correlation between the two methods, recent studies show that in healthy subjects, except for a few parameters, the pulse-based method cannot be a surrogate for the standard RR interval- based method. Moreover, the former tends to overestimate short-term variability in heart rate. This calls for improvements in or alternatives to the pulse-cycle interval method. In this study, besides the systolic peak-peak interval method (PP method) that has been studied several times, four recent PPG-based techniques, namely the first derivative peak-peak interval method (P1D method), the second derivative peak-peak interval method (P2D method), the valley-valley interval method (VV method) and the tangent-intersection interval method (TI method) were compared with the gold standard technique. ECG and PPG signals were obtained from 10 young and healthy adults (consisting of both males and females) seated in the armchair position. In order to de-noise these signals and eliminate baseline drift, they were passed through certain digital filters. After filtering, the following HRV parameters were computed from PPG using each of the five methods and also from ECG using the gold standard method: time domain parameters (SDNN, pNN50 and RMSSD), frequency domain parameters (Very low-frequency power (VLF), Low-frequency power (LF), High-frequency power (HF) and Total power or “TP”). Besides, Poincaré plots were also plotted and their SD1/SD2 ratios determined. The resulting sets of parameters were compared with those yielded by the standard method using measures of statistical correlation (correlation coefficient) as well as statistical agreement (Bland-Altman plots). From the viewpoint of correlation, our results show that the best PPG-based methods for the determination of most parameters and Poincaré plots are the P2D method (shows more than 93% correlation with the standard method) and the PP method (mean correlation: 88%) whereas the TI, VV and P1D methods perform poorly (<70% correlation in most cases). However, our evaluation of statistical agreement using Bland-Altman plots shows that none of the five techniques agrees satisfactorily well with the gold standard method as far as time-domain parameters are concerned. In conclusion, excellent statistical correlation implies that certain PPG-based methods provide a good amount of information on the pattern of heart rate variation, whereas poor statistical agreement implies that PPG cannot completely replace ECG in the determination of HRV.Keywords: photoplethysmography, heart rate variability, correlation coefficient, Bland-Altman plot
Procedia PDF Downloads 32467 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring
Authors: Zheng Wang, Zhenhong Li, Jon Mills
Abstract:
Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring
Procedia PDF Downloads 16166 Analysis of Superconducting and Optical Properties in Atomic Layer Deposition and Sputtered Thin Films for Next-Generation Single-Photon Detectors
Authors: Nidhi Choudhary, Silke A. Peeters, Ciaran T. Lennon, Dmytro Besprozvannyy, Harm C. M. Knoops, Robert H. Hadfield
Abstract:
Superconducting Nanowire Single Photon Detectors (SNSPDs) have become leading devices in quantum optics and photonics, known for their exceptional efficiency in detecting single photons from ultraviolet to mid-infrared wavelengths with minimal dark counts, low noise, and reduced timing jitter. Recent advancements in materials science focus attention on refractory metal thin films such as NbN and NbTiN to enhance the optical properties and superconducting performance of SNSPDs, opening the way for next-generation detectors. These films have been deposited by several different techniques, such as atomic layer deposition (ALD), plasma pro-advanced plasma processing (ASP) and magnetron sputtering. The fabrication flexibility of these films enables precise control over morphology, crystallinity, stoichiometry and optical properties, which is crucial for optimising the SNSPD performance. Hence, it is imperative to study the optical and superconducting properties of these materials across a wide range of wavelengths. This study provides a comprehensive analysis of the optical and superconducting properties of some important materials in this category (NbN, NbTiN) by different deposition methods. Using Variable angle ellipsometry spectroscopy (VASE), we measured the refractive index, extinction, and absorption coefficient across a wide wavelength range (200-1700 nm) to enhance light confinement for optical communication devices. The critical temperature and sheet resistance were measured using a four-probe method in a custom-built, cryogen-free cooling system with a Sumitomo RDK-101D cold head and CNA-11C compressor. Our results indicate that ALD-deposited NbN shows a higher refractive index and extinction coefficient in the near-infrared region (~1500 nm) than sputtered NbN of the same thickness. Further, the analysis of the optical properties of plasma pro-ASP deposited NbTiN was performed at different substrate bias voltages and different thicknesses. The analysis of substrate bias voltage indicates that the maximum value of the refractive index and extinction coefficient observed for the substrate biasing of 50-80 V across a substrate bias range of (0 V - 150 V). The optical properties of sputtered NbN films are also investigated in terms of the different substrate temperatures during deposition (100 °C-500 °C). We find the higher the substrate temperature during deposition, the higher the value of the refractive index and extinction coefficient has been observed. In all our superconducting thin films ALD-deposited NbN films possess the highest critical temperature (~12 K) compared to sputtered (~8 K) and plasma pro-ASP (~5 K).Keywords: optical communication, thin films, superconductivity, atomic layer deposition (ALD), niobium nitride (NbN), niobium titanium nitride (NbTiN), SNSPD, superconducting detector, photon-counting.
