Search results for: flow-through membrane reactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1757

Search results for: flow-through membrane reactor

407 Impact of Soot on NH3-SCR, NH3 Oxidation and NH3 TPD over Cu/SSZ-13 Zeolite

Authors: Lidija Trandafilovic, Kirsten Leistner, Marie Stenfeldt, Louise Olsson

Abstract:

Ammonia Selective Catalytic Reduction (NH3 SCR), is one of the most efficient post combustion abatement technologies for removing NOx from diesel engines. In order to remove soot, diesel particulate filters (DPF) are used. Recently, SCR coated filters have been introduced, which captures soot and simultaneously is active for ammonia SCR. There are large advantages with using SCR coated filters, such as decreased volume and also better light off characteristics, since both the SCR function as well as filter function is close to the engine. The objective of this work was to examine the effect of soot, produced using an engine bench, on Cu/SSZ-13 catalysts. The impact of soot on Cu/SSZ-13 in standard SCR, NH3 oxidation, NH3 temperature programmed desorption (TPD), as well as soot oxidation (with and without water) was examined using flow reactor measurements. In all experiments, prior to the soot loading, the fresh activity of Cu/SSZ-13 was recorded with stepwise increasing the temperature from 100°C till 600°C. Thereafter, the sample was loaded with soot and the experiment was repeated in the temperature range from 100°C till 700°C. The amount of CO and CO2 produced in each experiment is used to calculate the soot oxidized at each steady state temperature. The soot oxidized during the heating to next temperature step is included, e.g. the CO+CO2 produced when increasing the temperature to 600°C is added to the 600°C step. The influence of the two factors seem to be of the most importance to soot oxidation: ammonia and water. The influence of water on soot oxidation shift the maximum of CO2 and CO production towards lower temperatures, thus water increases the soot oxidation. Moreover, when adding ammonia to the system it is clear that the soot oxidation is lowered in the presence of ammonia, resulting in larger integrated COx at 500°C for O2+H2O, while opposite results at 600 °C was received where more was oxidised for O2+H2O+NH3 case. To conclude the presence of ammonia reduces the soot oxidation, which is in line with the ammonia TPD results where we found ammonia storage on the soot. Interestingly, during ammonia SCR conditions the activity for soot oxidation is regained at 500°C. At this high temperature the SCR zone is very short, thus the majority of the catalyst is not exposed to ammonia and therefore the inhibition effect of ammonia is not observed.

Keywords: NH3-SCR, Cu/SSZ-13, soot, zeolite

Procedia PDF Downloads 236
406 Ergosterol Biosynthesis: Non-Conventional Method for Improving Process

Authors: Madalina Postaru, Alexandra Tucaliuc, Dan Cascaval, Anca Irina Galaction

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol) is the precursor of vitamin D2 (ergocalciferol), known as provitamin D2 as it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). As ergosterol is mainly accumulated in yeast cell membranes, especially in free form in the plasma-membrane, and the chemical synthesis of ergosterol does not represent an efficient method for its production, this study aimed to analyze the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. Our previous studies on ergosterol production by S. cerevisiae in batch and fed-batch fermentation systems indicated that the addition of n-dodecane led to the increase of almost 50% of this sterol concentration, the highest productivity being reached for the fed-batch process. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. In batch fermentation system, the study indicated that the oxygen mass transfer coefficient, kLa, is amplified for about 3 times by increasing the volumetric concentration of n-dodecane from 0 to 15%. Moreover, the increase of dissolved oxygen concentration by adding n-dodecane leads to the diminution for 3.5 times of the produced alcohol amount. In fed-batch fermentation process, the positive influence of hydrocarbon on oxygen transfer rate is amplified mainly at its higher concentration level, as the result of the increased yeasts cells amount. Thus, by varying n-dodecane concentration from 0 to 15% vol., the kLa value increase becomes more important than for the batch fermentation, being of 4 times

Keywords: ergosterol, yeast fermentation, n-dodecane, oxygen-vector

Procedia PDF Downloads 119
405 Effects of Achillea millefolium L. Extract on Rat Spermatogenesis

Authors: Nasrin Takzaree, Gholamreza Hassanzadeh, Abbas Hadjiakhoondi, Mohammadreza Rouini

Abstract:

Introduction: Today herbal medicine are extensively used for various therapeutic reasons. Whereas Achillea millefolium L. comprises different chemical compounds it is used in classic and modern medicine for different purposes. Concerning the family planning as a principle matter, the idea of using specific herbal medicine is of great importance. Purpose: To investigate the effects of Achillea millefolium L. extract on fertility power and spermatogenesis process in male mature Wistar rats and the anti-fertility effects of this extract in male genital system. Material and methods: In this study 32 male mature Wistar rats were randomly divided in to 4 experimental groups. 1st experimental group included 8 rats receiving Achillea millefolium extract at the dose of 200 mg/kg intraperitoneally. Second and third groups received the extract the same at the doses of 400 and 800 mg/kg respectively. 4th group was considered as control group in which the parenteral distilled water was administered. after 20 days, rats were sacrificed and the spermatogenesis process was histologically examined. Results: In experimental groups receiving high doses of extract comparing with control group, thickness in seminiferous tubules basal membrane, decrease in germinal epithelium cells, congestion in testicular tissue, disarrangement in germinal epithelium cells as well as decrease in cellular condense were observed (p<0.001). Conclusion: Findings suggest that alcoholic extract of Achillea millefolium at high concentrations lead to the structural alterations and changes in spermatogenesis in testicular tissue.

Keywords: spermatogenesis, alcoholic extract of Achillea millefolium L., testis, Wistar rat

Procedia PDF Downloads 584
404 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers

Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole

Abstract:

Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)

Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing

Procedia PDF Downloads 132
403 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications

Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang

Abstract:

Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.

Keywords: immobilization, enzyme, nanocarrier, nanofibers

Procedia PDF Downloads 293
402 The Diverse and Flexible Coping Strategies Simulation for Maanshan Nuclear Power Plant

Authors: Chin-Hsien Yeh, Shao-Wen Chen, Wen-Shu Huang, Chun-Fu Huang, Jong-Rong Wang, Jung-Hua Yang, Yuh-Ming Ferng, Chunkuan Shih

Abstract:

In this research, a Fukushima-like conditions is simulated with TRACE and RELAP5. Fukushima Daiichi Nuclear Power Plant (NPP) occurred the disaster which caused by the earthquake and tsunami. This disaster caused extended loss of all AC power (ELAP). Hence, loss of ultimate heat sink (LUHS) happened finally. In order to handle Fukushima-like conditions, Taiwan Atomic Energy Council (AEC) commanded that Taiwan Power Company should propose strategies to ensure the nuclear power plant safety. One of the diverse and flexible coping strategies (FLEX) is a different water injection strategy. It can execute core injection at 20 Kg/cm2 without depressurization. In this study, TRACE and RELAP5 were used to simulate Maanshan nuclear power plant, which is a three loops PWR in Taiwan, under Fukushima-like conditions and make sure the success criteria of FLEX. Reducing core cooling ability is due to failure of emergency core cooling system (ECCS) in extended loss of all AC power situation. The core water level continues to decline because of the seal leakage, and then FLEX is used to save the core water level and make fuel rods covered by water. The result shows that this mitigation strategy can cool the reactor pressure vessel (RPV) as soon as possible under Fukushima-like conditions, and keep the core water level higher than Top of Active Fuel (TAF). The FLEX can ensure the peak cladding temperature (PCT) below than the criteria 1088.7 K. Finally, the FLEX can provide protection for nuclear power plant and make plant safety.

Keywords: TRACE, RELAP5/MOD3.3, ELAP, FLEX

Procedia PDF Downloads 251
401 Structure-Based Drug Design of Daptomycin, Antimicrobial lipopeptide

Authors: Satya Eswari Jujjavarapu, Swast Dhagat

Abstract:

Contagious diseases enact severe public health problems and have upsetting consequences. The cyclic lipopeptides explained by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very critical in confining the pathogens. As the degree of drug resistance upsurges in unparalleled manner, the perseverance of searching novel cyclic lipopeptides is being professed. The intense study has shown the implication of these bioactive compounds extending beyond antibacterial and antifungal. Lipopeptides, composed of single units of peptide and fatty acyl moiety, show broad spectrum antimicrobial effects. Among the surplus of cyclic lipopeptides, only few have materialized as strong antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin and bacillomycin have been integrated in mainstream healthcare. In our work daptomycin has been a major part of antimicrobial resource since the past decade. Daptomycin, a cyclic lipopeptide consists of 13-member amino acid with a decanoyl side-chain. This structure of daptomycin confers it the mechanism of action through which it forms pore in the bacterial cell membrane resulting in the death of cell. Daptomycin is produced by Streptococccus roseoporus and acts against Streptococcus pneumonia (PSRP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The PDB structure and ligands of daptomycin are available online. The molecular docking studies of these ligands with the lipopeptides were performed and their docking score and glide energy were recorded.

