Search results for: algae concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5152

Search results for: algae concentration

3802 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles

Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol

Abstract:

Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.

Keywords: bone, PCL, 3D printing, tissue engineering

Procedia PDF Downloads 63
3801 Failure Mechanisms in Zirconium Alloys during Wear and Corrosion

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. Water flows inside the pressure tube through fuel claddings, which produces vibration of these core components and results in the wear of some components. Some components are subjected to the environment of coolant water containing LiOH which results in the corrosion of these components. The present work simulates some of these conditions to determine the failure mechanisms under these conditions and the effect of various parameters on them. Friction and wear experiments were performed varying the surrounding environment (room temperature, high temperature, and water submerged), duration, frequency, and displacement amplitude. Electrochemical corrosion experiments were performed by varying the concentration of LiOH in water. The worn and corroded surfaces were analyzed using scanning electron microscopy (SEM) to analyze the wear and corrosion mechanism and energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy to analyze the tribo-oxide layer formed during the wear and oxide layer formed during the corrosion. Wear increases with frequency and amplitude, and corrosion increases with LiOH concentration in water.

Keywords: zirconium alloys, wear, oxide layer, corrosion, EIS, linear polarization

Procedia PDF Downloads 72
3800 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air

Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli

Abstract:

Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.

Keywords: air pollution, dust, numerical modeling, urban

Procedia PDF Downloads 192
3799 Assessing the Impact of Antiretroviral Mediated Drug-Drug Interactions on Piperaquine Antimalarial Treatment in Pregnant Women Using Physiologically Based Pharmacokinetic Modelling

Authors: Olusola Omolola Olafuyi, Michael Coleman, Raj Kumar Singh Badhan

Abstract:

Introduction: Malaria in pregnancy has morbidity and mortality implication on both mother and unborn child. Piperaquine (PQ) based antimalarial treatment is emerging as a choice antimalarial for pregnant women in the face of resistance to current antimalarial treatment recommendation in pregnancy. Physiological and biochemical changes in pregnant women may affect the pharmacokinetics of the antimalarial drug in these. In malaria endemic regions other infectious diseases like HIV/AIDs are prevalent. Pregnant women who are co-infected with malaria and HIV/AID are at even more greater risk of death not only due to complications of the diseases but also due to drug-drug interactions (DDIs) between antimalarials (AMT) and antiretroviral (ARVs). In this study, physiologically based pharmacokinetic (PBPK) modelling was used to investigate the effect of physiological and biochemical changes on the impact of ARV mediated DDIs in pregnant women in three countries. Method: A PBPK model for PQ was developed on SimCYP® using published physicochemical and pharmacokinetic data of PQ from literature, this was validated in three customized population groups from Thailand, Sudan and Papua New Guinea with clinical data. Validation of PQ model was also done in presence of interaction with efavirenz (pre-validated on SimCYP®). Different albumin levels and pregnancy stages was simulated in the presence of interaction with standard doses of efavirenz and ritonavir. PQ day 7 concentration of 30ng/ml was used as the efficacy endpoint for PQ treatment.. Results: The median day 7 concentration of PQ remained virtually consistent throughout pregnancy and were satisfactory across the three population groups ranging from 26-34.1ng/ml; this implied the efficacy of PQ throughout pregnancy. DDI interaction with ritonavir and efavirenz resulted in modest effect on the day 7 concentrations of PQ with AUCratio ranging from 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir respectively over 10-40 gestational weeks, however, a reduction in human serum albumin level reflective of severe malaria resulted in significantly reduced the number of subjects attaining the PQ day 7 concentration in the presence of both DDIs. The model demonstrated that the DDI between PQ and ARV in pregnant women with different malaria severities can alter the pharmacokinetic of PQ.

Keywords: antiretroviral, malaria, piperaquine, pregnancy, physiologically-based pharmacokinetics

Procedia PDF Downloads 188
3798 Potential Antibacterial Applications and Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles

Authors: Tesfay Gebremichael Reda

Abstract:

Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the, Niₓ Co(₁-ₓ) Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm-1) and tetrahedral (653-603 cm-1) locales. Finally, the decrease of coercive fields HC, 2384 Oe to 241.93 Oe replacement of Co²+ cation with Ni²+. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²+ ions are smaller than that of Co²+ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles composed of Ni₀.₄ Co₀.₄ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a new source of antibacterial agents.

Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle

Procedia PDF Downloads 32
3797 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.

Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas

Procedia PDF Downloads 411
3796 Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater

Authors: Abimbola M. Enitan, John O. Odiyo, Feroz M. Swalaha

Abstract:

The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.

Keywords: bacteria, brewery wastewater, real-time quantitative PCR, UASB reactor

Procedia PDF Downloads 263
3795 Regulation, Supervision and Accounting Conservatism: Interaction of the Three Pillars of Basel II to Achieve Quality of Reporting Earnings in Worldwide Banks

Authors: I. Diaz Sanchez, I. M. Martinez-Conesa, M. Illueca

Abstract:

Accounting conservatism is a desirable quality of earnings that is positively associated with the stridency of regulatory and supervisory regimen and high market discipline. But how these three pillars interact each other is the main research question that is not empirically solved. We analyze how regulatory and supervisory regimes interact with the market discipline measures, such as listing status, ownership and market concentration using a sample of 14,651 bank-year observations covering 54 countries over the period 1997-2009. We evidence that regulation a supervision and extend on which they are enforcement is a strong mechanism to achieved accounting conservatism in those countries or situations where the market discipline fails. Generally, the supervisory power reinforces the effect of listing status, ownership and concentration on conservatism, while capital regulatory mitigates the effect of market discipline on conservatism. This paper may contribute to debate about the mechanism introduced by Basel III that strongly increases the regulation, his enforcement, and the supervisory power after long deregulation period. Although Market discipline is relevant to achieve the financial stability, strong Pillar I and II can ensure the quality of the accounting earnings to prevent bank failures.

Keywords: accounting conservatism, bank regulation, bank supervision, loan loss recognition, market discipline

Procedia PDF Downloads 175
3794 Therapeutic Efficacy and Safety Profile of Tolvaptan Administered in Hyponatremia Patients

Authors: Sree Vennela P., V. Samyuktha Bhardwaj

Abstract:

Hyponatremia is an electrolyte disturbance in which the sodium ion concentration in the serum is lower than normal. Sodium is the dominant extracellular cation (positive ion) and cannot freely cross from the interstitial space through the cell membrane, into the cell. Its homeostasis (stability of concentration) inside the cell is vital to the normal function of any cell. Normal serum sodium levels are between 135 and 145 mEq/L. Hyponatremia is defined as a serum level of less than 135 mEq/L and is considered severe when the serum level is below 125 mEq/L. In the vast majority of cases, Hyponatremia occurs as a result of excess body water diluting the serum sodium (salt level in the blood). Hyponatremia is often a complication of other medical illnesses in which excess water accumulates in the body at a higher rate than can be excreted (for example in congestive heart failure, syndrome of inappropriate antidiuretic hormone, SIADH, or polydipsia). Sometimes it may be a result of over-hydration (drinking too much water).Lack of sodium (salt) is very rarely the cause of Hyponatremia, although it can promote Hyponatremia indirectly. In particular, sodium loss can lead to a state of volume depletion (loss of blood volume in the body), with volume depletion serving as a signal for the release of ADH (anti-diuretic hormone). As a result of ADH-stimulated water retention (too much water in the body), blood sodium becomes diluted and Hyponatremia results.

Keywords: Tolvaptan, hyponatremia, syndrome of insufficient anti diuretic hormone (SIADH), euvolemic hyponatremia

Procedia PDF Downloads 265
3793 Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Compounds from Bauhinia kockiana Korth and Their Mechanism of Antibacterial Activity

Authors: Yik Ling Chew, Adlina Maisarah Mahadi, Joo Kheng Goh

Abstract:

Bauhinia kockiana originates from Peninsular Malaysia, and it is grown as a garden ornamental plant. However, it is used as medicinal plant by Malaysia ‘Kelabit’ ethic group in treating various diseases and illnesses. This study focused on the assessment of the antibacterial activity of B. kockiana towards MRSA, to purify and identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower is evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts. Phytochemical analysis is performed to determine the classes of phytochemicals in the extracts. Bioactivity-guided isolation is performed to purify the antibacterial agents and identified the chemical structures via various spectroscopy methods. Scanning electron microscopy (SEM) technique is adopted to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower is found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria. Gallic acid and its ester derivatives are purified from ethyl acetate extract and the antibacterial activity is evaluated. SEM has revealed the mechanism of the extracts and compounds isolated.

