Search results for: predictive coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1579

Search results for: predictive coding

259 Post-Harvest Biopreservation of Fruit and Vegetables with Application of Lactobacillus Strains

Authors: Judit Perjessy, Zsolt Zalan, Ferenc Hegyi, Eniko Horvath-Szanics, Krisztina Takacs, Andras Nagy, Adel Klupacs, Erika Koppany-Szabo, Zhirong Wang, Kaituo Wang, Muying Du, Jianquan Kan

Abstract:

The post-harvest diseases cause great economic losses in the fruit and vegetables; the prevention of these deterioration has great importance. Against the fungi, which cause most of the diseases, are extensively used the fungicides. However, there are increasing consumer concerns over the presence of pesticide residues in food. An alternative and in recent years, increasingly studied method for the prevention of the diseases is biocontrol, where antagonistic microorganisms are used for the control of fungi. The genera of Lactobacillus is well known and extensively studied, but its applicability as biocontrol agents in post-harvest preservation of fruit and vegetables is poorly investigated. However these bacteria can be found on the surface of the plants and have great antimicrobial activity. In our study we have investigated the chitinase activity, the antifungal effect and the applicability of several Lactobacillus strains to select potential biocontrol agents. We investigated the determination of the environmental parameters of a gene (encoding chitinase) expression and we also investigated the relationship between actual antifungal activity and potential chitinase activity. Mixed cultures were also developed to enhance the antifungal activity and determined the optimal mold spore and bacteria concentration ratio for the appropriate efficacy. Five Lactobacillus strains (L. acidophilus N2, L. delbrueckii subsp. bulgaricus B397, L. sp. 2231, L. sake subsp. sake 2471, L. buchneri 1145) possess chitinase-coding gene from the 43 investigated Lactobacillus strains. Proteins with similar molecular weight and separation properties like bacterial chitinases were detected from these strains, which also possess chitin-binding property. Nevertheless, they were inactive, lacks the chitinolytic activity. In point of the cumulative activity of inhibition, our results showed that certain strains were statistically significant in a positive direction compared to other strains, e.g., L. rhamnosus VT1 and L. Casey 154 have shown great general antifungal effect against 11 molds from the genera Penicillium and Botrytis and isolated from spoiled fruit and vegetables. Also, some mixed cultures (L. rhamnosus VT1 - L. Plantarum 299v) showed significant antifungal effects against the indigenous molds on the surface of apple fruit during the industrial storage experiment. Thus, they could be promising for post-harvest biopreservation.

Keywords: biocontrol, chitinase, Lactobacillus, post-harvest

Procedia PDF Downloads 154
258 Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets.

Keywords: bi-directional extension (BDE), microRNA (miRNA), poly (A) tailing assay, reverse transcription, RT-qPCR

Procedia PDF Downloads 166
257 Diagnostic Value of CT Scan in Acute Appendicitis

Authors: Maria Medeiros, Suren Surenthiran, Abitha Muralithar, Soushma Seeburuth, Mohammed Mohammed

Abstract:

Introduction: Appendicitis is the most common surgical emergency globally and can have devastating consequences. Diagnostic imaging in acute appendicitis has become increasingly common in aiding the diagnosis of acute appendicitis. Computerized tomography (CT) and ultrasound (US) are the most commonly used imaging modalities for diagnosing acute appendicitis. Pre-operative imaging has contributed to a reduction of negative appendicectomy rates from between 10-29% to 5%. Literature report CT scan has a diagnostic sensitivity of 94% in acute appendicitis. This clinical audit was conducted to establish if the CT scan's diagnostic yield for acute appendicitis matches the literature. CT scan has a high sensitivity and specificity for diagnosing acute appendicitis and its use can result in a lower negative appendicectomy rate. The aim of this study is to compare the pre-operative imaging findings from CT scans to the histopathology results post-operatively and establish the accuracy of CT scans in aiding the diagnosis of acute appendicitis. Methods: This was a retrospective study focusing on adult presentations to the general surgery department in a district general hospital in central London with an impression of acute appendicitis. We analyzed all patients from July 2022 to December 2022 who underwent a CT scan preceding appendicectomy. Pre-operative CT findings and post-operative histopathology findings were compared to establish the efficacy of CT scans in diagnosing acute appendicitis. Our results were also cross-referenced with pre-existing literature. Data was collected and anonymized using CERNER and analyzed in Microsoft Excel. Exclusion criteria: Children, age <16. Results: 65 patients had CT scans in which the report stated acute appendicitis. Of those 65 patients, 62 patients underwent diagnostic laparoscopies. 100% of patients who underwent an appendicectomy with a pre-operative CT scan showing acute appendicitis had acute appendicitis in histopathology analysis. 3 of the 65 patients who had a CT scan showing appendicitis received conservative treatment. Conclusion: CT scans positive for acute appendicitis had 100% sensitivity and a positive predictive value, which matches published research studies (sensitivity of 94%). The use of CT scans in the diagnostic work-up for acute appendicitis can be extremely helpful in a) confirming the diagnosis and b) reducing the rates of negative appendicectomies and consequently reducing unnecessary operative-associated risks for patients, reducing costs and reducing pressure on emergency theatre lists.

Keywords: acute apendicitis, CT scan, general surgery, imaging

Procedia PDF Downloads 93
256 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 95
255 Preventive Impact of Regional Analgesia on Chronic Neuropathic Pain After General Surgery

Authors: Beloulou Mohamed Lamine, Fedili Benamar, Meliani Walid, Chaid Dalila, Lamara Abdelhak

Abstract:

Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with postsurgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariable analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature, particularly in surgeries that are more prone to chronicization.