Procedia PDF Downloads 2965 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 31464 Application of Acoustic Emissions Related to Drought Can Elicit Antioxidant Responses and Capsaicinoids Content in Chili Pepper Plants
Authors: Laura Helena Caicedo Lopez, Luis Miguel Contreras Medina, Ramon Gerardo Guevara Gonzales, Juan E. Andrade
Abstract:
In this study, we evaluated the effect of three different hydric stress conditions: Low (LHS), medium (MHS), and high (HHS) on capsaicinoid content and enzyme regulation of C. annuum plants. Five main peaks were detected using a 2 Hz resolution vibrometer laser (Polytec-B&K). These peaks or “characteristic frequencies” were used as acoustic emissions (AEs) treatment, transforming these signals into audible sound with the frequency (Hz) content of each hydric stress. Capsaicinoids (CAPs) are the main, secondary metabolites of chili pepper plants and are known to increase during hydric stress conditions or short drought-periods. The AEs treatments were applied in two plant stages: the first one was in the pre-anthesis stage to evaluate the genes that encode the transcription of enzymes responsible for diverse metabolic activities of C. annuum plants. For example, the antioxidant responses such as peroxidase (POD), superoxide dismutase (Mn-SOD). Also, phenyl-alanine ammonia-lyase (PAL) involved in the biosynthesis of the phenylpropanoid compounds. The chalcone synthase (CHS) related to the natural defense mechanisms and species-specific aquaporin (CAPIP-1) that regulate the flow of water into and out of cells. The second stage was at 40 days after flowering (DAF) to evaluate the biochemical effect of AEs related to hydric stress on capsaicinoids production. These two experiments were conducted to identify the molecular responses of C. annuum plants to AE. Moreover, to define AEs could elicit any increase in the capsaicinoids content after a one-week exposition to AEs treatments. The results show that all AEs treatment signals (LHS, MHS, and HHS) were significantly different compared to the non-acoustic emission control (NAE). Also, the AEs induced the up-regulation of POD (~2.8, 2.9, and 3.6, respectively). The gene expression of another antioxidant response was particularly treatment-dependent. The HHS induced and overexpression of Mn-SOD (~0.23) and PAL (~0.33). As well, the MHS only induced an up-regulation of the CHs gene (~0.63). On the other hand, CAPIP-1 gene gas down-regulated by all AEs treatments LHS, MHS, and HHS ~ (-2.4, -0.43 and -6.4, respectively). Likewise, the down-regulation showed particularities depending on the treatment. LHS and MHS induced downregulation of the SOD gene ~ (-1.26 and -1.20 respectively) and PAL (-4.36 and 2.05, respectively). Correspondingly, the LHS and HHS showed the same tendency in the CHs gene, respectively ~ (-1.12 and -1.02, respectively). Regarding the elicitation effect of AE on the capsaicinoids content, additional treatment controls were included. A white noise treatment (WN) to prove the frequency-selectiveness of signals and a hydric stressed group (HS) to compare the CAPs content. Our findings suggest that WN and NAE did not present differences statically. Conversely, HS and all AEs treatments induced a significant increase of capsaicin (Cap) and dihydrocapsaicin (Dcap) after one-week of a treatment. Specifically, the HS plants showed an increase of 8.33 times compared to the NAE and WN treatments and 1.4 times higher than the MHS, which was the AEs treatment with a larger induction of Capsaicinoids among treatments (5.88) and compared to the controls.Keywords: acoustic emission, capsaicinoids, elicitors, hydric stress, plant signaling
Procedia PDF Downloads 17163 Coupling Strategy for Multi-Scale Simulations in Micro-Channels
Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier
Abstract:
With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling
Procedia PDF Downloads 16762 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 10161 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics
Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez
Abstract:
In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.Keywords: data analysis, emotional domotics, performance improvement, neural network
Procedia PDF Downloads 14060 Content Monetization as a Mark of Media Economy Quality
Authors: Bela Lebedeva
Abstract:
Characteristics of the Web as a channel of information dissemination - accessibility and openness, interactivity and multimedia news - become wider and cover the audience quickly, positively affecting the perception of content, but blur out the understanding of the journalistic work. As a result audience and advertisers continue migrating to the Internet. Moreover, online targeting allows monetizing not only the audience (as customarily given to traditional media) but also the content and traffic more accurately. While the users identify themselves with the qualitative characteristics of the new market, its actors are formed. Conflict of interests is laid in the base of the economy of their relations, the problem of traffic tax as an example. Meanwhile, content monetization actualizes fiscal interest of the state too. The balance of supply and demand is often violated due to the political risks, particularly in terms of state capitalism, populism and authoritarian methods of governance such social institutions as the media. A unique example of access to journalistic material, limited by