Search results for: induced breeding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3126

Search results for: induced breeding

1776 A New Approach to Retrofit Steel Moment Resisting Frame Structures after Mainshock

Authors: Amir H. Farivarrad, Kiarash M. Dolatshahi

Abstract:

During earthquake events, aftershocks can significantly increase the probability of collapse of buildings, especially for those with induced damages during the mainshock. In this paper, a practical approach is proposed for seismic rehabilitation of mainshock-damaged buildings that can be easily implemented within few days after the mainshock. To show the efficacy of the proposed method, a case study nine story steel moment frame building is chosen which was designed to pre-Northridge codes. The collapse fragility curve for the aftershock is presented for both the retrofitted and non-retrofitted structures. Comparison of the collapse fragility curves shows that the proposed method is indeed applicable to reduce the seismic collapse risk.

Keywords: aftershock, the collapse fragility curve, seismic rehabilitation, seismic retrofitting

Procedia PDF Downloads 433
1775 Leuprolide Induced Scleroderma Renal Crisis: A Case Report

Authors: Nirali Sanghavi, Julia Ash, Amy Wasserman

Abstract:

Introduction: To the best of our knowledge, there is only one case report that found an association between leuprolide and scleroderma renal crisis (SRC). Leuprolide has been noted to cause acute renal failure in some patients. Given the close timing of the leuprolide injection and the worsening renal function in our patient, leuprolide likely caused exacerbation of lupus nephritis and SRC. Interestingly, our patient on long-term hydroxychloroquine (HCQ) with normal baseline cardiac function was found to have HCQ cardiomyopathy highlighting the need for close monitoring of HCQ toxicity. We know that some of the risk factors that are involved in HCQ induced cardiomyopathy are older age, females, increased dose and >10 years of HCQ use, and pre-existing cardiac and renal insufficiency. Case presentation: A 34-year-old African American woman with a history of overlap of systemic lupus erythematosus (SLE) and scleroderma features and class III lupus nephritis presented with severe headaches, elevated blood pressure (180/120 mmHg) and worsening creatinine levels (2.07 mg/dL). The headaches started 1 month ago after she started leuprolide injections for fibroids. She was being treated with mycophenolate mofetil 1 gm twice a day, belimumab weekly, HCQ 200mg, and prednisone 5 mg daily. She has been on HCQ since her teenage years. The examination was unremarkable except for proximal interphalangeal joint contractures in the right hand and sclerodactyly of bilateral hands, unchanged from baseline. Laboratory findings include urinalysis, which showed 3+ protein, 1+ blood, 6 red blood cells, and 14 white blood cells ruling out thrombotic microangiopathy. C3 was 32 mg/dL, C4 <5 mg/dL, and +dsDNA increased >1000. She was started on captopril and discharged once creatinine and blood pressure was controlled. She was readmitted with hypertension, hyperkalemia, worsening creatinine, nephrotic range proteinuria, complaints of chest pressure, and shortness of breath with pleuritic chest pain. Physical examination and lab findings were unchanged. She was treated with pulse dose methyl prednisone followed by taper and multiple anti-hypertensive agents, including captopril, for presumed lupus nephritis flare versus SRC. Renal biopsy was consistent with SRC and class IV lupus nephritis and was started on cyclophosphamide. While cardiac biopsy showed borderline myocarditis without necrosis and cytoplasmic vacuolization consistent with HCQ cardiomyopathy, hence HCQ was discontinued. Summary: It highlights a rare association of leuprolide causing exacerbation of lupus nephritis or SRC. Although rare, the current case reinforces the importance of close monitoring for HCQ toxicity in patients with renal insufficiency.

Keywords: leuprolide, lupus nephritis, scleroderma, SLE

Procedia PDF Downloads 95
1774 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel

Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec

Abstract:

Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.

Keywords: pearlite, retained austenite, thermo-mechanical treatment, TRIP steel

Procedia PDF Downloads 293
1773 Comparative Histological, Immunohistochemical and Biochemical Study on the Effect of Vit. C, Vit. E, Gallic Acid and Silymarin on Carbon Tetrachloride Model of Liver Fibrosis in Rats

Authors: Safaa S. Hassan, Mohammed H. Elbakry, Safwat A. Mangoura, Zainab M. Omar

Abstract:

