Search results for: microencapsulated phase change materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16426

Search results for: microencapsulated phase change materials

3196 Statistical Analysis to Compare between Smart City and Traditional Housing

Authors: Taha Anjamrooz, Sareh Rajabi, Ayman Alzaatreh

Abstract:

Smart cities are playing important roles in real life. Integration and automation between different features of modern cities and information technologies improve smart city efficiency, energy management, human and equipment resource management, life quality and better utilization of resources for the customers. One of difficulties in this path, is use, interface and link between software, hardware, and other IT technologies to develop and optimize processes in various business fields such as construction, supply chain management and transportation in parallel to cost-effective and resource reduction impacts. Also, Smart cities are certainly intended to demonstrate a vital role in offering a sustainable and efficient model for smart houses while mitigating environmental and ecological matters. Energy management is one of the most important matters within smart houses in the smart cities and communities, because of the sensitivity of energy systems, reduction in energy wastage and maximization in utilizing the required energy. Specially, the consumption of energy in the smart houses is important and considerable in the economic balance and energy management in smart city as it causes significant increment in energy-saving and energy-wastage reduction. This research paper develops features and concept of smart city in term of overall efficiency through various effective variables. The selected variables and observations are analyzed through data analysis processes to demonstrate the efficiency of smart city and compare the effectiveness of each variable. There are ten chosen variables in this study to improve overall efficiency of smart city through increasing effectiveness of smart houses using an automated solar photovoltaic system, RFID System, smart meter and other major elements by interfacing between software and hardware devices as well as IT technologies. Secondly to enhance aspect of energy management by energy-saving within smart house through efficient variables. The main objective of smart city and smart houses is to reproduce energy and increase its efficiency through selected variables with a comfortable and harmless atmosphere for the customers within a smart city in combination of control over the energy consumption in smart house using developed IT technologies. Initially the comparison between traditional housing and smart city samples is conducted to indicate more efficient system. Moreover, the main variables involved in measuring overall efficiency of system are analyzed through various processes to identify and prioritize the variables in accordance to their influence over the model. The result analysis of this model can be used as comparison and benchmarking with traditional life style to demonstrate the privileges of smart cities. Furthermore, due to expensive and expected shortage of natural resources in near future, insufficient and developed research study in the region, and available potential due to climate and governmental vision, the result and analysis of this study can be used as key indicator to select most effective variables or devices during construction phase and design

Keywords: smart city, traditional housing, RFID, photovoltaic system, energy efficiency, energy saving

Procedia PDF Downloads 99
3195 A Study of Relationship between Leadership Style and Organisational Culture in Private Organisations

Authors: Shreya Sirohi, Vineeta Sirohi

Abstract:

In the 21st century, the nature of work has become quite complex and dynamic, and in response to this, the organizational culture continues to change and develop new perspectives. Organizational culture and leadership are important elements of any organization. Organization’s performance and success to a large extent, depend upon these two factors. The ability of a leader lies in confronting with the challenge of evolving and adapting the culture of the organization as per the situational demands. Leadership and organizational culture are conceptually intertwined. Leadership is a key ingredient for the successful transformation of any organization, and a favorable organizational culture helps to motivate the employees towards their work. Organizational culture and leadership style plays a crucial role in achieving the specified objectives of an organization. The harmony between culture and leader within organization undoubtedly affects relationships, processes, and employee performance. The present investigation aimed to study the Leadership style and Organisational Culture of private organizations and the relationship between the two. The study was carried out on a sample of 100 employees from five private organizations located in the cities of Gurgaon and Delhi in India. The data was collected by employing organisational culture profile and multifactor leadership questionnaire. The findings of the study indicate that the selected organizations had dominant transformation leadership style, whereas the organizational culture varied from one organization to another. However, technocratic culture was found to be prominent, followed by entrepreneurial organizational culture. A low positive correlation was found between leadership style and organizational culture. The transformational leaders have a positive and significant relationship with employee’s satisfaction, productivity, and organization’s culture. The leaders practicing transformational leadership style inspire their followers, are innovative and are aware of their needs as well as of their followers. Such leadership style has a positive impact both on employees and working culture. Employees of such organization are able to come up with innovative ideas and are efficient in handling situations and making effective decisions. However, low correlation is self indicative of the fact that a single leadership style or a single culture type alone cannot contribute solely towards the growth of an organization. There is a need to blend the culture types and leadership styles suiting the needs of the organization. Organisational culture represents the deeper values and beliefs of the employees and influences organizational performance; hence, the leader has a crucial role to play in creating and managing organizational culture in aligning to the requirements of the present era of competitiveness, globalization and technological advancement.

Keywords: leadership style, organizational culture, technocratic, transformational

Procedia PDF Downloads 123
3194 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver

Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko

Abstract:

The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines

Procedia PDF Downloads 321
3193 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 145
3192 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 50
3191 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.