Keywords: alkyl gallates, Bauhinia kockiana, MRSA, scanning electron microscopy

Procedia PDF Downloads 375
3792 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line

Procedia PDF Downloads 393
3791 The Effects of Inulin on the Stabilization and Stevioside as Sugar-Replacer of Sourcherry Juice-Milk Mixture

Authors: S. Teimouri, S. Abbasi

Abstract:

Milk-fruit juice mixture is a type of soft drinks, which can be produced by mixing milk with pieces of fruits, fruit juices, or fruit juices concentrates. The major problem of these products, mainly the acidic ones, is phase separation which occurs during formulation and storage due to the aggregation of caseins at low pH Short-chain inulin (CLR), long-chain inulin (TEX), native inulin (IQ) and Long-chain inulin (TEX) and short-chain inulin (CLR) combined in different proportions (2o:80, 50:50, and 80:20) were added (2-10 %) to sourcherry juice-milk mixture and their stabilization mechanisms were studied with using rheological and microstructural observations. Stevioside as a bio-sweetener and sugar-replacer was added at last step. Finally, sensory analyses were taken place on stabilized samples. According to the findings, TEX stabilized the mixture at concentration of 8%. MIX and IQ reduced phase separation at high concentration but had not complete effect on stabilization. CLR did not effect on stabilization. Rheological changes and inulin aggregates formation were not observed in CLR samples during the one month storage period. However TEX, MIX and IQ samples formed inulin aggregates and became more thixotropic, elastic and increased the viscosity of mixture. The rate of the inulin aggregates formation and viscosity increasing was in the following order TEX > MIX > IQ. Consequently the mixture which stabilized with inulin and sweetened with stevioside had the prebiotic properties which may suggest to diabetic patients and children.

Keywords: prebiotic, inulin, casein, stabilization, stevioside

Procedia PDF Downloads 277
3790 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.

Keywords: grinding, MQL, precision grinding, Taguchi optimization, titanium alloy

Procedia PDF Downloads 280
3789 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor

Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.

Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand

Procedia PDF Downloads 319
3788 How Markets React to Corporate Disclosure: An Analysis Using a SEM Model

Authors: Helena Susana Afonso Alves, Natália Maria Rafael Canadas, Ana Maria Rodrigues

Abstract:

We examined the impact of governance rules on information asymmetry, using the turnover ratio and the bid-ask spread as proxies for the information asymmetry. We used a SEM model and analyzed the indirect relations through the voluntary disclosure of information and the organizational performance. We built a voluntary disclosure index based on the information firms provided in their annual reports and divided the governance characteristics in two constructs: directors’ and supervisors’ structures and ownership structure. We concluded that the ownership structure exerts a direct influence on share price and share liquidity, Otherwise, the directors’ and supervisors’ structures exert an indirect influence, through the organizational performance and the voluntary disclosure of information. The results also show that for firms with high levels of disclosure the bid-ask spread is lower. However, in firms with a high ownership concentration investors tend to increase the bid-ask spreads and trade less, which, in this case, reduces the liquidity of the stock. The failure to find the relationship between voluntary disclosure of information and the turnover ratio shows us that the liquidity of shares is more related to the greater or lesser concentration of shareholders, with the performance of their companies than with the access to information. Moreover, it is clear that the role that information disclosure plays is mainly at the level of price formation.

Keywords: corporate governance, information asymmetry, voluntary disclosure, structural equation modelling, SEM

Procedia PDF Downloads 522
3787 Nitrogen Uptake of Different Safflower (Carthamus tinctorius L.) Genotypes at Different Growth Stages in Semi-Arid Conditions

Authors: Zehra Aytac, Nurdilek Gulmezoglu

Abstract:

Safflower has been grown for centuries for many purposes worldwide. Especially it is important for the orange-red dye from its petal and for its high-quality oil obtained from the seeds. The crop is high adaptable to areas with insufficient rainfall and poor soil conditions. The plant has a deep taproot that can draw moisture and plant nutrients from deep to the subsoil. The research was carried out to study the nitrogen (N) uptake of different safflower cultivars and lines at different stages of growth and different plant parts in the experimental field of Faculty of Agriculture, Eskişehir Osmangazi University under semi-arid conditions. Different safflower cultivars and lines of varied origins were used as the material. The cultivars and lines were planted in a Randomized Complete Block Design with three replications. Two different growth stages (flowering and harvest) and three different plant parts (head, stem+leaf and seed) were determined. The nitrogen concentration of different plant parts was determined by the Kjeldahl method. Statistical analysis were performed by analysis of variance for each growth stage and plant parts taking a level of p < 0.05 and p < 0.01 as significant according to the LSD test. As a result, N concentration showed significant differences among different plant parts and different growth stages for different safflower genotypes of varied origins.