Background: Liver fibrosis is the main reason for increased mortality in chronic liver disease. It has no standard treatment. Antioxidants from a variety of sources are capable of slowing or preventing oxidation of other molecules. Aim: to evaluate the hepatoprotective effect of vit. C, vit. E and gallic acid in comparison to silymarin in the rat model of carbon tetrachloride induced liver fibrosis and their possible mechanisms of action. Material& Methods: A total number of 60 adult male albino rats 160-200gm were divided into six equal groups; received subcutaneous (s.c) injection for 8 weeks. Group I: as control. Group II: received 1.5 mL/kg of CCL4 .Group III: CCL4 and co- treatment with silymarin 100mg/kg p.o. daily. Group IV: CCL4 and co-treatment with vit. C 50mg/kg p.o. daily. Group V: CCL4 and co-treatment with vit. E 200mg/kg. p.o. Group VI: CCL4 and co-treatment with Gallic acid 100mg/kg. p.o. daily. Liver was processed for histological and immunohistochemical examination. Levels of AST, ALT, ALP, reduced GSH, MDA, SOD and hydroxyproline concentration were measured and evaluated statistically. Results: Light and electron microscopic examination of liver of group II exhibited foci of altered cells with dense nuclei and vacuolated, granular cytoplasm, mononuclear cell infiltration in portal areas, profuse collagen fiber deposits were found around portal tract, more intense staining α-SMA-positive cells occupied most of the liver fibrosis tissue, electron lucent areas in the cytoplasm of the hepatocytes, margination of nuclear chromatin. Treatment by any of the antioxidants variably reduced the hepatic structural changes induced by CCL4. Biochemical analysis showed that carbon tetrachloride significantly increased the levels of serum AST, ALT, ALP, hepatic malondialdehyde and hydroxyproline content. Moreover, it decreased the activities of superoxide dismutase and glutathione. Treatment with silymarin, gallic acid, vit. C and vit. E decreased significantly the AST, ALT, and ALP levels in plasma, MDA and hydroxyproline and increased the activities of SOD and glutathione in liver tissue. The effect of administration of CCl4 was improved with the used antioxidants in variable degrees. The most efficient antioxidant was silymarin followed by gallic acid and vit. C then vit. E. It is possibly due to their antioxidant effect, free radical scavenging properties and the reduction of oxidant dependent activation and proliferation of HSCs. Conclusion: So these antioxidants can be a promising drugs candidate for ameliorating liver fibrosis better than the use of the drugs and their side effects.

Keywords: antioxidant, ccl4, gallic acid, liver fibrosis

Procedia PDF Downloads 272
1772 Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking

Authors: Anupam Saxena, Achin Agrawal, Rishabh Shukla, S. Mandal

Abstract:

It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable.

Keywords: delamination, elasticity, FEA, flexural strength, modal frequency, RC beam

Procedia PDF Downloads 426
1771 Glycyrrhizic Acid Inhibits Lipopolysaccharide-Stimulated Bovine Fibroblast-Like Synoviocyte, Invasion through Suppression of TLR4/NF-κB-Mediated Matrix Metalloproteinase-9 Expression

Authors: Hosein Maghsoudi

Abstract:

Rheumatois arthritis (RA) is progressive inflammatory autoimmune diseases that primarily affect the joints, characterized by synovial hyperplasia and inflammatory cell infiltration, deformed and painful joints, which can lead tissue destruction, functional disability systemic complications, and early dead and socioeconomic costs. The cause of rheumatoid arthritis is unknown, but genetic and environmental factors are contributory and the prognosis is guarded. However, advances in understanding the pathogenesis of the disease have fostered the development of new therapeutics, with improved outcomes. The current treatment strategy, which reflects this progress, is to initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided by an assessment of disease activity, in pursuit of clinical remission. The pathobiology of RA is multifaceted and involves T cells, B cells, fibroblast-like synoviocyte (FLSc) and the complex interaction of many pro-inflammatory cytokine. Novel biologic agents that target tumor necrosis or interlukin (IL)-1 and Il-6, in addition T- and B-cells inhibitors, have resulted in favorable clinical outcomes in patients with RA. Despite this, at least 30% of RA patients are résistance to available therapies, suggesting novel mediators should be identified that can target other disease-specific pathway or cell lineage. Among the inflammatory cell population that might participated in RA pathogenesis, FLSc are crucial in initiaing and driving RA in concert of cartilage and bone by secreting metalloproteinase (MMPs) into the synovial fluid and by direct invasion into extracellular matrix (ECM), further exacerbating joint damage. Invasion of fibroblast-like synoviocytes (FLSc) is critical in the pathogenesis of rheumatoid-arthritis. The metalloproteinase (MMPs) and activator of Toll-like receptor 4 (TLR4)/nuclear factor- κB pthway play a critical role in RA-FLS invasion induced by lipopolysaccharide (LPS). The present study aimed to explore the anti-invasion activity of Glycyrrhizic Acid as a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in Bovine fibroblast-like synoviocyte ex- vitro, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Results showed that Glycyrrhizic Acid suppressed LPS-stimulated bovine FLS migration and invasion by inhibition MMP-9 expression and activity. In addition our results revealed that Glycyrrhizic Acid inhibited the transcriptional activity of MMP-9 by suppression the nbinding activity of NF- κB in the MMP-9 promoter pathway. The extract of licorice (Glycyrrhiza glabra L.) has been widely used for many centuries in the traditional Chinese medicine as native anti-allergic agent. Glycyrrhizin (GL), a triterpenoidsaponin, extracted from the roots of licorice is the most effective compound for inflammation and allergic diseases in human body. The biological and pharmacological studies revealed that GL possesses many pharmacological effects, such as anti-inflammatory, anti-viral and liver protective effects, and the biological effects, such as induction of cytokines (interferon-γ and IL-12), chemokines as well as extrathymic T and anti-type 2 T cells. GL is known in the traditional Chinese medicine for its anti-inflammatory effect, which is originally described by Finney in 1959. The mechanism of the GL-induced anti-inflammatory effect is based on different pathways of the GL-induced selective inhibition of the prostaglandin E2 production, the CK-II- mediated activation of both GL-binding lipoxygenas (gbLOX; 17) and PLA2, an anti-thrombin action of GL and production of the reactive oxygen species (ROS; GL exerts liver protection properties by inhibiting PLA2 or by the hydroxyl radical trapping action, leading to the lowering of serum alanine and aspartate transaminase levels. The present study was undertaken to examine the possible mechanism of anti-inflammatory properties GL on IL-1beta and TNF-alpha signalling pathways in bovine fibroblast-like synoviocyte ex-vivo, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Our results clearly showed that treatment of bovine fibroblast-like synoviocyte with GL suppressed LPS-induced cell migration and invasion. Furthermore, it revealed that GL inhibited the transcription activity of MMP-9 by suppressing the binding activity of NF-κB in the MM-9 promoter. MMP-9 is an important ECM-degrading enzyme and overexpression of MMPs in important of RA-FLSs. LPS can stimulate bovine FLS to secret MMPs, and this induction is regulated at the transcription and translational levels. In this study, LPS treatment of bovine FLS caused an increase in MMP-2 and MMP-9 levels. The increase in MMP-9 expression and secretion was inhibited by ex- vitro. Furthermore, these effects were mimicked by MMP-9 siRNA. These result therefore indicate the the inhibition of LPS-induced bovine FLS invasion by GL occurs primarily by inhibiting MMP-9 expression and activity. Next we analyzed the functional significance of NF-κB transcription of MMP-9 activation in Bovine FLSs. Results from EMSA showed that GL suppressed LPS-induced NF-κB binding to the MMP-9 promotor, as NF-κB regulates transcriptional activation of multiple inflammatory cytokines, we predicted that GL might target NF-κB to suppress MMP-9 transcription by LPS. Myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways, GL inhibited the expression of TLR4 and MYD88. These results demonstrated that GL suppress LPS-induced MMP-9 expression through the inhibition of the induced TLR4/NFκB signaling pathway. Taken together, our results provide evidence that GL exerts anti-inflammatory effects by inhibition LPS-induced bovine FLSs migration and invasion, and the mechanisms may involve the suppression of TLR4/NFκB –mediated MMP-9 expression. Although further work is needed to clarify the complicated mechanism of GL-induced anti-invasion of bovine FLSs, GL might be used as a further anti-invasion drug with therapeutic efficacy in the treatment of immune-mediated inflammatory disease such as RA.

Keywords: glycyrrhizic acid, bovine fibroblast-like synoviocyte, tlr4/nf-κb, metalloproteinase-9

Procedia PDF Downloads 391
1770 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.