monetization of content is a television channel Dozhd' (Rain) in Russian web space. Its liberal-minded audience has a better possibility for discussion. However, the channel could have been much more successful in terms of unlimited free speech. Avoiding state pressure and censorship its management has decided to save at least online performance and monetizing all of the content for the core audience. The study Methodology was primarily based on the analysis of journalistic content, on the qualitative and quantitative analysis of the audience. Reconstructing main events and relationships of actors on the market for the last six years researcher has reached some conclusions. First, under the condition of content monetization the capitalization of its quality will always strive to quality characteristics of user, thereby identifying him. Vice versa, the user's demand generates high-quality journalism. The second conclusion follows the previous one. The growth of technology, information noise, new political challenges, the economy volatility and the cultural paradigm change – all these factors form the content paying model for an individual user. This model defines him as a beneficiary of specific knowledge and indicates the constant balance of supply and demand other conditions being equal. As a result, a new economic quality of information is created. This feature is an indicator of the market as a self-regulated system. Monetized information quality is less popular than that of the Public Broadcasting Service, but this audience is able to make decisions. These very users keep the niche sectors which have more potential of technology development, including the content monetization ways. The third point of the study allows develop it in the discourse of media space liberalization. This cultural phenomenon may open opportunities for the development of social and economic relations architecture both locally and regionally.Keywords: content monetization, state capitalism, media liberalization, media economy, information quality
Procedia PDF Downloads 24859 Vertical Village Buildings as Sustainable Strategy to Re-Attract Mega-Cities in Developing Countries
Authors: M. J. Eichner, Y. S. Sarhan
Abstract:
Overall study purpose has been the evaluation of ‘Vertical Villages’ as a new sustainable building typology, reducing significantly negative impacts of rapid urbanization processes in third world capital cities. Commonly in fast-growing cities, housing and job supply, educational and recreational opportunities, as well as public transportation infrastructure, are not accommodating rapid population growth, exposing people to high noise and emission polluted living environments with low-quality neighborhoods and a lack of recreational areas. Like many others, Egypt’s capital city Cairo, according to the UN facing annual population growth rates of up to 428.000 people, is struggling to address the general deterioration of urban living conditions. New settlements typologies and urban reconstruction approach hardly follow sustainable urbanization principles or socio-ecologic urbanization models with severe effects not only for inhabitants but also for the local environment and global climate. The authors prove that ‘Vertical Village’ buildings can offer a sustainable solution for increasing urban density with at the same time improving the living quality and urban environment significantly. Inserting them within high-density urban fabrics the ecologic and socio-cultural conditions of low-quality neighborhoods can be transformed towards districts, considering all needs of sustainable and social urban life. This study analyzes existing building typologies in Cairo’s «low quality - high density» districts Ard el Lewa, Dokki and Mohandesen according to benchmarks for sustainable residential buildings, identifying major problems and deficits. In 3 case study design projects, the sustainable transformation potential through ‘Vertical Village’ buildings are laid out and comparative studies show the improvement of the urban microclimate, safety, social diversity, sense of community, aesthetics, privacy, efficiency, healthiness and accessibility. The main result of the paper is that the disadvantages of density and overpopulation in developing countries can be converted with ‘Vertical Village’ buildings into advantages, achieving attractive and environmentally friendly living environments with multiple synergies. The paper is documenting based on scientific criteria that mixed-use vertical building structures, designed according to sustainable principles of low rise housing, can serve as an alternative to convert «low quality - high density» districts in megacities, opening a pathway for governments to achieve sustainable urban transformation goals. Neglected informal urban districts, home to millions of the poorer population groups, can be converted into healthier living and working environments.Keywords: sustainable, architecture, urbanization, urban transformation, vertical village
Procedia PDF Downloads 12458 Fast Detection of Local Fiber Shifts by X-Ray Scattering
Authors: Peter Modregger, Özgül Öztürk
Abstract:
Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination
Procedia PDF Downloads 6357 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis
Authors: Mohamed Ali Abdennadher
Abstract:
Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology
Procedia PDF Downloads 3156 Identifying the Effects of the Rural Demographic Changes in the Northern Netherlands: A Holistic Approach to Create Healthier Environment
Authors: A. R. Shokoohi, E. A. M. Bulder, C. Th. van Alphen, D. F. den Hertog, E. J. Hin
Abstract:
The Northern region of the Netherlands has beautiful landscapes, a nice diversity of green and blue areas, and dispersed settlements. However, some recent population changes can become threats to health and wellbeing in these areas. The rural areas in the three northern provinces -Groningen, Friesland, and Drenthe, see youngsters leave the region for which reason they are aging faster than other regions in the Netherlands. As a result, some villages have faced major population decline that is leading to loss of facilities/amenities and a decrease in accessibility and social cohesion. Those who still live in these villages are relatively old, low educated and have low-income. To develop a deeper understanding of the health status of the people living in these areas, and help them to improve their living environment, the GO!-Method is being applied in this study. This method has been developed by the National Institute for Public Health and the Environment (RIVM) of the Netherlands and is inspired by the broad definition of health by Machteld Huber: the ability to adapt and direct control, in terms of the physical, emotional and social challenges of life, while paying extra attention to vulnerable groups. A healthy living environment is defined as an environment that residents find it pleasant and encourages and supports healthy behavior. The GO!-method integrates six domains that constitute a healthy living environment: health and lifestyle, facilities and development, safety and hygiene, social cohesion and active citizens, green areas, and air and noise pollution. First of all, this method will identify opportunities for a healthier living environment using existing information and perceptions of residents and other local stakeholders in order to strengthen social participation and quality of life in these rural areas. Second, this approach will connect identified opportunities with available and effective evidence-based interventions in order to develop an action plan from the residents and local authorities perspective which will help them to design their municipalities healthier and more resilient. This method is being used for the first time in rural areas to our best knowledge, in close collaboration with the residents and local authorities of the three provinces to create a sustainable process and stimulate social participation. Our paper will present the outcomes of the first phase of this project in collaboration with the municipality of Westerkwartier, located in the northwest of the province of Groningen. And will describe the current situation, and identify local assets, opportunities, and policies relating to healthier environment; as well as needs and challenges to achieve goals. The preliminary results show that rural demographic changes in the northern Netherlands have negative impacts on service provisions and social cohesion, and there is a need to understand this complicated situation and improve the quality of life in those areas.Keywords: population decline, rural areas, healthy environment, Netherlands
Procedia PDF Downloads 9655 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 14754 Investigation of Ground Disturbance Caused by Pile Driving: Case Study
Authors: Thayalan Nall, Harry Poulos
Abstract:
Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening
Procedia PDF Downloads 23653 Evaluating the Business Improvement District Redevelopment Model: An Ethnography of a Tokyo Shopping Mall
Authors: Stefan Fuchs
Abstract:
Against the backdrop of the proliferation of shopping malls in Japan during the last two decades, this paper presents the results of an ethnography conducted at a recently built suburban shopping mall in Western Tokyo. Through the analysis of the lived experiences of local residents, mall customers and the mall management this paper evaluates the benefits and disadvantages of the Business Improvement District (BID) model, which was implemented as urban redevelopment strategy in the area surrounding the shopping mall. The results of this research project show that while the BID model has in some respects contributed to the economic prosperity and to the perceived convenience of the area, it has led to gentrification and the redevelopment shows some deficiencies with regard to the inclusion of the elderly population as well as to the democratization of the decision-making process within the area. In Japan, shopping malls have been steadily growing both in size and number since a series of deregulation policies was introduced in the year 2000 in an attempt to push the domestic economy and to rejuvenate urban landscapes. Shopping malls have thereby become defining spaces of the built environment and are arguably important places of social interaction. Notwithstanding the vital role they play as factors of urban transformation, they have been somewhat overlooked in the research on Japan; especially with respect to their meaning for people’s everyday lives. By examining the ways, people make use of space in a shopping mall the research project presented in this paper addresses this gap in the research. Moreover, the research site of this research project is one of the few BIDs of Japan and the results presented in this paper can give indication