Keywords: Carthamus tinctorius L., growth stages, head N, leaf N, N uptake, seed N, Safflower

Procedia PDF Downloads 226
3786 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation

Authors: Rui Tu, Yakui Bai, Huailin Li

Abstract:

The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.

Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy

Procedia PDF Downloads 136
3785 Annual and Seasonal Variations in Air Quality Index of the National Capital Region, India

Authors: Surinder Deswal, Vineet Verma

Abstract:

Air Quality Index (AQI) is used as a tool to indicate the level of severity and disseminate the information on air pollution to enable the public to understand the health and environmental impacts of air pollutant concentration levels. The annual and seasonal variation of criteria air pollutants concentration based on the National Ambient Air Quality Monitoring Programme has been conducted for a period of nine years (2006-2014) using the AQI system. AQI was calculated using IND-AQI methodology and Maximum Operator Concept is applied. An attempt has been made to quantify the variations in AQI on an annual and seasonal basis over a period of nine years. Further, year-wise frequency of occurrence of AQI in each category for all the five stations is analysed, which presents in depth analysis of trends over the period of study. The best air quality was observed in the Noida residential area, followed by Noida industrial area during the study period; whereas, Bulandshahar industrial area and Faridabad residential area were observed to have the worst air quality. A shift in the worst air quality from winter to summer season has also been observed during the study period. Further, the level of Respirable Suspended Particulate Matter was found to be above permissible limit at all the stations. The present study helps in enhancing public awareness and calls for the need of immediate measures to be taken to counter-effect the cause of the increasing level of air pollution.

Keywords: air quality index, annual trends, criteria pollutants, seasonal variation

Procedia PDF Downloads 286
3784 Microbial Deterioration of Some Different Archaeological Objects Made from Cellulose by Bacillus Group

Authors: Mohammad Abdel Fattah Mohammad Kewisha

Abstract:

Microbial deterioration of ancient materials became one of the biggest problems facing the workers in the field of cultural heritage protection because the microbial deterioration of artifacts causes detrimental effects on the aesthetic value of the monuments due to colonization, whether they are made of inorganic materials such as stone or organic like wood, textiles, wall paintings, and paper. So, the early identification of the bacterial strains that caused deterioration is the most important point for the protection of monument objects. The present study focuses on the Bacillus spp. group, which was isolated from some biodeterioration monuments from different areas of Egypt. The investigated objects in this study were made from organic materials (cellulose), paper, textile, and wood. Isolated strains were identified up to the species level biochemically. Eleven bacterial isolates were obtained from collected samples. They were taken from different archaeological objects, four microbicides, cetrimonium bromide, sodium azide, tetraethyl ammonium bromide, and dichloroxylenol, at various concentrations ranging from 25 ppm to 500 ppm. They were screened for their antibacterial activity against the Bacillus spp. isolates, and detection of Minimum inhibitory concentration (MIC). It was also necessary to indicate the ideal Minimum inhibitory concentration for each strain for the purpose of biotreatment of the infected monuments with less damaging effect on monument materials.