Keywords: post-surgical chronic pain, post-surgical chronic neuropathic pain, regional anesthesia-analgesia techniques, neuropathic pain score DN2, preventive impact

Procedia PDF Downloads 78
254 An Experimental Exploration of the Interaction between Consumer Ethics Perceptions, Legality Evaluations, and Mind-Sets

Authors: Daphne Sobolev, Niklas Voege

Abstract:

During the last three decades, consumer ethics perceptions have attracted the attention of a large number of researchers. Nevertheless, little is known about the effect of the cognitive and situational contexts of the decision on ethics judgments. In this paper, the interrelationship between consumers’ ethics perceptions, legality evaluations and mind-sets are explored. Legality evaluations represent the cognitive context of the ethical judgments, whereas mind-sets represent their situational context. Drawing on moral development theories and priming theories, it is hypothesized that both factors are significantly related to consumer ethics perceptions. To test this hypothesis, 289 participants were allocated to three mind-set experimental conditions and a control group. Participants in the mind-set conditions were primed for aggressiveness, politeness or awareness to the negative legal consequences of breaking the law. Mind-sets were induced using a sentence-unscrambling task, in which target words were included. Ethics and legality judgments were assessed using consumer ethics and internet ethics questionnaires. All participants were asked to rate the ethicality and legality of consumer actions described in the questionnaires. The results showed that consumer ethics and legality perceptions were significantly correlated. Moreover, including legality evaluations as a variable in ethics judgment models increased the predictive power of the models. In addition, inducing aggressiveness in participants reduced their sensitivity to ethical issues; priming awareness to negative legal consequences increased their sensitivity to ethics when uncertainty about the legality of the judged scenario was high. Furthermore, the correlation between ethics and legality judgments was significant overall mind-set conditions. However, the results revealed conflicts between ethics and legality perceptions: consumers considered 10%-14% of the presented behaviors unethical and legal, or ethical and illegal. In 10-23% of the questions, participants indicated that they did not know whether the described action was legal or not. In addition, an asymmetry between the effects of aggressiveness and politeness priming was found. The results show that the legality judgments and mind-sets interact with consumer ethics perceptions. Thus, they portray consumer ethical judgments as dynamical processes which are inseparable from other cognitive processes and situational variables. They highlight that legal and ethical education, as well as adequate situational cues at the service place, could have a positive effect on consumer ethics perceptions. Theoretical contribution is discussed.

Keywords: consumer ethics, legality judgments, mind-set, priming, aggressiveness

Procedia PDF Downloads 297
253 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
252 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis

Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad

Abstract:

Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.

Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling

Procedia PDF Downloads 179
251 Hounsfield-Based Automatic Evaluation of Volumetric Breast Density on Radiotherapy CT-Scans

Authors: E. M. D. Akuoko, Eliana Vasquez Osorio, Marcel Van Herk, Marianne Aznar

Abstract:

Radiotherapy is an integral part of treatment for many patients with breast cancer. However, side effects can occur, e.g., fibrosis or erythema. If patients at higher risks of radiation-induced side effects could be identified before treatment, they could be given more individual information about the risks and benefits of radiotherapy. We hypothesize that breast density is correlated with the risk of side effects and present a novel method for automatic evaluation based on radiotherapy planning CT scans. Methods: 799 supine CT scans of breast radiotherapy patients were available from the REQUITE dataset. The methodology was first established in a subset of 114 patients (cohort 1) before being applied to the whole dataset (cohort 2). All patients were scanned in the supine position, with arms up, and the treated breast (ipsilateral) was identified. Manual experts contour available in 96 patients for both the ipsilateral and contralateral breast in cohort 1. Breast tissue was segmented using atlas-based automatic contouring software, ADMIRE® v3.4 (Elekta AB, Sweden). Once validated, the automatic segmentation method was applied to cohort 2. Breast density was then investigated by thresholding voxels within the contours, using Otsu threshold and pixel intensity ranges based on Hounsfield units (-200 to -100 for fatty tissue, and -99 to +100 for fibro-glandular tissue). Volumetric breast density (VBD) was defined as the volume of fibro-glandular tissue / (volume of fibro-glandular tissue + volume of fatty tissue). A sensitivity analysis was performed to verify whether calculated VBD was affected by the choice of breast contour. In addition, we investigated the correlation between volumetric breast density (VBD) and patient age and breast size. VBD values were compared between ipsilateral and contralateral breast contours. Results: Estimated VBD values were 0.40 (range 0.17-0.91) in cohort 1, and 0.43 (0.096-0.99) in cohort 2. We observed ipsilateral breasts to be denser than contralateral breasts. Breast density was negatively associated with breast volume (Spearman: R=-0.5, p-value < 2.2e-16) and age (Spearman: R=-0.24, p-value = 4.6e-10). Conclusion: VBD estimates could be obtained automatically on a large CT dataset. Patients’ age or breast volume may not be the only variables that explain breast density. Future work will focus on assessing the usefulness of VBD as a predictive variable for radiation-induced side effects.