Keywords: gamma irradiation, graphene oxide, nanocomposites, PVDF

Procedia PDF Downloads 285
1769 Analysis of the Effect of Farmers’ Socio-Economic Factors on Net Farm Income of Catfish Farmers in Kwara State, Nigeria

Authors: Olanike A. Ojo, Akindele M. Ojo, Jacob H. Tsado, Ramatu U. Kutigi

Abstract:

The study was carried out on analysis of the effect of farmers’ socio-economic factors on the net farm income of catfish farmers in Kwara State, Nigeria. Primary data were collected from selected catfish farmers with the aid of well-structured questionnaire and a multistage sampling technique was used to select 102 catfish farmers in the area. The analytical techniques involved the use of descriptive statistics and multiple regression analysis. The findings of the analysis of socio-economic characteristics of catfish farmers reveal that 60% of the catfish farmers in the study area were male gender which implied the existence of gender inequality in the area. The mean age of 47 years was an indication that they were at their economically productive age and could contribute positively to increased production of catfish in the area. Also, the mean household size was five while the mean year of experience was five. The latter implied that the farmers were experienced in fishing techniques, breeding and fish culture which would assist in generating more revenue, reduce cost of production and eventual increase in profit levels of the farmers. The result also revealed that stock capacity (X3), accessibility to credit (X7) and labour (X4) were the main determinants of catfish production in the area. In addition, farmer’s sex, household size, no of ponds, distance of the farm from market, access to credit were the main socio-economic factors influencing the net farm income of the catfish farmers in the area. The most serious constraints militating against catfish production in the study area were high mortality rate, insufficient market, inadequate credit facilities/ finance and inadequate skilled labour needed for daily production routine. Based on the findings, it is therefore recommended that, to reduce the mortality rate of catfish extension agents should organize training workshops on improved methods and techniques of raising catfish right from juvenile to market size.

Keywords: credit, income, stock, mortality

Procedia PDF Downloads 332
1768 Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field

Authors: M. Kalbac, T. Verhagen, K. Drogowska, J. Vejpravova

Abstract:

One- and two-dimensional carbon nano structures with sp2 hybridization of carbon atoms (single walled carbon nano tubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper, we present a comparative study of graphene and single-wall carbon nano tubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nano structures induced by a strong magnetic field.

Keywords: carbon nano structures, magnetic field, raman spectroscopy, spectro-microscopy

Procedia PDF Downloads 272
1767 Genetic Analysis of the Endangered Mangrove Species Avicennia Marina in Qatar Detected by Inter-Simple Sequence Repeat DNA Markers

Authors: Talaat Ahmed, Amna Babssail

Abstract:

Mangroves are evergreen trees and grow along the coastal areas of Qatar. The largest and oldest area of mangroves can be found around Al-Thakhira and Al-Khor. Other mangrove areas originate from fairly recent plantings by the government, although unfortunately the picturesque mangrove lake in Al-Wakra has now been uprooted. Avicinnia marina is the predominant mangrove species found in the region. Mangroves protect and stabilize low lying coastal land, and provide protection and food sources for estuarine and coastal fishery food chains. They also serve as feeding, breeding and nursery grounds for a variety of fish, crustaceans, reptiles, birds and other wildlife. A total of 21 individuals of A. marina, representing seven diverse Natural and artificial populations, were sampled throughout its range in Qatar. Leaves from 2-3 randomly selected trees at each location were collected. The locations are as follows: Al-Rawis, Ras-Madpak, Fuwairt, Summaseima, Al-khour, AL-Mafjar and Zekreet. Total genomic DNA was extracted using commercial DNeasy Plant System (Qiagen, Inc., Valencia, CA) kit to be used for genetic diversity analysis. Total of 12 (Inter-Simple Sequence Repeat) ISSR primers were used to amplify DNA fragments using genomic DNA. The 12 ISSR primers amplified polymorphic bands among mangrove samples in different areas as well as within each area indicating the existing of variation within each area and among the different areas of mangrove in Qatar. The results could characterize Avicinnia marina populations exist in different areas of Qatar and establish DNA fingerprint documentations for mangrove population to be used in further studies. Moreover, existing of genetic variation within and among Avicinnia marina populations is a strong indication for the ability of such populations to adapt different environmental conditions in Qatar. This study could be a warning to save mangrove in Qatar and save the environment as well.

