Search results for: LiDAR processing
2460 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures
Authors: C. Mayr, J. Periya, A. Kariminezhad
Abstract:
In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.Keywords: machine learning, radar, signal processing, autonomous driving
Procedia PDF Downloads 2452459 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1212458 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 5542457 A New Approach for Assertions Processing during Assertion-Based Software Testing
Authors: Ali M. Alakeel
Abstract:
Assertion-based software testing has been shown to be a promising tool for generating test cases that reveal program faults. Because the number of assertions may be very large for industry-size programs, one of the main concerns to the applicability of assertion-based testing is the amount of search time required to explore a large number of assertions. This paper presents a new approach for assertions exploration during the process of Assertion-Based software testing. Our initial exterminations with the proposed approach show that the performance of Assertion-Based testing may be improved, therefore, making this approach more efficient when applied on programs with large number of assertions.Keywords: software testing, assertion-based testing, program assertions, generating test
Procedia PDF Downloads 4602456 Performance Analysis of ERA Using Fuzzy Logic in Wireless Sensor Network
Authors: Kamalpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the main limitation is generally inimitable energy consumption during processing of the sensor nodes. Cluster head (CH) election is one of the main issues that can reduce the energy consumption. Therefore, discovering energy saving routing protocol is the focused area for research. In this paper, fuzzy-based energy aware routing protocol is presented, which enhances the stability and network lifetime of the network. Fuzzy logic ensures the well-organized selection of CH by taking four linguistic variables that are concentration, energy, centrality, and distance to base station (BS). The results show that the proposed protocol shows better results in requisites of stability and throughput of the network.Keywords: ERA, fuzzy logic, network model, WSN
Procedia PDF Downloads 2792455 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination
Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa
Abstract:
Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes
Procedia PDF Downloads 2782454 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques
Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas
Abstract:
This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.Keywords: hit song science, product life cycle, machine learning, radio
Procedia PDF Downloads 1552453 Refining Sexual Assault Treatment: Recovered Survivors and Expert Therapists Concur on Effective Therapy Components
Authors: Avigail Moor, Michal Otmazgin, Hagar Tsiddon, Avivit Mahazri
Abstract:
The goal of the present study was to refine sexual assault therapy through the examination of the level of agreement between survivor and therapist assessments of key recovery-promoting therapeutic interventions. This is the first study to explore the level of agreement between those who partake in the treatment process from either position. Semi structured interviews were conducted in this qualitative study with 10 survivors and 10 experienced therapists. The results document considerable concurrence between them regarding relational and trauma processing treatment components alike. Together, these reports outline key effective interventions, both common and specific in nature, concomitantly supported by both groups.Keywords: sexual assault, rape treatment, therapist training, psychotherapy
Procedia PDF Downloads 572452 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 1532451 A Multi Function Myocontroller for Upper Limb Prostheses
Authors: Ayad Asaad Ibrahim
Abstract:
Myoelectrically controlled prostheses are becoming more and more popular, for below-elbow amputation, the wrist flexor and extensor muscle group, while for above-elbow biceps and triceps brachii muscles are used for control of the prosthesis. A two site multi-function controller is presented. Two stainless steel bipolar electrode pairs are used to monitor the activities in both muscles. The detected signals are processed by new pre-whitening technique to identify the accurate tension estimation in these muscles. These estimates will activate the relevant prosthesis control signal, with a time constant of 200 msec. It is ensured that the tension states in the control muscle to activate a particular prosthesis function are similar to those used to activate normal functions in the natural hand. This facilitates easier training.Keywords: prosthesis, biosignal processing, pre-whitening, myoelectric controller
Procedia PDF Downloads 3632450 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted
Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova
Abstract:
The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.Keywords: communication protocol, transmission optimization, data acquisition, system architecture
Procedia PDF Downloads 5182449 Automated Resin Transfer Moulding of Carbon Phenolic Composites
Authors: Zhenyu Du, Ed Collings, James Meredith
Abstract:
The high cost of composite materials versus conventional materials remains a major barrier to uptake in the transport sector. This is exacerbated by a shortage of skilled labour which makes the labour content of a hand laid composite component (~40 % of total cost) an obvious target for reduction. Automation is a method to remove labour cost and improve quality. This work focuses on the challenges and benefits to automating the manufacturing process from raw fibre to trimmed component. It will detail the experimental work required to complete an automation cell, the control strategy used to integrate all machines and the final benefits in terms of throughput and cost.Keywords: automation, low cost technologies, processing and manufacturing technologies, resin transfer moulding
Procedia PDF Downloads 2922448 A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 1002447 Application of Scanning Electron Microscopy and X-Ray Evaluation of the Main Digestion Methods for Determination of Macroelements in Plant Tissue
Authors: Krasimir I. Ivanov, Penka S. Zapryanova, Stefan V. Krustev, Violina R. Angelova
