Search results for: arbitrary signal generator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2332

Search results for: arbitrary signal generator

1012 A Study of Surface of Titanium Targets for Neutron Generators

Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev

Abstract:

The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.

Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy

Procedia PDF Downloads 447
1011 Filling the Gap of Extraction of Digital Evidence from Emerging Platforms Without Forensics Tools

Authors: Yi Anson Lam, Siu Ming Yiu, Kam Pui Chow

Abstract:

Digital evidence has been tendering to courts at an exponential rate in recent years. As an industrial practice, most digital evidence is extracted and preserved using specialized and well-accepted forensics tools. On the other hand, the advancement in technologies enables the creation of quite a few emerging platforms such as Telegram, Signal etc. Existing (well-accepted) forensics tools were not designed to extract evidence from these emerging platforms. While new forensics tools require a significant amount of time and effort to be developed and verified, this paper tries to address how to fill this gap using quick-fix alternative methods for digital evidence collection (e.g., based on APIs provided by Apps) and discuss issues related to the admissibility of this evidence to courts with support from international courts’ stance and the circumstances of accepting digital evidence using these proposed alternatives.

Keywords: extraction, digital evidence, laws, investigation

Procedia PDF Downloads 72
1010 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 731
1009 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.

Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis

Procedia PDF Downloads 310
1008 Writing a Parametric Design Algorithm Based on Recreation and Structural Analysis of Patkane Model: The Case Study of Oshtorjan Mosque

Authors: Behnoush Moghiminia, Jesus Anaya Diaz

Abstract:

The current study attempts to present the relationship between the structure development and Patkaneh as one of the Iranian geometric patterns and parametric algorithms by introducing two practical methods. While having a structural function, Patkaneh is also used as an ornamental element. It can be helpful in the scientific and practical review of Patkaneh. The current study aims to use Patkaneh as a parametric form generator based on the algorithm. The current paper attempts to express how can a more complete algorithm of this covering be obtained based on the parametric study and analysis of a sample of a Patkaneh and also investigate the relationship between the development of the geometrical pattern of Patkaneh as a structural-decorative element of Iranian architecture and digital design. In this regard, to achieve the research purposes, researchers investigated the oldest type of Patkaneh in the architecture history of Iran, such as the Northern Entrance Patkaneh of Oshtorjan Jame’ Mosque. An accurate investigation was done on the history of the background to answer the questions. Then, by investigating the structural behavior of Patkaneh, the decorative or structural-decorative role of Patkaneh was investigated to eliminate the ambiguity. Then, the geometrical structure of Patkaneh was analyzed by introducing two practical methods. The first method is based on the constituent units of Patkaneh (Square and diamond) and investigating the interactive relationships between them in 2D and 3D. This method is appropriate for cases where there are rational and regular geometrical relationships. The second method is based on the separation of the floors and the investigation of their interrelation. It is practical when the constituent units are not geometrically regular and have numerous diversity. Finally, the parametric form algorithm of these methods was codified.

Keywords: geometric properties, parametric design, Patkaneh, structural analysis

Procedia PDF Downloads 156
1007 A Hybrid Multi-Pole Fe₇₈Si₁₃B₉+FeSi₃ Soft Magnetic Core for Application in the Stators of the Low-Power Permanent Magnet Brushless Direct Current Motors

Authors: P. Zackiewicz, M. Hreczka, R. Kolano, A. Kolano-Burian

Abstract:

New types of materials applied as the stators in the Permanent Magnet Brushless Direct Current motors used in the heart supporting pumps are presented. The main focus of this work is the research on the fabrication of a hybrid nine-pole soft magnetic core consisting of a soft magnetic carrier ring with rectangular notches, made from the FeSi3 strip, and nine soft magnetic poles. This soft magnetic core is made in three stages: (a) preparation of the carrier rings from soft magnetic material with the lowest possible power losses and suitable stiffness, (b) preparation of trapezoidal soft magnetic poles from Metglas 2605 SA1 type ribbons, and (c) making durable connection between the poles and the carrier ring, capable of withstanding a four-times greater tearing force than that present during normal operation of the motor pump. All magnetic properties measurements were made using Remacomp C-1200 (Magnet Physik, Germany) and 450 Gaussometer (Lake Shore, USA) and the electrical characteristics were measured using laboratory generator DF1723009TC (NDN, Poland). Specific measurement techniques used to determine properties of the hybrid cores were presented. Obtained results allow developing the fabrication technology with an account of the intended application of these cores in the stators of the low-power PMBLDC motors used in implanted heart operation supporting pumps. The proposed measurement methodology is appropriate for assessing the quality of the stators.