Keywords: breast cancer, automatic image segmentation, radiotherapy, big data, breast density, medical imaging

Procedia PDF Downloads 132
250 Instruction Program for Human Factors in Maintenance, Addressed to the People Working in Colombian Air Force Aeronautical Maintenance Area to Strengthen Operational Safety

Authors: Rafael Andres Rincon Barrera

Abstract:

Safety in global aviation plays a preponderant role in organizations that seek to avoid accidents in an attempt to preserve their most precious assets (the people and the machines). Human factors-based programs have shown to be effective in managing human-generated risks. The importance of training on human factors in maintenance has not been indifferent to the Colombian Air Force (COLAF). This research, which has a mixed quantitative, qualitative and descriptive approach, deals with its absence of structuring an instruction program in Human Factors in Aeronautical Maintenance, which serves as a tool to improve Operational Safety in the military air units of the COLAF. Research shows the trends and evolution of human factors programs in aeronautical maintenance through the analysis of a data matrix with 33 sources taken from different databases that are about the incorporation of these types of programs in the aeronautical industry in the last 20 years; as well as the improvements in the operational safety process that are presented after the implementation of these ones. Likewise, it compiles different normative guides in force from world aeronautical authorities for training in these programs, establishing a matrix of methodologies that may be applicable to develop a training program in human factors in maintenance. Subsequently, it illustrates the design, validation, and development of a human factors knowledge measurement instrument for maintenance at the COLAF that includes topics on Human Factors (HF), Safety Management System (SMS), and aeronautical maintenance regulations at the COLAF. With the information obtained, it performs the statistical analysis showing the aspects of knowledge and strengthening the staff for the preparation of the instruction program. Performing data triangulation based on the applicable methods and the weakest aspects found in the maintenance people shows a variable crossing from color coding, thus indicating the contents according to a training program for human factors in aeronautical maintenance, which are adjusted according to the competencies that are expected to be developed with the staff in a curricular format established by the COLAF. Among the most important findings are the determination that different authors are dealing with human factors in maintenance agrees that there is no standard model for its instruction and implementation, but that it must be adapted to the needs of the organization, that the Safety Culture in the Companies which incorporated programs on human factors in maintenance increased, that from the data obtained with the instrument for knowledge measurement of human factors in maintenance, the level of knowledge is MEDIUM-LOW with a score of 61.79%. And finally that there is an opportunity to improve Operational Safety for the COLAF through the implementation of the training program of human factors in maintenance for the technicians working in this area.

Keywords: Colombian air force, human factors, safety culture, safety management system, triangulation

Procedia PDF Downloads 134
249 Religious Fundamentalism Prescribes Requirements for Marriage and Reproduction

Authors: Steven M. Graham, Anne V. Magee

Abstract:

Most world religions have sacred texts and traditions that provide instruction about and definitions of marriage, family, and family duties and responsibilities. Given that religious fundamentalism (RF) is defined as the belief that these sacred texts and traditions are literally and completely true to the exclusion of other teachings, RF should be predictive of the attitudes one holds about these topics. The goals of the present research were to: (1) explore the extent to which people think that men and women can be happy without marriage, a significant sexual relationship, a long-term romantic relationship, and having children; (2) determine the extent to which RF is associated with these beliefs; and, (3) to determine how RF is associated with considering certain elements of a relationship to be necessary for thinking of that relationship as a marriage. In Study 1, participants completed a reliable and valid measure of RF and answered questions about the necessity of various elements for a happy life. Higher RF scores were associated with the belief that both men and women require marriage, a sexual relationship, a long-term romantic relationship, and children in order to have a happy life. In Study 2, participants completed these same measures and the pattern of results replicated when controlling for overall religiosity. That is, RF predicted these beliefs over and above religiosity. Additionally, participants indicated the extent to which a variety of characteristics were necessary to consider a particular relationship to be a marriage. Controlling for overall religiosity, higher RF scores were associated with the belief that the following were required to consider a relationship a marriage: religious sanctification, a sexual component, sexual monogamy, emotional monogamy, family approval, children (or the intent to have them), cohabitation, and shared finances. Interestingly, and unexpectedly, higher RF scores were correlated with less importance placed on mutual consent in order to consider a relationship a marriage. RF scores were uncorrelated with the importance placed on legal recognition or lifelong commitment and these null findings do not appear to be attributable to ceiling effects or lack of variability. These results suggest that RF constrains views about both the importance of marriage and family in one’s life and also the characteristics required to consider a relationship a proper marriage. This could have implications for the mental and physical health of believers high in RF, either positive or negative, depending upon the extent to which their lives correspond to these templates prescribed by RF. Additionally, some of these correlations with RF were substantial enough (> .70) that the relevant items could serve as a brief, unobtrusive measure of RF. Future research will investigate these possibilities.

Keywords: attitudes about marriage, fertility intentions, measurement, religious fundamentalism

Procedia PDF Downloads 119
248 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

Authors: Libor Zachoval, Daire O Broin, Oisin Cawley

Abstract:

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI

Procedia PDF Downloads 121
247 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis

Authors: Esra Polat

Abstract:

Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.

Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis

Procedia PDF Downloads 280
246 Communication Barriers in Midwifery Students in the Field of Perinatal Palliative Care

Authors: Magdalena Hasplova, Katerina Ivanova

Abstract:

Perinatal palliative care is a relatively young and developing field that includes the care of a fetus or newborn with a life-threatening or limiting defect and his family. However, the training of midwives in perinatal palliative care is insufficient and midwives do not feel prepared for this aspect of their work. This fact can affect the barriers to communication with the mother or family of the endangered child. The main aim was to analyze the awareness of midwifery students on the issue of perinatal palliative care in the Czech Republic. Based on the analysis, draw attention to possible communication barriers that may be caused by insufficient information. The research was carried out using a qualitative method, the method of data collection was a semi-structured interview. Eleven female students took part in the research, and the respondents were selected using the Snowballing method. Some methods of grounded theory (open coding and category creation) were used to analyze the data. Based on the results of the research, questions were set in a questionnaire focused on communication barriers between mothers (family) and health care professionals in the care of newborns with life-threatening or limiting disabilities. Based on the analysis of data, categories 1 were determined. Knowledge of perinatal palliative care 2. Education 3. Practical experience 4. Readiness and concerns in the provision of perinatal palliative care 6. Supervision. The questions in the questionnaire were then derived taking into account the data obtained, and the operationalization of health literacy in the field of perinatal palliative care was performed. The analysis of the interviews revealed that the education of midwives in the Czech Republic in the issue of perinatal palliative care is not uniform. The research confirmed the insufficient knowledge and skills of midwifery students preparing to provide perinatal palliative care. Respondents reported feelings of unpreparedness in the areas of communication with a woman after perinatal loss, psychological support for a woman and her family, the care of a stillborn or dying child, or self-coping with death. The questions in the questionnaire then develop these areas. We assumed that by analyzing and interpreting the data obtained from our research, we will help to better understand the concerns and motivations of students in providing holistic perinatal palliative care. We came to the conclusion that it would be appropriate to set up a unified and comprehensive education on this issue in the Czech Republic. Healthcare professionals are in a unique position that can positively or negatively affect the intensity of perinatal loss. Already properly set up education of health professionals leads to overcoming barriers in communication between health professionals and the family, experiencing perinatal loss.