Keywords: cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam

Procedia PDF Downloads 302
3190 Hemolytic Anemia Monitored After Post-COVID-19 Infection: Changes Related to General Blood Parameters

Authors: Akbarov Elbek Elmurodovich

Abstract:

Introduction: We are analyzing the topic of hemolytic anemia observed in patients after COVID-19 infection. The purpose of this research is to investigate the development of hemolytic anemia, identify its causes, and study treatment methods. Objective and Task: The goal of our research is to analyze the changes in blood occurring after COVID-19 infection and study the development of hemolytic anemia. Our main task is to analyze the results and assess subsequent changes in patients. Materials and Methods: The study was conducted among patients treated with a diagnosis of COVID-19 in the Department of Infectious Diseases at the TTA 1-Multiprofile Clinic from March to August 2023. Out of the 32 patients included, 16 were female, and 16 were male. Monitoring Blood Coagulation in Patients: The hemoglobin level of patients upon admission was initially measured using the URITEST-150 analyzer. The average for women was 110 g/l, and for men was 120 g/l. Over the course of 3 months, a decrease was observed: an average of 72 g/l in women (a decrease of up to 35%) and 84 g/l in men (a decrease of up to 30%). In the next 2 months, the positive dynamics of hemoglobin levels were observed, with an average increase to 93 g/l in women (>28%) and 112 g/l in men (>25%). Research Results: Hemolytic anemia developed in men within 5 months, reaching up to 112 g/l. In women, this process required a longer period, with the last month of observation (6 months) showing that women reached levels of up to 112 g/l, similar to men. Conclusion: Hemolytic anemia observed in patients after COVID-19 infection was monitored for 6 months (5 months in men, 6 months in women), reaching up to 112 g/l. The first 3 months after contracting COVID showed the period of development of anemia, and the subsequent 3 months indicated a stabilization period in patients.

Keywords: COVID, anemia, hemoglobin, tma, virus, viral infrection

Procedia PDF Downloads 47
3189 Poetics of Labor: A Study of Selected Contemporary Australian Aboriginal and Immigrant Poets

Authors: Nabeel Mohammed Ali

Abstract:

Background and significance of the study: This study focuses on the experiences, perspectives, and issues of the working-class Aboriginals and immigrants in Australia. In addition to dealing with their lives, struggles, and aspirations of working-class people, poetry of labor presents an insight into a neglected literary writing that goes beyond the social discourse of class distinction. In this contemporary context, it explores a broader spectrum of challenges and experiences, such as the complexities of modern labor, immigration, indigenous rights, social justice, multiculturalism, economic inequality, advocating for workers' rights and labor movements, the impact of globalization on local industries, and the evolution of labor in the digital age. Aims of the Study: The study will try to answer the following questions: What insights does poetics of labor provide to affect the literary creation of poetry at the time, as well as whether it can create a change in the social fabric of Australian diversity? What are the main themes and issues that Aboriginal and immigrant poets address in their works? How do they reflect the realities and challenges of working-class people in Australia? How do they use language, form, and style to convey their messages and emotions? How do the poets engage with and critique the dominant narratives and ideologies of Australian society and culture? How do they challenge or resist the stereotypes, prejudices, and discrimination that they face? And how do they show solidarity or empathy with others who share similar struggles or aspirations? Methodology: The study will utilize traditional Marxist paradigms to analyze the poetry of the selected poets in the context of the evolving sociopolitical landscape of the 21st century. The Neo-Marxist literary criticism is used as a theoretical tool to analyze the texts. The concept of Power dynamics to analyze the intersectionality of race, labor and class. Findings: The poetry of contemporary Australian Aboriginal and immigrant poets labor, represents a critical, yet under-explored, discussion of the intersection of labor, class, and a multicultural identity. The study will deal with the poetry of the Aboriginal poet Ali Cobby Eckermann (1963- ) and the immigrant Chinese poet Ouyang Yu ( 1955- ).

Keywords: aboriginals, immigrants, Australia, working-class, Ali eckermann, ouyang Yu

Procedia PDF Downloads 19
3188 Blister Formation Mechanisms in Hot Rolling

Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe

Abstract:

Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.