Keywords: daptomycin, molecular docking, structure-based drug design, lipopeptide

Procedia PDF Downloads 264
400 Enhancing Sensitization of Cervical Cancer Cells to γ-Radiation Ellagic Acid

Authors: Vidhula Ahire, Amit Kumar, K. P. Mishra, Gauri Kulkarni

Abstract:

Herbal polyphenols have gained significance because of their increasing promise in prevention and treatment of cancer. Therefore, development of a dietary compound as an effective radiosensitizer and a radioprotector is highly warranted for cervical cancer patients undergoing therapy. This study describes the cytotoxic effects of the flavonoid, ellagic acid (EA) when administered either alone or in combination with gamma radiation on cervical cancer HeLa cells in vitro. Apoptotic index and proliferation were measured by using trypan blue assay. Reproductive cell death was analyzed by clonogenic assay. Propidium iodide staining for flowcytometry was performed to analyze cell cycle modulation. Nuclear and mitochondrial changes were studied with specific dyes. DNA repair kinetics was analyzed by immunofluorescence assay. Evaluation and comparison of EA effects were performed with other clinically used breast cancer drugs. When tumor cells were exposed to 2 and 4 Gy of irradiation in presence of EA (10 μM), it yielded a synergistic cytotoxic effect on cervical cancer cells whereas in NIH3T3 cells it reversed the injury caused by irradiation and abetted in the regaining of normal healthy cells. At 24h ~25foci/cell was observed and 2.6 fold decrease in the mitochondrial membrane potential. Up to 40% cell were arrested in the G1 phase and 20-36% cells exhibited apoptosis. Our results demonstrate the role of increased apoptosis and cell cycle modulation in the mechanism of EA mediated radiosensitization of cervical cancer cells and thus advocating EA as an adjuvant for preclinical trials in cancer chemo- radiotherapy.

Keywords: cervical cancer, ellagic acid, sensitization, radiation therapy

Procedia PDF Downloads 322
399 Unveiling the Self-Assembly Behavior and Salt-Induced Morphological Transition of Double PEG-Tailed Unconventional Amphiphiles

Authors: Rita Ghosh, Joykrishna Dey

Abstract:

PEG-based amphiphiles are of tremendous importance for its widespread applications in pharmaceutics, household purposes, and drug delivery. Previously, a number of single PEG-tailed amphiphiles having significant applications have been reported from our group. Therefore, it was of immense interest to explore the properties and application potential of PEG-based double tailed amphiphiles. Herein, for the first time, two novel double PEG-tailed amphiphiles having different PEG chain lengths have been developed. The self-assembly behavior of the newly developed amphiphiles in aqueous buffer (pH 7.0) was thoroughly investigated at 25 oC by a number of techniques including, 1H-NMR, and steady-state and time-dependent fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and isothermal titration calorimetry. Despite having two polar PEG chains both molecules were found to have strong tendency to self-assemble in aqueous buffered solution above a very low concentration. Surprisingly, the amphiphiles were shown to form stable vesicles spontaneously at room temperature without any external stimuli. The results of calorimetric measurements showed that the vesicle formation is driven by the hydrophobic effect (positive entropy change) of the system, which is associated with the helix-to-random coil transition of the PEG chain. The spectroscopic data confirmed that the bilayer membrane of the vesicles is constituted by the PEG chains of the amphiphilic molecule. Interestingly, the vesicles were also found to exhibit structural transitions upon addition of salts in solution. These properties of the vesicles enable them as potential candidate for drug delivery.

Keywords: double-tailed amphiphiles, fluorescence, microscopy, PEG, vesicles

Procedia PDF Downloads 117
398 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.

Keywords: biodiesel, calibration, chemometrics, methanolysis, multivariate analysis, transesterification, FTIR

Procedia PDF Downloads 148
397 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles

Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver

Abstract:

Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.