Keywords: microbial deterioration, ancient materials, heritage protection, protection of monuments, biodeteriorative monuments

Procedia PDF Downloads 65
3783 Adsorption and Photocatalytic Degradation of Textile Wastewater Using Green Synthesized Sequesters

Authors: Omotayo Sarafadeen Amuda, Kazeem Kolapo Salam, Oyediran Olarike Favour

Abstract:

This study carried out the physicochemical analysis of the Textile WasteWater (TWW) before and after the adsorption and photocatalytic processes. The adsorbents and catalysts that were used for this study were prepared from C. albidum seed shell activated with steam and then loaded with Titanium Dioxide Nanoparticles (TiO2NPs) and Copper Nanoparticles (Cu NPs), which were synthesized from green tea leaf extract and Citrus limon fruits extract, respectively. The photocatalytic activity was carried out under sunlight irradiation, and the effect of various parameters, such as catalyst dose, pH, contact time, and initial dye concentration, on the removal efficiency, were studied. The reusability of the catalyst was also observed to determine its stability and long-term efficacy. Ultra-violet visible spectroscopy (UV-Vis spectroscopy) was used to determine the dye concentration after each experiment. The adsorbents, nanoparticles, and photocatalysts were appropriately characterized for morphological, functional group, structural, and surface area using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) analysis, and Brunauer–Emmett–Teller (BET) analysis respectively. Batch adsorption studies were carried out on the wastewater, using the composite adsorbents, to determine the effects of pH, adsorbent dose, initial dye concentration, and contact time. The batch adsorption studies were conducted based on the runs generated from the Definitive Screen Design (DSD) of the Response Surface Methodology (RSM). The obtained data were subjected to the pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic models, the Langmuir and Freundlich isotherm models, and thermodynamic parameters. The findings of this study contribute to the existing knowledge by providing more insights into the identification of efficient, low-cost, and environmentally-friendly approach to textile wastewater treatment. This approach enhances the reduction of potential toxicity from the discharged textile wastewater into the environment and, thus, conforms to Sustainable Development Goal 6 (SDG 6), which ensures the sustainability of the water resources, wastewater, and ecosystems.

Keywords: adsorption, photocatalytic, textile wastewater, green synthesized sequesters, degradation

Procedia PDF Downloads 20
3782 Heterogeneous and Homogeneous Photocatalytic Degradation of Acid Orange 10 in Aqueous Solution

Authors: Merouani Djilali Redha, F. Abdelmalek, A. A. Addou

Abstract:

Advanced oxidation processes (AOPs) utilizing Homogenous photocatalysis (Fenton and photo-Fenton reactions), and Heterogeneous photocatalyse (TiO2 and ZnO) were investigated for the degradation of commercial azo dye ‘Orange G’ wastewater. Fenton and photo-Fenton experimental conditions were: Hydrogen peroxide concentration (10-2 M), Ferrous ions concentration (5.10-4 M), pH (2.8 – 3), UV lamp power (6 watt). Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The optimum catalyst loading was found 2.0 g.L-1 in our case for both catalysts TiO2 and ZnO. A comparative study of the photocatalytic degradation showed that these two catalysts have a comparable reactivity; it follows a pseudo-first-order kinetics. The degradation trends followed the order: UV365/Fenton > UV365/TiO2 > Solar Fenton > Solar TiO2 > Fenton ~UV365/ZnO. Among AOPs, processes using Fenton type reagent are relatively cheap and easy to operate and maintain. Moreover, UV365/Fenton process has been shown as effective in the treatment of OG dye. Dye was degraded following second-order kinetics. The rate constants was 0,041 .10+6 L.M-1.min-1. The degradation was followed by spectrophotometric method, chemical oxygen demand (COD) measures and high performance liquid chromatography analyses (HPLC). Some aromatic and aliphatic degradation compounds were identified. Degradation of Orange G by UV Fenton mechanism was also proposed.

Keywords: AOPs, homogeneous catalysis, heterogeneous catalysis, acid orange 10, hydroxyl radical

Procedia PDF Downloads 413
3781 Determination of Hydrolisis Condition in the Extraction of Fatty Acids from Pinchagua's (Opisthonema libertate) Heads, a By-Product of Sardine Industry

Authors: Belen Carrillo, Mauricio Mosquera

Abstract:

Fatty acids are bioactive compounds widely used as nutritional supplements in the food and pharmaceutical industry. Bluefish such as sardines have a large variety of these fatty acids in their composition. The objective of this project is to extract these compounds from fishing wastes, to do this, heads of known species as Pinchagua (Opistonema libertate) were used. The conducted study represents a simplified alternative for obtaining and simultaneous saponification of oil through basic hydrolysis, which separates lipids from protein and saponifies sample all the same time to isolate the fatty acid accurately through salts formation. To do these different concentrations of sodium hydroxide were used, it was demonstrated at a concentration of 1 M the highest yield of saponified oil recovery corresponding a value of 3,64% was obtained. Subsequently, the saponified oil was subjected to an acid hydrolysis in which fatty acids were isolated. Different sulfuric acid concentrations and temperatures for the process were tested. Thus, it was shown that the great fatty acids variety were obtained at a 60 °C temperature and sulfuric acid concentration of 50% v/v. Among the obtained compounds the presence of acids such as palmitic, lauric, caproic and myristic are highlighted. Applications of this type of elements are varied and widely used in the nutritional supplements development. Thus, the described methodology proposes a simple mechanism in the revaluation of fishing industry wastes that allow directly generate high added value elements.