Keywords: FEG-SEM, nucleation, oxide morphology, surface defect

Procedia PDF Downloads 128
3187 Effect of Acid and Alkali Treatment on Physical and Surface Charge Properties of Clayey Soils

Authors: Nikhil John Kollannur, Dali Naidu Arnepalli

Abstract:

Most of the surface related phenomena in the case of fine-grained soil are attributed to their unique surface charge properties and specific surface area. The temporal variations in soil behavior, to some extent, can be credited to the changes in these properties. Among the multitude of factors that affect the charge and surface area of clay minerals, the inherent system chemistry occupies the cardinal position. The impact is more profound when the chemistry change is manifested in terms of the system pH. pH plays a significant role by modifying the edge charges of clay minerals and facilitating mineral dissolution. Hence there is a need to address the variations in physical and charge properties of fine-grained soils treated over a range of acidic as well as alkaline conditions. In the present study, three soils (two soils commercially procured and one natural soil) exhibiting distinct mineralogical compositions are subjected to different pH environment over a range of 2 to 13. The soil-solutions prepared at a definite liquid to solid ratio are adjusted to the required pH value by adding measured quantities of 0.1M HCl/0.1M NaOH. The studies are conducted over a range of interaction time, varying from 1 to 96 hours. The treated soils are then analyzed for their physical properties in terms of specific surface area and particle size characteristics. Further, modifications in surface morphology are evaluated from scanning electron microscope (SEM) imaging. Changes in the surface charge properties are assessed in terms of zeta potential measurements. Studies show significant variations in total surface area, probably because of the dissolution of clay minerals. This observation is further substantiated by the morphological analysis with SEM imaging. The zeta potential measurements on soils indicate noticeable variation upon pH treatment, which is partially ascribed to the modifications in the pH-dependant edge charges and partially due to the clay mineral dissolution. The results provide valuable insight into the role of pH in a clay-electrolyte system upon surface related phenomena such as species adsorption, fabric modification etc.

Keywords: acid and alkali treatment, mineral dissolution , specific surface area, zeta potential

Procedia PDF Downloads 171
3186 Intellectual Property Rights on Plant Materials in Colombia: Legal Harmonization for Food Sovereignty

Authors: Medina Muñoz Lina Rocio

Abstract:

The purpose of this paper is to examine the debates related to the harmonization of intellectual property rights on plant material, the corporate governance of the seed market in Colombia and the political economy of seeds defended by indigenous communities. In recent years, the commodification of seeds through genetic engineering and political intellectual property, codified as a result of the implementation of the Free Trade Agreement with the United States, has come into conflict with the traditional production of seeds carried out by small farmers and indigenous populations. Agricultural and food practices. In order to understand the ontological dimension of conflicts over seeds, it is necessary to analyze the conceptions that indigenous communities have about good, which they consider a common element of their social organization and define them as sentient beings. Therefore, through a multiple approach, in which the intellectual property policy, the ecological aspects of seed production and the political ontology of indigenous communities are interwoven, I intend to present the discussions held by the actors involved and present the strategies of small producers to protect their interests. It demonstrates that communities have begun to organize social movements to protect such interests and have questioned the philosophy of GM corporate agriculture as a pro-life movement. Finally, it is argued that the conservation of 'traditional' seeds of the communities is an effective strategy to support their struggles for territory, identity, food sovereignty and self-determination.

Keywords: intellectual property rights, intellectual property, traditional knowledge, food safety

Procedia PDF Downloads 56
3185 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete

Authors: Anil Nis, Nilufer Ozyurt Zihnioglu

Abstract:

The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.

Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber

Procedia PDF Downloads 210
3184 Analysis on the Effectiveness of the "Three-Exemption" Policy Aimed at Promoting Unpaid Blood Donation in Zhejiang

Authors: Ni Tang, Jinping Zhang

Abstract:

An effective and sustainable volunteer team is needed to create a more available blood supply system. In order to promote the sustainable development of blood donation in Zhejiang Province, China, a “three-exemption” policy was proposed in 2014: blood donors who received the National Award for unpaid blood donation may government-invested and funded parks, scenic spots and other places for free, visit non-profit medical institutions for free outpatient fees, and be exempted from urban public transportation fees. As the policy has been in place for seven years, this study evaluated the effectiveness of the policy by comparing the increasing rate of blood donation in Hangzhou (capital city of Zhejiang) before and after the policy using the intermittent time series analysis. The blood donation in Anhui, a Province near Zhejiang, was also compared as a negative control. Blood donation data from 2012 to 2018 were obtained from the donation center's official websites. The increasing rate of blood donation volume since 2012 in Hangzhou is 34.37 units/month, and after 2014, the increasing rate additionally increases 71.69 (p=0.1442), which indicating a statistically non-significant change after the policy. While as a negative control, in Anhui, the increasing rate of blood donation volume since 2012 is -163.3 unit/month, and the increasing rate additionally increases 167.2 (p=5.63e-07) after 2014. The result shows that the three-exemption policy had a certain level of impact on encouraging volunteers to donate blood, but the effect was not substantial. One possible reason for the ineffectiveness of the policy might be a lack of public awareness of the policy. On the other hand, this policy mainly waived unnecessary life expenses, such as fares and scenic entrance fees, and requires a certain number of blood donations, registration procedures, and blood donation certificates. Perhaps, reducing life-related expenses such as oil, water and electricity, could better attract people to participate in blood donation. This current study on the three-exemption policy provides a new direction for promoting people's blood donation. Incentive policies may require greater publicity and incentives. In order to better ensure the operation of the blood donation system, other policies, especially incentive policies, should be further explored.