Keywords: cancer cell, nanoparticles, cell culture, SEM

Procedia PDF Downloads 735
396 Biogas Production from Lake Bottom Biomass from Forest Management Areas

Authors: Dessie Tegegne Tibebu, Kirsi Mononen, Ari Pappinen

Abstract:

In areas with forest management, agricultural, and industrial activity, sediments and biomass are accumulated in lakes through drainage system, which might be a cause for biodiversity loss and health problems. One possible solution can be utilization of lake bottom biomass and sediments for biogas production. The main objective of this study was to investigate the potentials of lake bottom materials for production of biogas by anaerobic digestion and to study the effect of pretreatment methods for feed materials on biogas yield. In order to study the potentials of biogas production lake bottom materials were collected from two sites, Likokanta and Kutunjärvi lake. Lake bottom materials were mixed with straw-horse manure to produce biogas in a laboratory scale reactor. The results indicated that highest yields of biogas values were observed when feeds were composed of 50% lake bottom materials with 50% straw horse manure mixture-while with above 50% lake bottom materials in the feed biogas production decreased. CH4 content from Likokanta lake materials with straw-horse manure and Kutunjärvi lake materials with straw-horse manure were similar values when feed consisted of 50% lake bottom materials with 50% straw horse manure mixtures. However, feeds with lake bottom materials above 50%, the CH4 concentration started to decrease, impairing gas process. Pretreatment applied on Kutunjärvi lake materials showed a slight negative effect on the biogas production and lowest CH4 concentration throughout the experiment. The average CH4 production (ml g-1 VS) from pretreated Kutunjärvi lake materials with straw horse manure (208.9 ml g-1 VS) and untreated Kutunjärvi lake materials with straw horse manure (182.2 ml g-1 VS) were markedly higher than from Likokanta lake materials with straw horse manure (157.8 ml g-1 VS). According to the experimental results, utilization of 100% lake bottom materials for biogas production is likely to be impaired negatively. In the future, further analyses to improve the biogas yields, assessment of costs and benefits is needed before utilizing lake bottom materials for the production of biogas.

Keywords: anaerobic digestion, biogas, lake bottom materials, sediments, pretreatment

Procedia PDF Downloads 333
395 Determination of Antioxidant Activity in Raphanus raphanistrum L.

Authors: Esma Hande Alıcı, Gülnur Arabacı

Abstract:

Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.

Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish

Procedia PDF Downloads 276
394 Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”

Authors: Evgeny Obraztsov, Ilya Kremnev, Vitaly Sokolov, Maksim Gavrilov, Evgeny Tretyakov, Vladimir Kukhtevich, Vladimir Bezlepkin

Abstract:

Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system).

Keywords: best-estimate code, complex simulation suite, engineering simulator, power plant, thermal hydraulic, VEB, virtual power unit

Procedia PDF Downloads 380
393 BI- And Tri-Metallic Catalysts for Hydrogen Production from Hydrogen Iodide Decomposition

Authors: Sony, Ashok N. Bhaskarwar

Abstract:

Production of hydrogen from a renewable raw material without any co-synthesis of harmful greenhouse gases is the current need for sustainable energy solutions. The sulfur-iodine (SI) thermochemical cycle, using intermediate chemicals, is an efficient process for producing hydrogen at a much lower temperature than that required for the direct splitting of water. No net byproduct forms in the cycle. Hydrogen iodide (HI) decomposition is a crucial reaction in this cycle, as the product, hydrogen, forms only in this step. It is an endothermic, reversible, and equilibrium-limited reaction. The theoretical equilibrium conversion at 550°C is just a meagre of 24%. There is a growing interest, therefore, in enhancing the HI conversion to near-equilibrium values at lower reaction temperatures and by possibly improving the rate. The reaction is relatively slow without a catalyst, and hence catalytic decomposition of HI has gained much significance. Bi-metallic Ni-Co, Ni-Mn, Co-Mn, and tri-metallic Ni-Co-Mn catalysts over zirconia support were tested for HI decomposition reaction. The catalysts were synthesized via a sol-gel process wherein Ni was 3wt% in all the samples, and Co and Mn had equal weight ratios in the Co-Mn catalyst. Powdered X-ray diffraction and Brunauer-Emmett-Teller surface area characterizations indicated the polycrystalline nature and well-developed mesoporous structure of all the samples. The experiments were performed in a vertical laboratory-scale packed bed reactor made of quartz, and HI (55 wt%) was fed along with nitrogen at a WHSV of 12.9 hr⁻¹. Blank experiments at 500°C for HI decomposition suggested conversion of less than 5%. The activities of all the different catalysts were checked at 550°C, and the highest conversion of 23.9% was obtained with the tri-metallic 3Ni-Co-Mn-ZrO₂ catalyst. The decreasing order of the performance of catalysts could be expressed as: 3Ni-Co-Mn-ZrO₂ > 3Ni-2Co-ZrO₂ > 3Ni-2Mn-ZrO₂ > 2.5Co-2.5Mn-ZrO₂. The tri-metallic catalyst remained active till 360 mins at 550°C without any observable drop in its activity/stability. Among the explored catalyst compositions, the tri-metallic catalyst certainly has a better performance for HI conversion when compared to the bi-metallic ones. Owing to their low costs and ease of preparation, these trimetallic catalysts could be used for large-scale hydrogen production.