Keywords: midwife, perinatal loss, perinatal palliative care, communication, barriers, mothers, family

Procedia PDF Downloads 117
245 Investigating Acute and Chronic Pain after Bariatric Surgery

Authors: Patti Kastanias, Wei Wang, Karyn Mackenzie, Sandra Robinson, Susan Wnuk

Abstract:

Obesity is a worldwide epidemic and is recognized as a chronic disease. Pain in the obese individual is a multidimensional issue. An increase in BMI is positively correlated with pain incidence and severity, especially in central obesity where individuals are twice as likely to have chronic pain. Both obesity and chronic pain are also associated with mood disorders. Pain is worse among obese individuals with depression and anxiety. Bariatric surgery provides patients with an effective solution for long-term weight loss and associated health problems. However, not much is known about acute and chronic pain after bariatric surgery and its contributing factors, including mood disorders. Nurse practitioners (NPs) at one large multidisciplinary bariatric surgery centre led two studies to examine acute and chronic pain and pain management over time after bariatric surgery. The purpose of the initial study was to examine the incidence and severity of acute and chronic pain after bariatric surgery. The aim of the secondary study was to further examine chronic pain, specifically looking at psychological factors that influence severity or incidence of both neuropathic and somatic pain as well as changes in opioid use. The initial study was a prospective, longitudinal study where patients having bariatric surgery at one surgical center were followed up to 6 months postop. Data was collected at 7 time points using validated instruments for pain severity, pain interference, and patient satisfaction. In the second study, subjects were followed longitudinally starting preoperatively and then at 6 months and 1 year postoperatively to capture changes in chronic pain and influencing variables over time. Valid and reliable instruments were utilized for all major study outcomes. In the first study, there was a trend towards decreased acute post-operative pain over time. The incidence and severity of chronic pain was found to be significantly reduced at 6 months post bariatric surgery. Interestingly, interference of chronic pain in daily life such as normal work, mood, and walking ability was significantly improved at 6 months postop however; this was not the case with sleep. Preliminary results of the secondary study indicate that pain severity, pain interference, anxiety and depression are significantly improved at 6 months postoperatively. In addition, preoperative anxiety, depression and emotional regulation were predictive of pain interference, but not pain severity. The results of our regression analyses provide evidence for the impact of pre-existing psychological factors on pain, particularly anxiety in obese populations.

Keywords: bariatric surgery, mood disorders, obesity, pain

Procedia PDF Downloads 304
244 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.

Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus

Procedia PDF Downloads 186
243 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms

Authors: Habtamu Ayenew Asegie

Abstract:

Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.

Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction

Procedia PDF Downloads 39
242 An Analysis of LoRa Networks for Rainforest Monitoring

Authors: Rafael Castilho Carvalho, Edjair de Souza Mota

Abstract:

As the largest contributor to the biogeochemical functioning of the Earth system, the Amazon Rainforest has the greatest biodiversity on the planet, harboring about 15% of all the world's flora. Recognition and preservation are the focus of research that seeks to mitigate drastic changes, especially anthropic ones, which irreversibly affect this biome. Functional and low-cost monitoring alternatives to reduce these impacts are a priority, such as those using technologies such as Low Power Wide Area Networks (LPWAN). Promising, reliable, secure and with low energy consumption, LPWAN can connect thousands of IoT devices, and in particular, LoRa is considered one of the most successful solutions to facilitate forest monitoring applications. Despite this, the forest environment, in particular the Amazon Rainforest, is a challenge for these technologies, requiring work to identify and validate the use of technology in a real environment. To investigate the feasibility of deploying LPWAN in remote water quality monitoring of rivers in the Amazon Region, a LoRa-based test bed consisting of a Lora transmitter and a LoRa receiver was set up, both parts were implemented with Arduino and the LoRa chip SX1276. The experiment was carried out at the Federal University of Amazonas, which contains one of the largest urban forests in Brazil. There are several springs inside the forest, and the main goal is to collect water quality parameters and transmit the data through the forest in real time to the gateway at the uni. In all, there are nine water quality parameters of interest. Even with a high collection frequency, the amount of information that must be sent to the gateway is small. However, for this application, the battery of the transmitter device is a concern since, in the real application, the device must run without maintenance for long periods of time. With these constraints in mind, parameters such as Spreading Factor (SF) and Coding Rate (CR), different antenna heights, and distances were tuned to better the connectivity quality, measured with RSSI and loss rate. A handheld spectrum analyzer RF Explorer was used to get the RSSI values. Distances exceeding 200 m have soon proven difficult to establish communication due to the dense foliage and high humidity. The optimal combinations of SF-CR values were 8-5 and 9-5, showing the lowest packet loss rates, 5% and 17%, respectively, with a signal strength of approximately -120 dBm, these being the best settings for this study so far. The rains and climate changes imposed limitations on the equipment, and more tests are already being conducted. Subsequently, the range of the LoRa configuration must be extended using a mesh topology, especially because at least three different collection points in the same water body are required.