Keywords: amorphous materials, heart supporting pump, PMBLDC motor, soft magnetic materials

Procedia PDF Downloads 217
1006 Nighttime Power Generation Using Thermoelectric Devices

Authors: Abdulrahman Alajlan

Abstract:

While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.

Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management

Procedia PDF Downloads 65
1005 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 473
1004 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 232
1003 Novel Approach to Design of a Class-EJ Power Amplifier Using High Power Technology

Authors: F. Rahmani, F. Razaghian, A. R. Kashaninia

Abstract:

This article proposes a new method for application in communication circuit systems that increase efficiency, PAE, output power and gain in the circuit. The proposed method is based on a combination of switching class-E and class-J and has been termed class-EJ. This method was investigated using both theory and simulation to confirm ~72% PAE and output power of > 39 dBm. The combination and design of the proposed power amplifier accrues gain of over 15dB in the 2.9 to 3.5 GHz frequency bandwidth. This circuit was designed using MOSFET and high power transistors. The load- and source-pull method achieved the best input and output networks using lumped elements. The proposed technique was investigated for fundamental and second harmonics having desirable amplitudes for the output signal.

Keywords: power amplifier (PA), high power, class-J and class-E, high efficiency

Procedia PDF Downloads 496
1002 Analysis and Performance of Handover in Universal Mobile Telecommunications System (UMTS) Network Using OPNET Modeller

Authors: Latif Adnane, Benaatou Wafa, Pla Vicent

Abstract:

Handover is of great significance to achieve seamless connectivity in wireless networks. This paper gives an impression of the main factors which are being affected by the soft and the hard handovers techniques. To know and understand the handover process in The Universal Mobile Telecommunications System (UMTS) network, different statistics are calculated. This paper focuses on the quality of service (QoS) of soft and hard handover in UMTS network, which includes the analysis of received power, signal to noise radio, throughput, delay traffic, traffic received, delay, total transmit load, end to end delay and upload response time using OPNET simulator.

Keywords: handover, UMTS, mobility, simulation, OPNET modeler

Procedia PDF Downloads 325
1001 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang

Abstract:

In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 470
1000 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 285
999 Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner

Authors: Vishnu Raj, Chockalingam Prathap

Abstract:

The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with premixed n-butane air mixture at equivalence ratio (ϕ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10mm&15mm, 98mm2 (2) 17.5mm&22.5mm, 157mm2 and (3) 25mm & 30mm, 216mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar PIV with TiO2 seeding particles and (ii) OH* chemiluminescence were used to measure the velocity fields and reaction zones of the swirl flames at 5Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 28ᵒ, (b) 6.78, 2.37, 34ᵒ, and (c) 8.73, 2.32, 37ᵒ. The lean blowout was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157mm2 case. For this case, particle image velocimetry (PIV) measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower lean blowout (LBO).

Keywords: chemiluminescence, jet spreading rate, lean blowout, swirl flow

Procedia PDF Downloads 70
998 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing

Procedia PDF Downloads 614
997 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 396
996 Analysis of Advanced Modulation Format Using Gain and Loss Spectrum for Long Range Radio over Fiber System

Authors: Shaina Nagpal, Amit Gupta

Abstract:

In this work, all optical Stimulated Brillouin Scattering (SBS) generated single sideband with suppressed carrier is presented to provide better efficiency. The generation of single sideband and enhanced carrier power signal using the SBS technique is further used to strengthen the low shifted sideband and to suppress the upshifted sideband. These generated single sideband signals are able to work at high frequency ranges. Also, generated single sideband is validated over 90 km transmission using single mode fiber with acceptable bit error rate. The results for an equivalent are then compared so that the acceptable technique is chosen and also the required quality for the optimum performance of the system is reported.

Keywords: stimulated Brillouin scattering, radio over fiber, upper side band, quality factor

Procedia PDF Downloads 238
995 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa

Abstract:

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Keywords: flank wear, cutting forces, high speed milling, signal processing, neural network

Procedia PDF Downloads 397
994 Groundwater Influences Wellbeing of Farmers from Semi-Arid Areas of India: Assessment of Subjective Wellbeing

Authors: Seemabahen Dave, Maria Varua, Basant Maheshwari, Roger Packham

Abstract:

The declining groundwater levels and quality are acknowledged to be affecting the well-being of farmers especially those located in the semi-arid regions where groundwater is the only source of water for domestic and agricultural use. Further, previous studies have identified the need to examine the quality of life of farmers beyond economic parameters and for a shift in setting rural development policy goals to the perspective of beneficiaries. To address these gaps, this paper attempts to ascertain the subjective wellbeing of farmers from two semi-arid regions of India. The study employs the integrated conceptual framework for the assessment of individual and regional subjective wellbeing developed by Larson in 2009 at Australia. The method integrates three domains i.e. society, natural environment and economic services consisting of 37 wellbeing factors. The original set of 27 revised wellbeing factors identified by John Ward is further revised in current study to make it more region specific. Generally, researchers in past studies select factors of wellbeing based on literature and assign the weights arbitrary. In contrast, the present methodology employs a unique approach by asking respondents to identify the factors most important to their wellbeing and assign weights of importance based on their responses. This method minimises the selection bias and assesses the wellbeing from farmers’ perspectives. The primary objectives of this study are to identify key wellbeing attributes and to assess the influence of groundwater on subjective wellbeing of farmers. Findings from 507 farmers from 11 villages of two watershed areas of Rajasthan and Gujarat, India chosen randomly and were surveyed using a structured face-to-face questionnaire are presented in this paper. The results indicate that significant differences exist in the ranking of wellbeing factors at individual, village and regional levels. The top five most important factors in the study areas include electricity, irrigation infrastructure, housing, land ownership, and income. However, respondents are also most dissatisfied with these factors and correspondingly perceive a high influence of groundwater on them. The results thus indicate that intervention related to improvement of groundwater availability and quality will greatly improve the satisfaction level of well-being factors identified by the farmers.

Keywords: groundwater, farmers, semi-arid regions, subjective wellbeing

Procedia PDF Downloads 261
993 Ultra-High Voltage Energization of Electrostatic Precipitators for Coal Fired Boilers

Authors: Mads Kirk Larsen

Abstract:

Strict air pollution control is today high on the agenda world-wide. By reducing the particular emission, not only the mg/Nm3 will be reduced – also parts of mercury and other hazardous matters attached to the particles will be reduced. Furthermore, it is possible to catch the fine particles (PM2.5). For particulate control, the precipitators are still the preferred choice and much efforts have been done to improve the efficiencies. Many ESP’s have seen electrical upgrading by changing the traditional 1 phase power system into either 3 phase or SMPS (High Frequency) units. However, there exist a 4th type of power supply – the pulse type. This is unfortunately widely unknown, but may be of great benefit to power plants. The FLSmidth type is called COROMAX® and it is a high voltage pulse generator for precipitators using a semiconductor switch operating at medium potential. The generated high voltage pulses have rated amplitude of 80 kV and duration of 75 μs and are superimposed on a variable base voltage of 60 kV rated voltage. Hereby, achieving a peak voltage of 140 kV. COROMAX® has the ability to increase the voltage beyond the natural spark limit inside the precipitator. Voltage levels may often be twice as high after installation of COROMAX®. Hereby also the migration velocity increases and thereby the efficiency. As the collection efficiency is proportional to the voltage peak and mean values, this also increases the collection efficiency of the fine particles where test has shown 80% removal of particles less than 0.07 micron. Another great advantage is the indifference to back-corona. Simultaneously with emission reduction, the power consumption will also be reduced. Another great advantage of the COROMAX® system is that the emission can be improved without the need to change the internal parts or enlarge the ESP. Recently, more than 150 units have been installed in China, where emissions have been reduced to ultra-low levels.

Keywords: eleectrostatic precipitator, high resistivity dust, micropulse energization, particulate removal

Procedia PDF Downloads 303
992 Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft

Authors: Yan Rongxin, Sun Wei, Li Weidan

Abstract:

Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10-1 Pa·m3/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W.

Keywords: leak testing, manned spacecraft, sound transmitting, ultrasonic

Procedia PDF Downloads 332
991 Video Heart Rate Measurement for the Detection of Trauma-Related Stress States

Authors: Jarek Krajewski, David Daxberger, Luzi Beyer

Abstract:

Finding objective and non-intrusive measurements of emotional and psychopathological states (e.g., post-traumatic stress disorder, PTSD) is an important challenge. Thus, the proposed approach here uses Photoplethysmographic imaging (PPGI) applying facial RGB Cam videos to estimate heart rate levels. A pipeline for the signal processing of the raw image has been proposed containing different preprocessing approaches, e.g., Independent Component Analysis, Non-negative Matrix factorization, and various other artefact correction approaches. Under resting and constant light conditions, we reached a sensitivity of 84% for pulse peak detection. The results indicate that PPGI can be a suitable solution for providing heart rate data derived from these indirectly post-traumatic stress states.