Keywords: sulfur-iodine cycle, hydrogen production, hydrogen iodide decomposition, bi-, and tri-metallic catalysts

Procedia PDF Downloads 187
392 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 377
391 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments

Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor

Abstract:

Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.

Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics

Procedia PDF Downloads 94
390 Influence of Magnetic Field on the Antibacterial Properties of Pine Oil

Authors: Dawid Sołoducha, Tomasz Borowski, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives.

Keywords: rotating magnetic field, pine oil, antimicrobial activity, Escherichia coli

Procedia PDF Downloads 220
389 Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors

Authors: Longkui Zhu, Zhengcao Li

Abstract:

High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution.

Keywords: advanced high temperature gas-cooled reactor, hydrogen and nitrogen diffusion, microstructure evolution, nuclear graphite, radioactive waste management

Procedia PDF Downloads 311
388 pH-Responsive Carrier Based on Polymer Particle

Authors: Florin G. Borcan, Ramona C. Albulescu, Adela Chirita-Emandi

Abstract:

pH-responsive drug delivery systems are gaining more importance because these systems deliver the drug at a specific time in regards to pathophysiological necessity, resulting in improved patient therapeutic efficacy and compliance. Polyurethane materials are well-known for industrial applications (elastomers and foams used in different insulations and automotive), but they are versatile biocompatible materials with many applications in medicine, as artificial skin for the premature neonate, membrane in the hybrid artificial pancreas, prosthetic heart valves, etc. This study aimed to obtain the physico-chemical characterization of a drug delivery system based on polyurethane microparticles. The synthesis is based on a polyaddition reaction between an aqueous phase (mixture of polyethylene-glycol M=200, 1,4-butanediol and Tween® 20) and an organic phase (lysin-diisocyanate in acetone) combined with simultaneous emulsification. Different active agents (omeprazole, amoxicillin, metoclopramide) were used to verify the release profile of the macromolecular particles in different pH mediums. Zetasizer measurements were performed using an instrument based on two modules: a Vasco size analyzer and a Wallis Zeta potential analyzer (Cordouan Technol., France) in samples that were kept in various solutions with different pH and the maximum absorbance in UV-Vis spectra were collected on a UVi Line 9,400 Spectrophotometer (SI Analytics, Germany). The results of this investigation have revealed that these particles are proper for a prolonged release in gastric medium where they can assure an almost constant concentration of the active agents for 1-2 weeks, while they can be disassembled faster in a medium with neutral pHs, such as the intestinal fluid.

Keywords: lysin-diisocyanate, nanostructures, polyurethane, Zetasizer

Procedia PDF Downloads 184
387 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study

Authors: Mohamed. A. Saad

Abstract:

The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.

Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement

Procedia PDF Downloads 253
386 Influence of Carbon Addition on the Activity of Silica Supported Copper and Cobalt Catalysts in NO Reduction with CO

Authors: N. Stoeva, I. Spassova, R. Nickolov, M. Khristova

Abstract:

Exhaust gases from stationary and mobile combustion sources contain nitrogen oxides that cause a variety of environmentally harmful effects. The most common approach of their elimination is the catalytic reaction in the exhaust using various reduction agents such as NH3, CO and hydrocarbons. Transition metals (Co, Ni, Cu, etc.) are the most widely used as active components for deposition on various supports. However, since the interaction between different catalyst components have been extensively studied in different types of reaction systems, the possible cooperation between active components and the support material and the underlying mechanisms have not been thoroughly investigated. The support structure may affect how these materials maintain an active phase. The objective is to investigate the addition of carbonaceous materials with different nature and texture characteristics on the properties of the resulting silica-carbon support and how it influences of the catalytic properties of the supported copper and cobalt catalysts for reduction of NO with CO. The versatility of the physico-chemical properties of the composites and the supported copper and cobalt catalysts are discussed with an emphasis on the relationship of the properties with the catalytic performance. The catalysts were prepared by sol-gel process and were characterized by XRD, XPS, AAS and BET analysis. The catalytic experiments were carried out in catalytic flow apparatus with isothermal flow reactor in the temperature range 20–300оС. After the catalytic test temperature-programmed desorption (TPD) was carried out. The transient response method was used to study the interaction of the gas phase with the catalyst surface. The role of the interaction between the support and the active phase on the catalyst’s activity in the studied reaction was discussed. We suppose the carbon particles with small sizes to participate in the formation of the active sites for the reduction of NO with CO along with their effect on the kind of deposited metal oxide phase. The existence of micropore texture for some of composites also influences by mass-transfer limitations.