Keywords: IoT, LPWAN, LoRa, coverage, loss rate, forest

Procedia PDF Downloads 89
241 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials

Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik

Abstract:

Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.

Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes

Procedia PDF Downloads 61
240 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning

Procedia PDF Downloads 154
239 Functional Performance Needs of Individuals with Intellectual and Developmental Disabilities

Authors: Noor Taleb Ismael, Areej Abd Al Kareem Al Titi, Ala'a Fayez Jaber

Abstract:

Objectives: To investigate self-perceived functional performance among adults with IDD who are Jordanian residential care and rehabilitation centers residents. Also, to investigate their functional abilities (i.e., motor, and cognitive). In addition, to determine the motor and cognitive predictors of their functional performance. Methods: The study utilized a cross-sectional descriptive design; the sample included 180 individuals with IDD (90 males and 90 females) aged 18 to 75 years. The inclusion criteria encompassed: 1) Adults with a confirmed IDD by their physician’s professional and 2) residents in Jordanian Residential Care and Rehabilitation Centers affiliated with the Jordanian Ministry of Social Development. The exclusion criteria were: 1) bedridden or totally dependent on their care providers; 2) who had an accident or acquired neurological conditions. Researchers conducted semi-structured interviews to complete the outcome measures that include the Canadian Occupational Performance Measure (COPM), the Functional Independence Measure (FIM), the Montreal Cognitive Assessment (MoCA), the Mini-Mental Status Examination (MMSE), and the sociodemographic questionnaire. Data analyses consisted of descriptive statistics, analysis of frequencies, correlation, and regression analyses. Result: Individuals with IDD showed low functional performance in all daily life areas, including self-care, productivity, and leisure; there was severe cognitive impairment and poor independence and functional performance. (COPM Performance M= 1.433, SD±.57021, COPM Satisfaction M= 1.31, SD±.54, FIM M= 3.673, SD± 1.7918). Two predictive models were validated for the COPM performance and FIM total scores. First, significant predictors of high self-perceived functional performance on COPM were high scores on FIM Motor sub scores, FIM cognitive sub scores, young age, and having a high school educational level (R2=0.603, p=0.012). Second, significant predictors of high functional capacity on FIM were a high score on the COPM performance subscale, a high MMSE score, and having a cerebral palsy (CP) diagnosis (R2=0.671, p<0.001). Conclusions: Evaluating functional performance and associated factors is important in rehabilitation to provide better services and improve health and QoL for individuals with IDD. This study suggested conducting future studies targeting integrated individuals with IDD who live with their families in the communities.

Keywords: functional performance, intellectual and developmental disabilty, cognitive abilities, motor abilities

Procedia PDF Downloads 48
238 Recognising the Importance of Smoking Cessation Support in Substance Misuse Patients

Authors: Shaine Mehta, Neelam Parmar, Patrick White, Mark Ashworth

Abstract:

Patients with a history of substance have a high prevalence of comorbidities, including asthma and chronic obstructive pulmonary disease (COPD). Mortality rates are higher than that of the general population and the link to respiratory disease is reported. Randomised controlled trials (RCTs) support opioid substitution therapy as an effective means for harm reduction. However, whilst a high proportion of patients receiving opioid substitution therapy are smokers, to the author’s best knowledge there have been no studies of respiratory disease and smoking intensity in these patients. A cross sectional prevalence study was conducted using an anonymised patient-level database in primary care, Lambeth DataNet (LDN). We included patients aged 18 years and over who had records of ever having been prescribed methadone in primary care. Patients under 18 years old or prescribed buprenorphine (because of uncertainty about the prescribing indication) were excluded. Demographic, smoking, alcohol and asthma and COPD coding data were extracted. Differences between methadone and non-methadone users were explored with multivariable analysis. LDN contained data on 321, 395 patients ≥ 18 years; 676 (0.16%) had a record of methadone prescription. Patients prescribed methadone were more likely to be male (70.7% vs. 50.4%), older (48.9yrs vs. 41.5yrs) and less likely to be from an ethnic minority group (South Asian 2.1% vs. 7.8%; Black African 8.9% vs. 21.4%). Almost all those prescribed methadone were smokers or ex-smokers (97.3% vs. 40.9%); more were non-alcohol drinkers (41.3% vs. 24.3%). We found a high prevalence of COPD (12.4% vs 1.4%) and asthma (14.2% vs 4.4%). Smoking intensity data shows a high prevalence of ≥ 20 cigarettes per day (21.5% vs. 13.1%). Risk of COPD, adjusted for age, gender, ethnicity and deprivation, was raised in smokers: odds ratio 14.81 (95%CI 11.26, 19.47), and in the methadone group: OR 7.51 (95%CI: 5.78, 9.77). Furthermore, after adjustment for smoking intensity (number of cigarettes/day), the risk was raised in methadone group: OR 4.77 (95%CI: 3.13, 7.28). High burden of respiratory disease compounded by the high rates of smoking is a public health concern. This supports an integrated approach to health in patients treated for opiate dependence, with access to smoking cessation support. Further work may evaluate the current structure and commissioning of substance misuse services, including smoking cessation. Regression modelling highlights that methadone as a ‘risk factor’ was independently associated with COPD prevalence, even after adjustment for smoking intensity. This merits further exploration, as the association may be related to unexplored aspects of smoking (such as the number of years smoked) or may be related to other related exposures, such as smoking heroin or crack cocaine.