Keywords: heart rate, PTSD, PPGI, stress, preprocessing

Procedia PDF Downloads 130
990 Design of a Virtual Instrument (VI) System for Earth Resistivity Survey

Authors: Henry Okoh, Obaro Verisa Omayuli, Gladys A. Osagie

Abstract:

One of the challenges of developing nations is the dearth of measurement devices. Aside the shortage, when available, they are either old or obsolete and also very expensive. When this is the situation, researchers must design alternative systems to help meet the desired needs of academia. This paper presents a design of cost-effective multi-disciplinary virtual instrument system for scientific research. This design was based on NI USB-6255 multifunctional DAQ which was used for earth resistivity measurement in Schlumberger array and the result obtained compared closely with that of a conventional ABEM Terrameter. This instrument design provided a hands-on experience as related to full-waveform signal acquisition in the field.

Keywords: cost-effective, data acquisition (DAQ), full-waveform, multi-disciplinary, Schlumberger array, virtual Instrumentation (VI).

Procedia PDF Downloads 474
989 Evaluation of Low Power Wi-Fi Modules in Simulated Ocean Environments

Authors: Gabriel Chenevert, Abhilash Arora, Zeljko Pantic

Abstract:

The major problem underwater acoustic communication faces is the low data rate due to low signal frequency. By contrast, the Wi-Fi communication protocol offers high throughput but limited operating range due to the attenuation effect of the sea and ocean medium. However, short-range near-field underwater wireless power transfer systems offer an environment where Wi-Fi communication can be effectively integrated to collect data and deliver instructions to sensors in underwater sensor networks. In this paper, low-power, low-cost off-the-shelf Wi-Fi modules are explored experimentally for four selected parameters for different distances between units and water salinities. The results reveal a shorter operating range and stronger dependence on water salinity than reported so far for high-end Wi-Fi modules.

Keywords: Wi-Fi, wireless power transfer, underwater communications, ESP

Procedia PDF Downloads 121
988 A New Approach to the Digital Implementation of Analog Controllers for a Power System Control

Authors: G. Shabib, Esam H. Abd-Elhameed, G. Magdy

Abstract:

In this paper, a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into consideration. On the other hand, the traditional discretization methods such as Tustin’s method is produce satisfactory results only; when the sampling period is sufficiently low.

Keywords: PSS, power system stabilizer PID, proportional-integral-derivative PIM, plant input mapping

Procedia PDF Downloads 510
987 Image Denoising Using Spatial Adaptive Mask Filter for Medical Images

Authors: R. Sumalatha, M. V. Subramanyam

Abstract:

In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR.

Keywords: salt and pepper noise, ASMF, PSNR, MSE

Procedia PDF Downloads 445
986 Determining Coordinates of Ultra-Light Drones Based on the Time Difference of Arrival (TDOA) Method

Authors: Nguyen Huy Hoang, Do Thanh Quan, Tran Vu Kien

Abstract:

The use of the active radar to measure the coordinates of ultra-light drones is frequently difficult due to long-distance, absolutely small radar cross-section (RCS) and obstacles. Since ultra-light drones are usually controlled by the Time Difference of Arrival (RF), the paper proposed a method to measure the coordinates of ultra-light drones in the space based on the arrival time of the signal at receiving antennas and the time difference of arrival (TDOA). The experimental results demonstrate that the proposed method is really potential and highly accurate.

Keywords: ultra-light drone, TDOA, radar cross-section (RCS), RF

Procedia PDF Downloads 211
985 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing

Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao

Abstract:

The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.

Keywords: bearing, force measurement, IoT, strain gauge

Procedia PDF Downloads 151
984 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant

Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal

Abstract:

Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.

Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration

Procedia PDF Downloads 292
983 Femtocell Stationed Flawless Handover in High Agility Trains

Authors: S. Dhivya, M. Abirami, M. Farjana Parveen, M. Keerthiga

Abstract:

The development of high-speed railway makes people’s lives more and more convenient; meanwhile, handover is the major problem on high-speed railway communication services. In order to overcome that drawback the architecture of Long-Term Evolution (LTE) femtocell networks is used to improve network performance, and the deployment of a femtocell is a key for bandwidth limitation and coverage issues in conventional mobile network system. To increase the handover performance this paper proposed a multiple input multiple output (MIMO) assisted handoff (MAHO) algorithm. It is a technique used in mobile telecom to transfer a mobile phone to a new radio channel with stronger signal strength and improved channel quality.

Keywords: flawless handover, high-speed train, home evolved Node B, LTE, mobile femtocell, RSS

Procedia PDF Downloads 477