Abstract:
Three commonly used digestion methods (dry ashing, acid digestion, and microwave digestion) in different variants were compared for digestion of tobacco leaves. Three main macroelements (K, Ca and Mg) were analysed using AAS Spectrometer Spectra АА 220, Varian, Australia. The accuracy and precision of the measurements were evaluated by using Polish reference material CTR-VTL-2 (Virginia tobacco leaves). To elucidate the problems with elemental recovery X-Ray and SEM–EDS analysis of all residues after digestion were performed. The X-ray investigation showed a formation of KClO4 when HClO4 was used as a part of the acids mixture. The use of HF at Ca and Mg determination led to the formation of CaF2 and MgF2. The results were confirmed by energy dispersive X-ray microanalysis. SPSS program for Windows was used for statistical data processing.Keywords: digestion methods, plant tissue, determination of macroelements, K, Ca, Mg
Procedia PDF Downloads 3172446 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions
Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev
Abstract:
Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.Keywords: air-electronic, geometrical parameters, improvement, measurement systems
Procedia PDF Downloads 2262445 Off-Grid Sparse Inverse Synthetic Aperture Imaging by Basis Shift Algorithm
Authors: Mengjun Yang, Zhulin Zong, Jie Gao
Abstract:
In this paper, a new and robust algorithm is proposed to achieve high resolution for inverse synthetic aperture radar (ISAR) imaging in the compressive sensing (CS) framework. Traditional CS based methods have to assume that unknown scatters exactly lie on the pre-divided grids; otherwise, their reconstruction performance dropped significantly. In this processing algorithm, several basis shifts are utilized to achieve the same effect as grid refinement does. The detailed implementation of the basis shift algorithm is presented in this paper. From the simulation we can see that using the basis shift algorithm, imaging precision can be improved. The effectiveness and feasibility of the proposed method are investigated by the simulation results.Keywords: ISAR imaging, sparse reconstruction, off-grid, basis shift
Procedia PDF Downloads 2652444 A Case from China on the Situation of Knowledge Management in Government
Authors: Qiaoyun Yang
Abstract:
Organizational scholars have paid enormous attention on how local governments manage their knowledge during the past two decades. Government knowledge management (KM) research recognizes that the management of knowledge flows and networks is critical to reforms on government service efficiency and the effect of administration. When dealing with complex affairs, all the limitations resulting from a lack of KM concept, processes and technologies among all the involved organizations begin to be exposed and further compound the processing difficulty of the affair. As a result, the challenges for individual or group knowledge sharing, knowledge digging and organizations’ collaboration in government's activities are diverse and immense. This analysis presents recent situation of government KM in China drawing from a total of more than 300 questionnaires and highlights important challenges that remain. The causes of the lapses in KM processes within and across the government agencies are discussed.Keywords: KM processes, KM technologies, government, KM situation
Procedia PDF Downloads 3612443 Integrated Gesture and Voice-Activated Mouse Control System
Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant
Procedia PDF Downloads 102442 Orange Leaves and Rice Straw on Methane Emission and Milk Production in Murciano-Granadina Dairy Goat Diet
Authors: Tamara Romero, Manuel Romero-Huelva, Jose V. Segarra, Jose Castro, Carlos Fernandez
Abstract:
Many foods resulting from processing and manufacturing end up as waste, most of which is burned, dumped into landfills or used as compost, which leads to wasted resources, and environmental problems due to unsuitable disposal. Using residues of the crop and food processing industries to feed livestock has the advantage to obviating the need for costly waste management programs. The main residue generated in citrus cultivations and rice crop are pruning waste and rice straw, respectively. Within Spain, the Valencian Community is one of the world's oldest citrus and rice production areas. The objective of this experiment found out the effects of including orange leaves and rice straw as ingredients in the concentrate diets of goats, on milk production and methane (CH₄) emissions. Ten Murciano-Granadina dairy goats (45 kg of body weight, on average) in mid-lactation were selected in a crossover design experiment, where each goat received two treatments in 2 periods. Both groups were fed with 1.7 kg pelleted mixed ration; one group (n= 5) was a control (C) and the other group (n= 5) used orange leaves and rice straw (OR). The forage was alfalfa hay, and it was the same for the two groups (1 kg of alfalfa was offered by goat and day). The diets employed to achieve the requirements during lactation period for caprine livestock. The goats were allocated to individual metabolism cages. After 14 days of adaptation, feed intake and milk yield were recorded daily over a 5 days period. Physico-chemical parameters and somatic cell count in milk samples were determined. Then, gas exchange measurements were recorded individually by an open-circuit indirect calorimetry system using a head box. The data were analyzed by mixed model with diet and digestibility as fixed effect and goat as random effect. No differences were found for dry matter intake (2.23 kg/d, on average). Higher milk yield was found for C diet than OR (2.3 vs. 2.1 kg/goat and day, respectively) and, greater milk fat content was observed for OR than C (6.5 vs. 5.5%, respectively). The cheese extract was also greater in OR than C (10.7 vs. 9.6%). Goats fed OR diet produced significantly fewer CH₄ emissions than C diet (27 vs. 30 g/d, respectively). These preliminary results (LIFE Project LOWCARBON FEED LIFE/CCM/ES/000088) suggested that the use of these waste by-products was effective in reducing CH₄ emission without detrimental effect on milk yield.Keywords: agricultural waste, goat, milk production, methane emission
Procedia PDF Downloads 1482441 Robust Noisy Speech Identification Using Frame Classifier Derived Features
Authors: Punnoose A. K.