Keywords: catalysts, no reduction, composites, bet analysis

Procedia PDF Downloads 424
385 Assessment of in vitro Antioxidant and Anti-Inflammatory Potentials of Methanol Extract of Chrysophyllum albidum Cotyledon

Authors: Christianah Adebimpe Dare, Nelson Oghenebrorhie Elvis

Abstract:

This study was aimed at analysing the phytochemicals in Chrysophyllum albidum cotyledon extract and their in vitro antioxidant and anti-inflammatory effects. The star apple fruit was bought at Igbona market Osogbo, Osun State, Nigeria. The seed from the fruit was removed and defatted. The residue was exhaustively extracted with methanol. The Chrysophyllum albidum cotyledon methanol extract (CCME) was phytochemically screened, flavonoids and phenol contents, antioxidant and anti-inflammatory assays were carried out on the extract using standard procedures. Phytochemicals analysis revealed the presence of steroids, tannins, flavonoid, saponin, triterpenes, and xanthoproteins. The phenolic concentration, total flavonoids concentration, and total sugar concentration were found to be 26.72 ± 0.048 µgTAE/mg, 23.12 ± 1.92µg of Rutin equivalent (RTE)/mg (10.49 ± 1.12µg of Quercetin equivalent (QE/mg) and 778.38 ± 12.82 µg of glucose/ml, respectively. The extract demonstrated significant inhibitory effect compared with the standards as potent antioxidant with percentage inhibition of DPPH as 38.10 %-39.51 %, lipid peroxidation as 45.85 %-65.85 %; ferric reducing power showed linear correlation to the standard and the anti-inflammatory potential with 22.06 %-26.37 % protection of the human red blood membrane and the percentage inhibition of denaturation of albumin 3.42 %-7.32 %. The study showed that C. albidum cotyledon methanol extract is a potent antioxidant and anti-inflammatory agent to combat oxidative stress and pathological diseases caused by reactive species.

Keywords: albumin denaturation, free radicals, lipid peroxidation, reactive species

Procedia PDF Downloads 139
384 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 537
383 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications

Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita

Abstract:

Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.

Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution

Procedia PDF Downloads 384
382 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: flow, aeration, bioreactor, oxygen concentration

Procedia PDF Downloads 389
381 Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company

Authors: Miguel A. Jimenez Barros, Elyn L. Solano Charris, Luis E. Ramirez, Lauren Castro Bolano, Carlos Torres Barreto, Juliana Morales Cubillo

Abstract:

This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact.

Keywords: bio-reactor, potable water, reverse osmosis, water treatment

Procedia PDF Downloads 235
380 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts

Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert

Abstract:

Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.

Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs

Procedia PDF Downloads 330
379 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water

Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui

Abstract:

The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.

Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering

Procedia PDF Downloads 262
378 CAP-Glycine Protein Governs Growth, Differentiation, and the Pathogenicity of Global Meningoencephalitis Fungi

Authors: Kyung-Tae Lee, Li Li Wang, Kwang-Woo Jung, Yong-Sun Bahn

Abstract:

Microtubules are involved in mechanical support, cytoplasmic organization as well as in a number of cellular processes by interacting with diverse microtubule-associated proteins (MAPs), such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A common feature of these proteins is the presence of a cytoskeleton-associated protein-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate functions of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which causes fatal meningoencephalitis globally. In this study, we identified five CAP-Gly proteins encoding genes in C. neoformans. Among these, Cgp1, encoded by CNAG_06352, has a unique domain structure that has not been reported before in other eukaryotes. Supporting the role of Cpg1 in microtubule-related functions, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer, and Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular functions of microtubules, Cgp1 also governs maintenance of membrane stability and genotoxic stress responses. Furthermore, we demonstrate that Cgp1 uniquely regulates sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Our domain analysis reveals that the CAP-Gly domain plays major roles in all the functions of Cgp1. Finally, the cgp1Δ mutant is attenuated in virulence. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation and pathogenicity of C. neoformans.

Keywords: human fungal pathogen, CAP-Glycine protein, microtubule, meningoencephalitis

Procedia PDF Downloads 315