Keywords: DNA fingerprint, Avicinnia marina, genetic analysis, Qatar

Procedia PDF Downloads 405
1766 Electrophilic Halogen-Induced Spirocyclization of 2-Alkynolylaryloate Esters

Authors: Krittapast Dara-Opast, Sureeporn Ruengsangtongkul, Jumreang Tummatorn, Kittipong Chainok, Onrapak Reamtong, Somsak Ruchirawat, Charnsak Thongsornkleeb

Abstract:

Selective synthesis of gem-dihalo spiroisobenzofuran and spiroisocoumarin can be performed via halogenative double cyclization of methyl 2-(hydroxyalk-1-yn-1-yl) benzoates in the presence of either N-chlorosuccinimide (NCS) or N-bromosuccinimide (NBS) and chlorotrimethylsilane (TMSCl). The combination of NCS and TMSCl led to the generation of electrophilic chlorine in situ, which activated the alkyne functional group of the substrate leading to the cyclization via either 5-exo-dig or 6-endo-dig mode of cyclization to produce the target compounds in moderate yields. The protocol could be carried on a broad scope of substrates under mild conditions (0 °C to rt). The parent compounds showed good antiparasitic activity compared to standard drug albendazole. Further investigation of the scope of the reaction and their antiparasitic activities is underway.

Keywords: antiparasitic activities, halogenative annulation, spirocycles, spirocyclization

Procedia PDF Downloads 190
1765 Root System Architecture Analysis of Sorghum Genotypes and Its Effect on Drought Adaptation

Authors: Hailemariam Solomon, Taye Tadesse, Daniel Nadew, Firezer Girma

Abstract:

Sorghum is an important crop in semi-arid regions and has shown resilience to drought stress. However, recurrent drought is affecting its productivity. Therefore, it is necessary to explore genes that contribute to drought stress adaptation to increase sorghum productivity. The aim of this study is to evaluate and determine the effect of root system traits, specifically root angle, on drought stress adaptation and grain yield performance in sorghum genotypes. A total of 428 sorghum genotypes from the Ethiopian breeding program were evaluated in three drought-stress environments. Field trials were conducted using a row-column design with three replications. Root system traits were phenotyped using a high-throughput phenotyping platform and analyzed using a row-column design with two replications. Data analysis was performed using R software and regression analysis. The study found significant variations in root system architecture among the sorghum genotypes. Non-stay-green genotypes had a grain yield ranging from 1.63 to 3.1 tons/ha, while stay-green genotypes had a grain yield ranging from 2.4 to 2.9 tons/ha. The analysis of root angle showed that non-stay-green genotypes had an angle ranging from 8.0 to 30.5 degrees, while stay-green genotypes had an angle ranging from 12.0 to 29.0 degrees. Improved varieties exhibited angles between 14.04 and 19.50 degrees. Positive and significant correlations were observed between leaf areas and shoot dry weight, as well as between leaf width and shoot dry weight. Negative correlations were observed between root angle and leaf area, as well as between root angle and root length. This research highlights the importance of root system architecture, particularly root angle traits, in enhancing grain yield production in drought-stressed conditions. It also establishes an association between root angle and grain yield traits for maximizing sorghum productivity.

Keywords: roor sysytem architecture, root angle, narrow root angle, wider root angle, drought

Procedia PDF Downloads 75
1764 Effect of Melatonin on Seed Germination and Seedling Growth of Catharanthus roseus under Cadmium Stress

Authors: Rayhaneh Amooaghaie, Masoomeh Nabaei

Abstract:

In this study, 200 µM Cd reduced relative seed germination, root elongation tolerance and seed germination tolerance index of Catharanthus roseus. The melatonin improved seed germination, germination velocity, seedling length and vigor index under Cd stress in a dose-dependent manner and the maximum biological responses obtained by 100 μM melatonin. However, 200-400 μM melatonin and 400 μM SNP had negative effects that evidenced as lower germination indices and poor establishment of seedlings. The cadmium suppressed amylase activity and contents of soluble and reducing sugars in germinating seeds, thereby reduced seed germination and subsequent seedling growth whereas increased electrolyte leakage. These Cd-induced inhibitory effects were ameliorated by melatonin.

Keywords: cadmium, Catharanthus roseus, melatonin, seed germination

Procedia PDF Downloads 177
1763 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes

Authors: Anna Romanova, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.

Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid

Procedia PDF Downloads 307
1762 Influence of Heliotropium Undulatum on Hepatic Glutathione Conjugating Enzymes System in Acetylhydrazide-Rats

Authors: S. Ameddah, O. Deffa, H. Aissaoui, A. Menad, R. Mekkiou, F. Benayache, S. Benayache

Abstract:

Acetylhydrazide (ACHD) is a metabolite of the anti-tubercular drug isoniazid (INH) that has been implicated in liver damage. This study was designed to evaluate hapatoprotective of n-BuOH extract of Heliotrpium undulatum (HUBE) in ACHD hepatotoxicity in rats. Hepatic damage was induced by administration of ACHD (300 mg/Kg op). The protection was affected by the administration of HUBE (200 mg/Kg op) for 14 days before ACHD administration, caused a decrease in LPO levels and in the transaminase and ALP levels and restored the GSH and its related enzymes (GPx, GST, GR) (50-62 %). Simultaneous administration of HUBE afforded a partial protection in statue of hepatic GSH conjugating enzymes upon administration of ACHD.