Keywords: fatty acids, hydrolysis, Pinchagua, saponification

Procedia PDF Downloads 182
3780 Trace Element Phytoremediation Potential of Mangrove Plants in Indian Sundarban

Authors: Ranju Chowdhury, Santosh K. Sarkar

Abstract:

Trace element accumulation potential of ten mangrove species in individual plant tissues (leaves, bark and root/pneumatophore) along with host sediments was carried out at 2 study sites of diverse environmental stresses of Indian Sundarban Wetland, a UNESCO world heritage site. The study was undertaken with the following objectives: (i) to investigate the extent of accumulation and the distribution of trace metals in plant tissues (ii) to determine whether sediment trace metal levels are correlated with trace metal levels in tissues and (iii) to find out the suitable candidate for phytoremediation species. Mangrove sediments showed unique potential in many- fold increase for most trace metals than plant tissues due to their inherent physicochemical properties. The concentrations of studied 11 trace elements (expressed in µg g -1) showed wide range of variations in host sediment with the following descending order: Fe (2865.31-3019.62) > Mn (646.04- 648.47 > Cu (35.03- 41.55) > Zn (32.51- 36.33) > Ni (34.4- 36.60) > Cr (27.5- 29.54) > Pb (11.6- 20.34) > Co (6.79- 8.55) > As (3.22- 4.41) > Cd (0.19- 0.22) > Hg (0.06- 0.07). The ranges of concentration of trace metals (expressed in µg g -1) for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in plant tissues were 0.006- 0.31, 0.02- 2.97, 0.10- 4.80, 0.13- 6.49, 4.46- 48.30, 9.20- 938.13, 0.02- 0.13, 9.8- 1726.24, 5.41- 11.34, 0.04 - 7.64, 3.81- 52.20 respectively. Among all trace elements, Cd and Zn were highly bioaccumulated in Excoecaria agallocha (2.97 and 52.20 µg g -1 respectively). The bio- concentration factor (BCF) showed its maximum value (15.5) in E. agallocha for Cd, suggesting that it can be considered as a high-efficient plant for trace metal bioaccumulation. Therefore, phytoremediation could be extensively used for the removal of the toxic contaminants for sustainable management of Sundarban coastal regions.

Keywords: Indian Sundarban, mangroves, phytoremediation, trace elements

Procedia PDF Downloads 385
3779 Addition of Phosphates on Stability of Sterilized Goat Milk in Different Seasons

Authors: Mei-Jen Lin, Yuan-Yuan Yu

Abstract:

Low heat stability of goat milk limited the application of ultra-high temperature (UHT) sterilization on producing sterilized goat milk in order to keep excess goat milk in summer for producing goat dairy products in winter in Taiwan. Therefore, this study aimed to add stabilizers in goat milk to increase the heat stability for producing UHT sterilized goat milk preserved for making goat dairy products in winter. The amounts of 0.05-0.11% blend of sodium phosphates (Na) and blend of sodium/potassium phosphates (Sp) were added in raw goat milk at different seasons a night before autoclaved sterilization at 135°C 4 sec. The coagulation, ion calcium concentration and ethanol stability of sterilized goat milk were analyzed. Results showed that there were seasonal differences on choosing the optimal stabilizers and the addition levels. Addition of 0.05% and 0.22% of both Na and Sp salts in Spring goat milk, 0.10-0.11% of both Na and Sp salts in Summer goat milk, and 0.05%Na Sp group in Autumn goat milk were coagulated after autoclaved, respectively. There was no coagulation found with the addition of 0.08-0.09% both Na and Sp salts in goat milk; furthermore, the ionic calcium concentration were lower than 2.00 mM and ethanol stability higher than 70% in both 0.08-0.09% Na and Sp salts added goat milk. Therefore, the optimal addition level of blend of sodium phosphates and blend of sodium/potassium phosphates were 0.08-0.09% for producing sterilized goat milk at different seasons in Taiwan.