Keywords: methadone, respiratory disease, smoking cessation, substance misuse

Procedia PDF Downloads 145
237 Association of Copy Number Variation of the CHKB, KLF6, GPC1, and CHRM3 Genes with Growth Traits of Datong Yak (Bos grunniens)

Authors: Habtamu Abera Goshu, Ping Yan

Abstract:

Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage, position effects, alteration of downstream pathways, modification of chromosome structure, and position within the nucleus and disrupting coding regions in the genome. Associating copy number variations (CNVs) with growth and gene expression are a powerful approach for identifying genomic characteristics that contribute to phenotypic and genotypic variation. A previous study using next-generation sequencing illustrated that the choline kinase beta (CHKB), Krüpple-like factor 6 (KLF6), glypican 1(GPC1), and cholinergic receptor muscarinic 3 (CHRM3) genes reside within copy number variable regions (CNVRs) of yak populations that overlap with quantitative trait loci (QTLs) of meat quality and growth. As a result, this research aimed to determine the association of CNVs of the KLF6, CHKB, GPC1, and CHRM3 genes with growth traits in the Datong yak breed. The association between the CNV types of the KLF6, CHKB, GPC1, and CHRM3 genes and the growth traits in the Datong yak breed was determined by one-way analysis of variance (ANOVA) using SPSS software. The CNV types were classified as a loss (a copy number of 0 or 1), gain (a copy number >2), and normal (a copy number of 2) relative to the reference gene, BTF3 in the 387 individuals of Datong yak. These results indicated that the normal CNV types of the CHKB and GPC1 genes were significantly (P<0.05) associated with high body length, height and weight, and chest girth in six-month-old and five-year-old Datong yaks. On the other hand, the loss CNV types of the KLF6 gene is significantly (P<0.05) associated with body weight and length and chest girth at six-month-old and five-year-old Datong yaks. In the contrary, the gain CNV type of the CHRM3 gene is highly (P<0.05) associated with body weight, length, height, and chest girth in six-month-old and five-year-old. This work provides the first observation of the biological role of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in the Datong yak breed and might, therefore, provide a novel opportunity to utilize data on CNVs in designing molecular markers for the selection of animal breeding programs for larger populations of various yak breeds. Therefore, we hypothesized that this study provided inclusive information on the application of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in growth traits in Datong yaks and its possible function in bovine species.

Keywords: Copy number variation, growth traits, yak, genes

Procedia PDF Downloads 172
236 Relatively High Heart-Rate Variability Predicts Greater Survival Chances in Patients with Covid-19

Authors: Yori Gidron, Maartje Mol, Norbert Foudraine, Frits Van Osch, Joop Van Den Bergh, Moshe Farchi, Maud Straus

Abstract:

Background: The worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV2), which began in 2019, also known as Covid-19, has infected over 136 million people and tragically took the lives of over 2.9 million people worldwide. Many of the complications and deaths are predicted by the inflammatory “cytokine storm.” One way to progress in the prevention of death is by finding a predictive and protective factor that inhibits inflammation, on the one hand, and which also increases anti-viral immunity on the other hand. The vagal nerve does precisely both actions. This study examined whether vagal nerve activity, indexed by heart-rate variability (HRV), predicts survival in patients with Covid-19. Method: We performed a pseudo-prospective study, where we retroactively obtained ECGs of 271 Covid-19 patients arriving at a large regional hospital in The Netherlands. HRV was indexed by the standard deviation of the intervals between normal heartbeats (SDNN). We examined patients’ survival at 3 weeks and took into account multiple confounders and known prognostic factors (e.g., age, heart disease, diabetes, hypertension). Results: Patients’ mean age was 68 (range: 25-95) and nearly 22% of the patients had died by 3 weeks. Their mean SDNN (17.47msec) was far below the norm (50msec). Importantly, relatively higher HRV significantly predicted a higher chance of survival, after statistically controlling for patients’ age, cardiac diseases, hypertension and diabetes (relative risk, H.R, and 95% confidence interval (95%CI): H.R = 0.49, 95%CI: 0.26 – 0.95, p < 0.05). However, since HRV declines rapidly with age and since age is a profound predictor in Covid-19, we split the sample by median age (40). Subsequently, we found that higher HRV significantly predicted greater survival in patients older than 70 (H.R = 0.35, 95%CI: 0.16 – 0.78, p = 0.01), but HRV did not predict survival in patients below age 70 years (H.R = 1.11, 95%CI: 0.37 – 3.28, p > 0.05). Conclusions: To the best of our knowledge, this is the first study showing that higher vagal nerve activity, as indexed by HRV, is an independent predictor of higher chances for survival in Covid-19. The results are in line with the protective role of the vagal nerve in diseases and extend this to a severe infectious illness. Studies should replicate these findings and then test in controlled trials whether activating the vagus nerve may prevent mortality in Covid-19.

Keywords: Covid-19, heart-rate Variability, prognosis, survival, vagal nerve

Procedia PDF Downloads 175
235 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 121
234 Building Environmental Citizenship in Spain: Urban Movements and Ecologist Protest in Las Palmas De Gran Canaria, 1970-1983

Authors: Juan Manuel Brito-Diaz

Abstract:

The emergence of urban environmentalism in Spain is related to the processes of economic transformation and growing urbanization that occurred during the end of the Franco regime and the democratic transition. This paper analyzes the urban environmental mobilizations and their impacts as relevant democratizing agents in the processes of political change in cities. It’s an under-researched topic and studies on environmental movements in Spain have paid little attention to it. This research takes as its starting point the close link between democratization and environmentalism, since it considers that environmental conflicts are largely a consequence of democratic problems, and that the impacts of environmental movements are directly linked to the democratization. The study argues that the environmental movements that emerged in Spain at the end of the dictatorship and the democratic transition are an important part of the broad and complex associative fabric that promoted the democratization process. The research focuses on investigating the environmental protest in Las Palmas de Gran Canaria—the most important city in the Canary Islands—between 1970 and 1983, concurrently with the last local governments of the dictatorship and the first democratic city councils. As it is a case study, it opens up the possibility to ask multiple specific questions and assess each of the responses obtained. Although several research methodologies have been applied, such as the analysis of historical archives documentation or oral history interviews, mainly a very widespread methodology in the sociology of social movements, although very little used by social historians, has been used: the Protest Event Analysis (PEA). This methodology, which consists of generating a catalog of protest events by coding data around previously established variables, has allowed me to map, analyze and interpret the occurrence of protests over time and space, and associated factors, through content analysis. For data collection, news from local newspapers have provided a large enough sample to analyze the properties of social protest -frequency, size, demands, forms, organizers, etc.—and relate them to another type of information related to political structures and mobilization repertoires, encouraging the establishment of connections between the protest and the political impacts of urban movements. Finally, the study argues that the environmental movements of this period were essential to the construction of the new democratic city in Spain, not only because they established the issues of sustainability and urban environmental justice on the public agenda, but also because they proposed that conflicts derived from such matters should ultimately be resolved through public deliberation and citizen participation.

Keywords: democratization, environmental movements, political impacts, social movements

Procedia PDF Downloads 180
233 Exploring Antifragility Principles in Humanitarian Supply Chain: The key Role of Information Systems

Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan

Abstract:

The COVID-19 pandemic has been a major and global disruption that has affected all supply chains on a worldwide scale. Consequently, the question posed by this communication is to understand how - in the face of such disruptions - supply chains, including their actors, management tools, and processes, react, survive, adapt, and even improve. To do so, the concepts of resilience and antifragility applied to a supply chain have been leveraged. This article proposes to perceive resilience as a step to surpass in moving towards antifragility. The research objective is to propose an analytical framework to measure and compare resilience and antifragility, with antifragility seen as a property of a system that improves when subjected to disruptions rather than merely resisting these disruptions, as is the case with resilience. A unique case study was studied - MSF logistics (France) - using a qualitative methodology. Semi-structured interviews were conducted in person and remotely in multiple phases: during and immediately after the COVID crisis (8 interviews from March 2020 to April 2021), followed by a new round from September to November 2023. A Delphi method was employed. The interviews were analyzed using coding and a thematic framework. One of the theoretical contributions is consolidating the field of supply chain resilience research by precisely characterizing the dimensions of resilience for a humanitarian supply chain (Reorganization, Collaboration mediated by IS, Humanitarian culture). In this regard, a managerial contribution of this study is providing a guide for managers to identify the four dimensions and sub-dimensions of supply chain resilience. This enables managers to focus their decisions and actions on dimensions that will enhance resilience. Most importantly, another contribution is comparing the concepts of resilience and antifragility and proposing an analytical framework for antifragility—namely, the mechanisms on which MSF logistics relied to capitalize on uncertainties, contingencies, and shocks rather than simply enduring them. For MSF Logistics, antifragility manifested through the ability to identify opportunities hidden behind the uncertainties and shocks of COVID-19, reducing vulnerability, and fostering a culture that encourages innovation and the testing of new ideas. Logistics, particularly in the humanitarian domain, must be able to adapt to environmental disruptions. In this sense, this study identifies and characterizes the dimensions of resilience implemented by humanitarian logistics. Moreover, this research goes beyond the concept of resilience to propose an analytical framework for the concept of antifragility. The organization studied emerged stronger from the COVID-19 crisis due to the mechanisms we identified, allowing us to characterize antifragility. Finally, the results show that the information system plays a key role in antifragility.

Keywords: antifragility, humanitarian supply chain, information systems, qualitative research, resilience.

Procedia PDF Downloads 64
232 Optimism, Skepticism, and Uncertainty: A Qualitative Study on the Knowledge and Perceived Impact of the Affordable Care Act among Adult Patients Seeking Care in a Free Clinic

Authors: Mike Wei, Mario Cedillo, Jiahui Lin, Carol Lorraine Storey-Johnson, Carla Boutin-Foster

Abstract:

Purpose: The extent to which health insurance enrollment succeeds under the Affordable Care Act (ACA) rests heavily on the ability to reach the uninsured and motivate them to enroll. We sought to identify perceptions about the ACA among uninsured patients at a free clinic in New York City. Background: The ACA holds tremendous promise for reducing the number of uninsured Americans. As of April 2014, nearly 8 million people had signed up for health insurance through the Health Insurance Marketplace. Despite this early success, future and continued enrollment rests heavily on the degree of public awareness. Reaching eligible individuals and increasing their awareness and understanding remains a fundamental challenge to realizing the full potential of the ACA. Reaching out to uninsured patients who are seeking care through safety net facilities such as free clinics may provide important avenues for reaching potential enrollees. This project focuses on the experience at the free clinic at Weill Cornell Medical College, the Weill Cornell Community Clinic (WCCC), and seeks to understand perceptions about the ACA among its patient population. Methods: This was a cross-sectional study of all patients who visited the free clinic at Weill Cornell Medical College, the Weill Cornell Community Clinic, from July 2013 to May 2014. Patients who provided informed consent at their visit and completed a semi-structured questionnaire were included (N=62). The questionnaire comprised of questions about demographic characteristics and open-ended questions about their knowledge and perception of the impact of the ACA. Descriptive statistics were used to characterize the population demographics. Qualitative coding techniques were used for open-ended items. Results: Approximately one third of patients surveyed never had health insurance. Of the remaining 65%, 20% lost their insurance within the past year. Only 55% had heard about the ACA, and only 10% knew about the Health Benefits Exchange. Of those who had heard about the ACA, sentiments were tinged with optimistic misperceptions, such as “it will be free health care for all.” While optimistic, most of the responses focused on the economic implications of the ACA. Conclusions: These findings reveal the immense amount of misconception and lack of understanding with regards to the ACA. As such, the study highlights the need to educate and address the concerns of those who remain skeptical or uncertain about the implications of the ACA.