Keywords: heliotrpium undulatum, acetylhydrazide, glutathione conjugating enzymes, oxydatif stress, heaptoprotectif effect

Procedia PDF Downloads 312
1761 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 269
1760 Mechanism of Cathodic Protection to Minimize Corrosion Caused by Chloride in Reinforcement Concrete

Authors: Mohamed A. Deyab, Omnia El-Shamy

Abstract:

The main objective of this case study is to integrate the advantages of cathodic protection technologies in order to lessen chloride-induced corrosion in reinforced concrete. This research employs potentiodynamic polarisation, impedance spectroscopy (EIS), and surface characteristics. The results showed how effectively the new cathodic control strategy is preventing corrosion of the concrete iron rods. Over time, the protective system becomes more reliable and effective. The potentials of the zinc electrode persist still more negative after 30 days, implying that the zinc electrode can maintain powerful electrocatalytic behavior for a long period of time. As per the electrochemical impedance spectroscopy (EIS), using the CP technique reduces the rate of corrosion of rebar iron in cementitious materials over time.

Keywords: cathodic protection, corrosion, reinforced concrete, chloride

Procedia PDF Downloads 86
1759 Usy-Cui Zeolite: An Efficient and Reusable Catalyst for Derivatives Indole Synthesis

Authors: Hassina Harkat, Samiha Taybe, Salima Loucif, Valérie Beneteau, Patrick Pale

Abstract:

Indole and its derivatives have attracted great interest because of their importance in the synthetic organic and medicinal chemistry. They are widely used as anti hypertension, anti tubercular, anticancer activity, antiviral, Alzheimer's disease, antioxidant properties, and free radical induced lipid peroxidation. Many drugs and natural products contain indole moiety, such as the vinca alkaloids, fungal metabolites and marine natural products. Generally applicable synthetic methods for indole moiety involve ring closure to form the pyrrole. Indole derivatives can also be accessed by further functionalization of the indole nucleus. Therefore we report a mild and efficient protocol for the synthesis of analogues of indole catalyzed via zeolithe USY doped with CuI under solvent-free conditions.

Keywords: indole, zeolithe, USY-CuI, heterogeneous catalysis

Procedia PDF Downloads 585
1758 Polymer Nanocarrier for Rheumatoid Arthritis Therapy

Authors: Vijayakameswara Rao Neralla, Jueun Jeon, Jae Hyung Park

Abstract:

To develop a potential nanocarrier for diagnosis and treatment of rheumatoid arthritis (RA), we prepared a hyaluronic acid (HA)-5β-cholanic acid (CA) conjugate with an acid-labile ketal linker. This conjugate could self-assemble in aqueous conditions to produce pH-responsive HA-CA nanoparticles as potential carriers of the anti-inflammatory drug methotrexate (MTX). MTX was rapidly released from nanoparticles under inflamed synovial tissue in RA. In vitro cytotoxicity data showed that pH-responsive HA-CA nanoparticles were non-toxic to RAW 264.7 cells. In vivo biodistribution results confirmed that, after their systemic administration, pH-responsive HA-CA nanoparticles selectively accumulated in the inflamed joints of collagen-induced arthritis mice. These results indicate that pH-responsive HA-CA nanoparticles represent a promising candidate as a drug carrier for RA therapy.

Keywords: rheumatoid arthritis, hyaluronic acid, nanocarrier, self-assembly, MTX

Procedia PDF Downloads 289
1757 Successes on in vitro Isolated Microspores Embryogenesis

Authors: Zelikha Labbani

Abstract:

The In Vitro isolated micro spore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a micro spore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the micro spore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of micro spore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, micro spore became a strategy to achieve various objectives particularly in genetic engineering. In this study we would show the most recent advances in the producing haploid embryos via In Vitro isolated micro spore culture.

Keywords: haploid cells, In Vitro isolated microspore culture, success

Procedia PDF Downloads 616
1756 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 73
1755 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique

Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina

Abstract:

The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.