on the scope of the future applicability of this urban redevelopment model. The data presented in this research was collected during a nine-months ethnographic fieldwork in and around the shopping mall. This ethnography includes semi-structured interviews with ten key informants as well as direct and participant observations examining the lived experiences and perceptions of people living, shopping or working at the shopping mall. The analysis of the collected data focused on recurring themes aiming at ultimately capturing different perspectives on the same aspects. In this manner, the research project documents the social agency of different groups within one communal network. The analysis of the perceptions towards the urban redevelopment around the shopping mall has shown that mainly the mall customers and large businesses benefit from the BID redevelopment model. While local residents benefit to some extent from their neighbourhood becoming more convenient for shopping they perceive themselves as being disadvantaged by changing demographics due to rising living expenses, the general noise level and the prioritisation of a certain customer segment or age group at the shopping mall. Although the shopping mall examined in this research project is just an example, the findings suggest that in future urban redevelopment politics have to provide incentives for landowners and developing companies to think of other ways of transforming underdeveloped areas.Keywords: business improvement district, ethnography, shopping mall, urban redevelopment
Procedia PDF Downloads 13652 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices
Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese
Abstract:
Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis
Procedia PDF Downloads 17651 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 26250 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 4249 Methodological Approach to the Elaboration and Implementation of the Spatial-Urban Plan for the Special Purpose Area: Case-Study of Infrastructure Corridor of Highway E-80, Section Nis-Merdare, Serbia
Authors: Nebojsa Stefanovic, Sasa Milijic, Natasa Danilovic Hristic
Abstract:
Spatial plan of the special purpose area constitutes a basic tool in the planning of infrastructure corridor of a highway. The aim of the plan is to define the planning basis and provision of spatial conditions for the construction and operation of the highway, as well as for developing other infrastructure systems in the corridor. This paper presents a methodology and approach to the preparation of the Spatial Plan for the special purpose area for the infrastructure corridor of the highway E-80, Section Niš-Merdare in Serbia. The applied methodological approach is based on the combined application of the integrative and participatory method in the decision-making process on the sustainable development of the highway corridor. It was found that, for the planning and management of the infrastructure corridor, a key problem is coordination of spatial and urban planning, strategic environmental assessment and sectoral traffic planning and designing. Through the development of the plan, special attention is focused on increasing the accessibility of the local and regional surrounding, reducing the adverse impacts on the development of settlements and the economy, protection of natural resources, natural and cultural heritage, and the development of other infrastructure systems in the corridor of the highway. As a result of the applied methodology, this paper analyzes the basic features such as coverage, the concept, protected zones, service facilities and objects, the rules of development and construction, etc. Special emphasis is placed to methodology and results of the Strategic Environmental Assessment of the Spatial Plan, and to the importance of protection measures, with the special significance of air and noise protection measures. For evaluation in the Strategic Environmental Assessment, a multicriteria expert evaluation (semi-quantitative method) of planned solutions was used in relation to the set of goals and relevant indicators, based on the basic set of indicators of sustainable development. Evaluation of planned solutions encompassed the significance and size, spatial conditions and probability of the impact of planned solutions on the environment, and the defined goals of strategic assessment. The framework of the implementation of the Spatial Plan is presented, which is determined for the simultaneous elaboration of planning solutions at two levels: the strategic level of the spatial plan and detailed urban plan level. It is also analyzed the relationship of the Spatial Plan to other applicable planning documents for the planning area. The effects of this methodological approach relate to enabling integrated planning of the sustainable development of the infrastructure corridor of the highway and its surrounding area, through coordination of spatial, urban and sectoral traffic planning and design, as well as the participation of all key actors in the adoption and implementation of planned decisions. By the conclusions of the paper, it is pointed to the direction for further research, particularly in terms of harmonizing methodology of planning documentation and preparation of technical-design documentation.Keywords: corridor, environment, highway, impact, methodology, spatial plan, urban
Procedia PDF Downloads 212