Keywords: Affordable Care Act, demographics, free clinics, underserved.

Procedia PDF Downloads 388
231 Thinking for Writing: Evidence of Language Transfer in Chinese ESL Learners’ Written Narratives

Authors: Nan Yang, Hye Pae

Abstract:

English as a second language (ESL) learners are often observed to have transferred traits of their first languages (L1) and habits of using their L1s to their use of English (second language, L2), and this phenomenon is coined as language transfer. In addition to the transfer of linguistic features (e.g., grammar, vocabulary, etc.), which are relatively easy to observe and quantify, many cross-cultural theorists emphasized on a much subtle and fundamental transfer existing on a higher conceptual level that is referred to as conceptual transfer. Although a growing body of literature in linguistics has demonstrated evidence of L1 transfer in various discourse genres, very limited studies address the underlying conceptual transfer that is happening along with the language transfer, especially with the extended form of spontaneous discourses such as personal narrative. To address this issue, this study situates itself in the context of Chinese ESL learners’ written narratives, examines evidence of L1 conceptual transfer in comparison with native English speakers’ narratives, and provides discussion from the perspective of the conceptual transfer. It is hypothesized that Chinese ESL learners’ English narrative strategies are heavily influenced by the strategies that they use in Chinese as a result of the conceptual transfer. Understanding language transfer cognitively is of great significance in the realm of SLA, as it helps address challenges that ESL learners around the world are facing; allow native English speakers to develop a better understanding about how and why learners’ English is different; and also shed light in ESL pedagogy by providing linguistic and cultural expectations in native English-speaking countries. To achieve the goals, 40 college students were recruited (20 Chinese ESL learners and 20 native English speakers) in the United States, and their written narratives on the prompt 'The most frightening experience' were collected for quantitative discourse analysis. 40 written narratives (20 in Chinese and 20 in English) were collected from Chinese ESL learners, and 20 written narratives were collected from native English speakers. All written narratives were coded according to the coding scheme developed by the authors prior to data collection. Statistical descriptive analyses were conducted, and the preliminary results revealed that native English speakers included more narrative elements such as events and explicit evaluation comparing to Chinese ESL students’ both English and Chinese writings; the English group also utilized more evaluation device (i.e., physical state expressions, indirectly reported speeches, delineation) than Chinese ESL students’ both English and Chinese writings. It was also observed that Chinese ESL students included more orientation elements (i.e., the introduction of time/place, the introduction of character) in their Chinese and English writings than the native English-speaking participants. The findings suggest that a similar narrative strategy was observed in Chinese ESL learners’ Chinese narratives and English narratives, which is considered as the evidence of conceptual transfer from Chinese (L1) to English (L2). The results also indicate that distinct narrative strategies were used by Chinese ESL learners and native English speakers as a result of cross-cultural differences.

Keywords: Chinese ESL learners, language transfer, thinking-for-speaking, written narratives

Procedia PDF Downloads 118
230 Simo-syl: A Computer-Based Tool to Identify Language Fragilities in Italian Pre-Schoolers

Authors: Marinella Majorano, Rachele Ferrari, Tamara Bastianello

Abstract:

The recent technological advance allows for applying innovative and multimedia screen-based assessment tools to test children's language and early literacy skills, monitor their growth over the preschool years, and test their readiness for primary school. Several are the advantages that a computer-based assessment tool offers with respect to paper-based tools. Firstly, computer-based tools which provide the use of games, videos, and audio may be more motivating and engaging for children, especially for those with language difficulties. Secondly, computer-based assessments are generally less time-consuming than traditional paper-based assessments: this makes them less demanding for children and provides clinicians and researchers, but also teachers, with the opportunity to test children multiple times over the same school year and, thus, to monitor their language growth more systematically. Finally, while paper-based tools require offline coding, computer-based tools sometimes allow obtaining automatically calculated scores, thus producing less subjective evaluations of the assessed skills and provide immediate feedback. Nonetheless, using computer-based assessment tools to test meta-phonological and language skills in children is not yet common practice in Italy. The present contribution aims to estimate the internal consistency of a computer-based assessment (i.e., the Simo-syl assessment). Sixty-three Italian pre-schoolers aged between 4;10 and 5;9 years were tested at the beginning of the last year of the preschool through paper-based standardised tools in their lexical (Peabody Picture Vocabulary Test), morpho-syntactical (Grammar Repetition Test for Children), meta-phonological (Meta-Phonological skills Evaluation test), and phono-articulatory skills (non-word repetition). The same children were tested through Simo-syl assessment on their phonological and meta-phonological skills (e.g., recognise syllables and vowels and read syllables and words). The internal consistency of the computer-based tool was acceptable (Cronbach's alpha = .799). Children's scores obtained in the paper-based assessment and scores obtained in each task of the computer-based assessment were correlated. Significant and positive correlations emerged between all the tasks of the computer-based assessment and the scores obtained in the CMF (r = .287 - .311, p < .05) and in the correct sentences in the RCGB (r = .360 - .481, p < .01); non-word repetition standardised test significantly correlates with the reading tasks only (r = .329 - .350, p < .05). Further tasks should be included in the current version of Simo-syl to have a comprehensive and multi-dimensional approach when assessing children. However, such a tool represents a good chance for the teachers to early identifying language-related problems even in the school environment.

Keywords: assessment, computer-based, early identification, language-related skills

Procedia PDF Downloads 183