Keywords: diffusion, glass-ceramics, ion exchange, vitrification

Procedia PDF Downloads 269
1754 Effect of Peg-6000-induced Drought Stress on the Germination of Moringa Stenopetala Seeds

Authors: Khater Nadia, Garah Kenza

Abstract:

Moringa stenopetala is a rapidly growing, unappreciated tree regarded as the "miracle tree" for its food, feed, and medicinal benefits. It appears to be a versatile and promising species for use under changing conditions. To evaluate the effect of water stress on germination seeds of M. stenopetala, three different concentrations PEG- 6000 (4, 8, and 12 per cent) along with a control in a factorial experiment based on a completely randomized design with five replications. The results revealed that water potential significantly reduced germination rate (82.5%) and average germination time. Germination speed in T3 by 93%, kinetics germination in T2 (39), germination index in T2 (102) and germination vigor index in T2 (91.25) were increased in the osmotic potential of PEG solution. By following these steps, we can improve the chances of successful germination of M. stenopetala seeds under water stress conditions

Keywords: moringa stenopetala, PEG, water stress, rate

Procedia PDF Downloads 3
1753 Combined Treatment of Estrogen-Receptor Positive Breast Microtumors with 4-Hydroxytamoxifen and Novel Non-Steroidal Diethyl Stilbestrol-Like Analog Produces Enhanced Preclinical Treatment Response and Decreased Drug Resistance

Authors: Sarah Crawford, Gerry Lesley

Abstract:

This research is a pre-clinical assessment of anti-cancer effects of novel non-steroidal diethyl stilbestrol-like estrogen analogs in estrogen-receptor positive/ progesterone-receptor positive human breast cancer microtumors of MCF 7 cell line. Tamoxifen analog formulation (Tam A1) was used as a single agent or in combination with therapeutic concentrations of 4-hydroxytamoxifen, currently used as a long-term treatment for the prevention of breast cancer recurrence in women with estrogen receptor positive/ progesterone receptor positive malignancies. At concentrations ranging from 30-50 microM, Tam A1 induced microtumor disaggregation and cell death. Incremental cytotoxic effects correlated with increasing concentrations of Tam A1. Live tumor microscopy showed that microtumos displayed diffuse borders and substrate-attached cells were rounded-up and poorly adherent. A complete cytotoxic effect was observed using 40-50 microM Tam A1 with time course kinetics similar to 4-hydroxytamoxifen. Combined treatment with TamA1 (30-50 microM) and 4-hydroxytamoxifen (10-15 microM) induced a highly cytotoxic, synergistic combined treatment response that was more rapid and complete than using 4-hydroxytamoxifen as a single agent therapeutic. Microtumors completely dispersed or formed necrotic foci indicating a highly cytotoxic combined treatment response. Moreover, breast cancer microtumors treated with both 4-hydroxytamoxifen and Tam A1 displayed lower levels of long-term post-treatment regrowth, a critical parameter of primary drug resistance, than observed for 4-hydroxytamoxifen when used as a single agent therapeutic. Tumor regrowth at 6 weeks post-treatment with either single agent 4-hydroxy tamoxifen, Tam A1 or a combined treatment was assessed for the development of drug resistance. Breast cancer cells treated with both 4-hydroxytamoxifen and Tam A1 displayed significantly lower levels of post-treatment regrowth, indicative of decreased drug resistance, than observed for either single treatment modality. The preclinical data suggest that combined treatment involving the use of tamoxifen analogs may be a novel clinical approach for long-term maintenance therapy in patients with estrogen-receptor positive/progesterone-receptor positive breast cancer receiving hormonal therapy to prevent disease recurrence. Detailed data on time-course, IC50 and tumor regrowth assays post- treatment as well as a proposed mechanism of action to account for observed synergistic drug effects will be presented.

Keywords: 4-hydroxytamoxifen, tamoxifen analog, drug-resistance, microtumors

Procedia PDF Downloads 68
1752 Use of Curcumin in Radiochemotherapy Induced Oral Mucositis Patients: A Control Trial Study

Authors: Shivayogi Charantimath

Abstract:

Radiotherapy and chemotherapy are effective for treating malignancies but are associated with side effects like oral mucositis. Chlorhexidine gluconate is one of the most commonly used mouthwash in prevention of signs and symptoms of mucositis. Evidence shows that chlorhexidine gluconate has side effects in terms of colonization of bacteria, bad breadth and less healing properties. Thus, it is essential to find a suitable alternative therapy which is more effective with minimal side effects. Curcumin, an extract of turmeric is gradually being studied for its wide-ranging therapeutic properties such as antioxidant, analgesic, anti-inflammatory, antitumor, antimicrobial, antiseptic, chemo sensitizing and radio sensitizing properties. The present study was conducted to evaluate the efficacy and safety of topical curcumin gel on radio-chemotherapy induced oral mucositis in cancer patients. The aim of the study is to evaluate the efficacy and safety of curcumin gel in the management of oral mucositis in cancer patients undergoing radio chemotherapy and compare with chlorhexidine. The study was conducted in K.L.E. Society’s Belgaum cancer hospital. 40 oral cancer patients undergoing the radiochemotheraphy with oral mucositis was selected and randomly divided into two groups of 20 each. The study group A [20 patients] was advised Cure next gel for 2 weeks. The control group B [20 patients] was advised chlorhexidine gel for 2 weeks. The NRS, Oral Mucositis Assessment scale and WHO mucositis scale were used to determine the grading. The results obtained were calculated by using SPSS 20 software. The comparison of grading was done by applying Mann-Whitney U test and intergroup comparison was calculated by Wilcoxon matched pairs test. The NRS scores observed from baseline to 1st and 2nd week follow up in both the group showed significant difference. The percentage of change in erythema in respect to group A was 63.3% for first week and for second week, changes were 100.0% with p = 0.0003. The changes in Group A in respect to erythema was 34.6% for 1st week and 57.7% in second week. The intergroup comparison was significant with p value of 0.0048 and 0.0006 in relation to group A and group B respectively. The size of the ulcer score was measured which showed 35.5% [P=0.0010] of change in Group A for 1st and 2nd week showed totally reduction i.e. 103.4% [P=0.0001]. Group B showed 24.7% change from baseline to 1st week and 53.6% for 2nd week follow up. The intergroup comparison with Wilcoxon matched pair test was significant with p=0.0001 in group A. The result obtained by WHO mucositis score in respect to group A shows 29.6% [p=0.0004] change in first week and 75.0% [p=0.0180] change in second week which is highly significant in comparison to group B. Group B showed minimum changes i.e. 20.1% in 1st week and 33.3% in 2nd week. The p value with Wilcoxon was significant with 0.0025 in Group A for 1st week follow up and 0.000 for 2nd week follow up. Curcumin gel appears to an effective and safer alternative to chlorhexidine gel in treatment of oral mucositis.

Keywords: curcumin, chemotheraphy, mucositis, radiotheraphy

Procedia PDF Downloads 351
1751 Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks

Authors: Huseyin Gokberk, Shian Gao

Abstract:

CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration.

Keywords: CFD, turbulence modelling, aerofoil, angle of attack

Procedia PDF Downloads 225
1750 Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy

Authors: Jing Zhang, Yongqin Chang, Yongwei Wang, Xiaolin Li, Shaoning Jiang, Farong Wan, Yi Long

Abstract:

Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases.

Keywords: irradiation, Fe-0.2wt.%V alloy, microstructures, hardness

Procedia PDF Downloads 387
1749 Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall

Authors: Khelifa Tarek, Benmebarek Sadok

Abstract:

The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied.

Keywords: numerical modeling, FLAC3D, retaining wall, passive earth pressures, angle of dilation

Procedia PDF Downloads 324
1748 Modulation of Receptor-Activation Due to Hydrogen Bond Formation

Authors: Sourav Ray, Christoph Stein, Marcus Weber

Abstract:

A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.

Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation

Procedia PDF Downloads 175
1747 Therapeutic Potential of Cannabis in Cancer: Advances in Clinical Research and Pharmacogenomic Aspects

Authors: Bouchaïb Gazzaz, Hamid El Amri, Hind Dehbi, Abderraouf Hilali

Abstract:

Medical cannabis has been cultivated and used in many countries around the world. The story of the use of cannabis as a therapeutic agent is difficult to trace, in particular, because the laws regulating its production, distribution, possession, and consumption are relatively recent. Nowadays, in countries where it is authorized, medical cannabis is used in a very wide variety of illnesses and pathologies, particularly in cancer cures. Presently, cannabinoid receptor agonists (like nabilone and dronabinol) are used for reducing chemotherapy induced vomiting. This review aims to discuss a recent finding on the use of therapeutic cannabis in patients with cancer. First, this work addresses the progress made in the use of cannabinoids as therapeutic agent and their application in the treatment of different types of cancer. Secondly, a detailed analysis of the pharmacogenetic aspect of cannabis will be discussed.

Keywords: cannabinoids, endocannabinoids system, cancer treatment, cannabinoid receptors, genetic polymorphism, pharmacogenomics

Procedia PDF Downloads 144