Abstract:
This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering
Procedia PDF Downloads 1272440 Thermoplastic Composites with Reduced Discoloration and Enhanced Fire-Retardant Property
Authors: Peng Cheng, Liqing Wei, Hongyu Chen, Ruomiao Wang
Abstract:
This paper discusses a light-weight reinforced thermoplastic (LWRT) composite with superior fire retardancy. This porous LWRT composite is manufactured using polyolefin, fiberglass, and fire retardant additives via a wet-lay process. However, discoloration of the LWRT can be induced by various mechanisms, which may be a concern in the building and construction industry. It is commonly understood that discoloration is strongly associated with the presence of phenolic antioxidant(s) and NOx. The over-oxidation of phenolic antioxidant(s) is probably the root-cause of the discoloration (pinking/yellowing). Hanwha Azdel, Inc. developed a LWRT with fire-retardant property of ASTM E84-Class A specification, as well as negligible discoloration even under harsh conditions. In addition, this thermoplastic material is suitable for secondary processing (e.g. compression molding) if necessary.Keywords: discoloration, fire-retardant, thermoplastic composites, wet-lay process
Procedia PDF Downloads 1252439 Numerical Simulation and Laboratory Tests for Rebar Detection in Reinforced Concrete Structures using Ground Penetrating Radar
Authors: Maha Al-Soudani, Gilles Klysz, Jean-Paul Balayssac
Abstract:
The aim of this paper is to use Ground Penetrating Radar (GPR) as a non-destructive testing (NDT) method to increase its accuracy in recognizing the geometric reinforced concrete structures and in particular, the position of steel bars. This definition will help the managers to assess the state of their structures on the one hand vis-a-vis security constraints and secondly to quantify the need for maintenance and repair. Several configurations of acquisition and processing of the simulated signal were tested to propose and develop an appropriate imaging algorithm in the propagation medium to locate accurately the rebar. A subsequent experimental validation was used by testing the imaging algorithm on real reinforced concrete structures. The results indicate that, this algorithm is capable of estimating the reinforcing steel bar position to within (0-1) mm.Keywords: GPR, NDT, Reinforced concrete structures, Rebar location.
Procedia PDF Downloads 5042438 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron
Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava
Abstract:
Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation
Procedia PDF Downloads 1232437 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 862436 Reduction of Speckle Noise in Echocardiographic Images: A Survey
Authors: Fathi Kallel, Saida Khachira, Mohamed Ben Slima, Ahmed Ben Hamida
Abstract:
Speckle noise is a main characteristic of cardiac ultrasound images, it corresponding to grainy appearance that degrades the image quality. For this reason, the ultrasound images are difficult to use automatically in clinical use, then treatments are required for this type of images. Then a filtering procedure of these images is necessary to eliminate the speckle noise and to improve the quality of ultrasound images which will be then segmented to extract the necessary forms that exist. In this paper, we present the importance of the pre-treatment step for segmentation. This work is applied to cardiac ultrasound images. In a first step, a comparative study of speckle filtering method will be presented and then we use a segmentation algorithm to locate and extract cardiac structures.Keywords: medical image processing, ultrasound images, Speckle noise, image enhancement, speckle filtering, segmentation, snakes
Procedia PDF Downloads 5302435 Digital Recording System Identification Based on Audio File
Authors: Michel Kulhandjian, Dimitris A. Pados
Abstract:
The objective of this work is to develop a theoretical framework for reliable digital recording system identification from digital audio files alone, for forensic purposes. A digital recording system consists of a microphone and a digital sound processing card. We view the cascade as a system of unknown transfer function. We expect same manufacturer and model microphone-sound card combinations to have very similar/near identical transfer functions, bar any unique manufacturing defect. Input voice (or other) signals are modeled as non-stationary processes. The technical problem under consideration becomes blind deconvolution with non-stationary inputs as it manifests itself in the specific application of digital audio recording equipment classification.Keywords: blind system identification, audio fingerprinting, blind deconvolution, blind dereverberation
Procedia PDF Downloads 3042434 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia
Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar
Abstract:
Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition
Procedia PDF Downloads 2202433 Optimized Approach for Secure Data Sharing in Distributed Database
Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal
Abstract:
In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.Keywords: ER-schema, electronic record, P2P framework, API, query formulation
Procedia PDF Downloads 3332432 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels
Authors: Niharika Kaushal, Minni Singh
Abstract:
Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals
Procedia PDF Downloads 932431 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 348