Keywords: coagulation, goat milk, phosphates, stability

Procedia PDF Downloads 376
3778 Sea Cucumber (Stichopus chloronotus) to Expedite Healing of Minor Wounds

Authors: Isa Naina Mohamed, Mazliadiyana Mazlan, Ahmad Nazrun Shuid

Abstract:

Stichopus chloronotus (Black Knobby or green fish) is a sea cucumber species commonly found along Malaysia’s coastline. In Malaysia, it is believed that sea cucumber can expedite healing of wounds, provide extra energy and used as an ointment to relieve pain. The aim of this study is to determine the best concentration of Stichopus chlronotus extract to promote wound healing. 12 male Sprague-Dawley rats with wounds created using 6mm disposable punch biopsy were divided into 6 treatment groups. The normal control group (untreated), positive control group (flavin treated only), negative control group (emulsifying ointment only), and group 0.1, group 0.5, group 1 were each treated with 0.1%, 0.5% and 1% of Stichopus chlronotus water extract mixed in emulsifying ointment, respectively. Treatments were administered topically for 10 days. Changes in wound area were measured using caliper and photographs were taken on day 2, 4, 6, 8, and 10 after index wound. Results showed that wound reduction of group 0.5 on day 4, 6, and 8 was significantly higher compared to normal control group and positive control group. Group 0.5 also had higher wound reduction from day 6 until day 10 compared to all other groups. In conclusion, Sea Cucumber (Stichopus chloronotus) extract demonstrated the best minor wound healing properties at concentration 0.5%. The potential of Stichopus chlronotus extract ointment for wound healing shall be investigated further.

Keywords: minor wound healing, expedite wound healing, sea cucumber, Stichopus chloronotus

Procedia PDF Downloads 398
3777 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants

Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning

Abstract:

Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.

Keywords: preparation, titanate, cs-137, removal, nuclear

Procedia PDF Downloads 271
3776 Environmental Risk of Pharmaceuticals, Drugs of Abuse and Stimulant Caffeine in Marine Water: A Case Study in the North-Western of Spain

Authors: Raquel Dafouz Neus Cáceres, Javier Fernandez-Rubio, Belinda Huerta José Luis Rodríguez-Gil, Nicola Mastroianni, Miren López de Alda, Damià Barceló, Yolanda Valcárcel

Abstract:

The region of Galicia, found in north-western (NW) Spain, is a national and world leader in shellfish, especially mussel production, and recognized for its fishing industry. Few studies have evaluated the presence of emerging contaminants in NW Spain, with those published mainly concerning the continental aquatic environment. The objective of this study was to identify the environmental risk posed by the presence of pharmaceuticals and drugs of abuse in this important coastal region. The presence of sixteen pharmaceuticals (benzodiazepines, anxiolytics, and caffeine), and 19 drugs of abuse (cocainics, amphetamine-like compounds, opiates and opioids, lysergic compounds, and cannabinoids) was assessed in 23 sites located in the Rías (Coastal inlets) of Muros, Arousa, and Pontevedra (NW Spain). Twenty-two of these locations were affected by waste-water treatment plant (WWTP) effluents, and one represented the effluent of one of these WWTPs. Venlafaxine was the pharmaceutical compound detected at higher concentration in the three Rías, with a maximum value of 291 ng/L at the site Porto do Son (Ría de Muros). Total concentration in the three Rías was 819,26 ng/L. Next, citalopram and lorazepam were the most prevalent compounds detected. Metabolite of cocaine benzoylecgonine was the drug of abuse with the highest concentration, measured at 972 ng/L in the Ría of Noia WWTP (no dilution). This compound was also detected at 142 ng/L in the site La Isla de Aros, Ría of Pontevedra. Total concentration for the three Rías was 1210 ng/L. Ephedrine was also detected at high level in the three Rías, with a total concentration of 579,28 ng/L. The results obtained for caffeine show maximum and average concentrations of 857 ng/L Isla de Arosa, Ría de Pontevedra the highest measured in seawater in Spain. A preliminary hazard assessment was carried out by comparing these measured environmental concentrations (MEC) to predicted no-effect concentrations (PNECs) for aquatic organisms. Six out of the 22 seawater samples resulted in a Hazard Quotient (HQ) from chronic exposure higher than 1 with the highest being 17.14, indicating a high probability of adverse effects in the aquatic environment. In addition, the risk was assessed on the basis of persistence, bioaccumulation, and toxicity (PBT). This work was financially supported by the Spanish Ministry of Economy and Competitiveness through the Carlos III Health Institute and the program 'Proyectos de Investigacion en Salud 2015-2017' FIS (PI14/00516), the European Regional Development Fund (ERDF), the Catalan Government (Consolidated Research Groups '2014 SGR 418 - Water and Soil Quality Unit' and 2014 SGR 291 - ICRA), and the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 603437. The poster entitled 'Environmental Risk of Pharmaceuticals, Drugs of Abuse and Stimulant Caffeine in Marine Water: A Case Study in the North-Western of Spain'.

Keywords: drug of abuse, pharmaceuticals, caffeine, environmental risk, seawater

Procedia PDF Downloads 219
3775 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 156
3774 Comparative Assessment of Organo-Chlorine Pesticides Residue in Fruits and Fruit Juices

Authors: Saidu Garba Okereafor Stella

Abstract:

The presence of 15 organochlorine pesticides residue was assessed from 29 different fruits and fruit juice samples from selected farms in Kaduna and Niger States using the quick easy cheap effective rugged and safe (QuEChERS), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The results showed the presence of varying concentrations of ten (10) organochlorine pesticide residues in all the samples with Endrin ketone showing the highest concentration in 3 samples from Kaduna (guava juice 1 and 2 0.099 to 0.145 mg/kg) and Niger States (orange juice J19 0.102 mg/kg). The heptachlor was detected at high concentration in 11 samples, 7 samples from Kaduna State (mango juice 0.011 mg/kg, Washington orange 0.014 mg/kg, Valencia orange fruit 0.020 mg/kg, orange juice 0.011, white guava fruit 0.024 mg/kg, guava juice 0.023 mg/kg, guava juice 2 0.024 mg/kg) and 4 samples from (mango juice 1 0.015 mg/kg, pineapple juice 1 0.0120 mg/kg pineapple juice 2 011 mg/kg and mix juice 2 0.012 mg/kg) from Niger State. Dieldrine and endosulfansulfate were detected at high levels in one sample each from Niger (guava fruit 0.019 mg/kg and mixed juice1 0.011mg/kg), respectively. However, all were above the maximum residue limits (MRLs) set by WHO/FAO which suggest that people consuming these type of contaminated fruits and fruits juices may contact diseases associated with those organochlorine pesticides residue. Minute concentrations of other organochlorines (α- BHC, δ- BHC, β- BHC, Lindane, and p’p DDT) ranged from 0.003 to 0.015 were recorded below the MRLs.

Keywords: fruits and fruits juices, organochlorine pesticide residue, comparative studies, gc-ms spectrophometer

Procedia PDF Downloads 153
3773 Adsorption of Basic Dyes Using Activated Carbon Prepared from Date Palm Fibre

Authors: Riham Hazzaa , Mohamed Hussien Abd El Megid

Abstract:

Dyes are toxic and cause severe problems to aquatic environment. The use of agricultural solid wastes is considered as low-cost and eco-friendly adsorbents for removing dyes from waste water. Date palm fibre, an abundant agricultural by-product in Egypt was used to prepare activated carbon by physical activation method. This study investigates the use of date palm fiber (DPF) and activated carbon (DPFAC) for the removal of a basic dye, methylene blue (MB) from simulated waste water. The effects of temperature, pH of solution, initial dye (concentration, adsorbent dosage and contact time were studied. The experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin, Radushkevich and Harkins–Jura isotherms. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order and Elvoich equations. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The results revealed that as the initial dye concentration , amount of adsorbent and temperature increased, the percentage of dye removal increased. The optimum pH required for maximum removal was found to be 6. The adsorption of methylene blue dye was better described by the pseudo-second-order equation. Results indicated that DPFAC and DPF could be an alternative for more costly adsorbents used for dye removal.

Keywords: adsorption, basic dye, palm fiber, activated carbon

Procedia PDF Downloads 333