Keywords: blood donation, policy, Zhejiang, unpaid blood donation, three-exemption policy

Procedia PDF Downloads 195
3183 The Effect of Rosella Flower Flour (Hibiscus sabdariffa L.) Utilization in Ration on Performance of Broiler Chicken

Authors: Nurlisa Uke Dessy, Dwi Septian Erwinsyah, Zuprizal

Abstract:

This experiment was aimed to investigate the effect of rosella flower flour in diet on broiler chicken Performace. The materials used in this experiment were 72 broiler chickens and were divided into six treatments, those were R0 = without rosella flower flour addition, R1 = 0.5% rosella flower flour addition, R2 = 1.0% rosella flower flour addition, R3 = 1.5% rosella flower flour addition, R4 = 2.0% rosella flower flour addition, and R5 = 2.5% rosella flower flour addition. Each treatment consisted of three replications and each replication consisted of four broiler chickens. This research took 35 days to collect the data. Parameters measured were feed intake, rosella flower flour consumption, body weight gain, feed conversion and mortality. The collected data were analyzed using Completely Randomized Design (CRD) and the differences of mean were tested by Duncan’s New Multiple Range Test (DMRT). The result showed the average of feed consumption were 2154; 2154; 2034; 2154; 2034 and 2154 g/bird on broiler chicken that were feed respectively by 0.0; 0.5; 1.0; 1.5; 2.0; and 2.5% rosella flower flour level. The average consumptions of rosella flower flour respectively were 0; 10.77; 20.34; 32.31; 40.68; and 53.85 g/bird. The body weight gains were 1263.33±70.40; 1422.42±36.33; 1443.75±30.00; 1387.42± 35.30; 1411.17±29.58 and 1457.08±40.75 g/bird. Feed conversion results were 1.71±0.94; 1.51±0.37; 1.47±0.62; 1.55±0.40; 1.53±0.30 and 1.48±0.40. The conclusion of the experiment was known that using rosella flower flour until 2.5% level in diet was able to increase broiler chicken performance, and also to decrease broiler chicken feed conversion.

Keywords: feed intake, consumptions rosella flower flour, broiler chickens, body weight gain, feed conversion

Procedia PDF Downloads 613
3182 Potential of Detailed Environmental Data, Produced by Information and Communication Technology Tools, for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility

Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić

Abstract:

Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.

Keywords: information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes

Procedia PDF Downloads 121
3181 Ethnomedicinal Assets of Plants Collected from Nasarawa State, North Central Nigeria

Authors: Enock E. Goler, Emmanuel H. Kwon-Ndung, Gbenga F. Akomolafe, Terna T. Paul, Markus Musa, Joshua I. Waya, James H. Okogbaa

Abstract:

An ethno-medicinal survey of plants used in treating various diseases and ailments was carried out in the study area of Nasarawa State, North Central Nigeria to obtain information on their uses and potentials. The ethno-medicinal survey was administered through structured questionnaires among local inhabitants from areas with high plant density and diversity within the various Local Government Areas of the State. A total of 84 (Eighty four) plant species belonging to 45 (Forty five) families were found to be useful in treatment of various ailments such as diabetes, measles, fever, asthma, jaundice, pneumonia, sexually transmitted diseases (STDs), aches, diarrhea, cough, arthritis, yellow fever, typhoid, erectile dysfunction and excessive bleeding. Different parts of the plant such as the roots, leaves and stems are used in preparing herbal remedies which could be from dry or freshly collected plants. The main methods of preparation are decoction or infusion, while in some cases the plant parts used are consumed directly. Residents in the study areas find the herbal remedy cheaper and more accessible and claimed that there are no side effects compared to orthodox medicine. This study has confirmed the need towards the conscious conservation of plant genetic resources in order to ensure sustained access to these ethno-medicinal plant materials.

Keywords: ethno-medicinal, Nasarawa, plants, survey

Procedia PDF Downloads 267
3180 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 181
3179 Anti-inflammatory and Antioxidant Activity of Heliotropium indicum Linn. Used for Cancer Patients Treatment

Authors: Jitpisute Chunthorng-Orn, Thana Juckmeta, Onmanee Prajuabjinda, Arunporn Itharat

Abstract:

Inflammation and oxidative stress work together to produce symptoms in cancer patients. The whole part of it is used as a preparation to treat cancer patients in Khampramong temple which has been a place of treatment and palliative care for cancer patients since 2005. Thus, the objective of this study was to investigate anti-inflammatory and antioxidant activities of Heliotropium indicum extracts. Dried plant materials were extracted in a similar manner to those practiced by the Khampramong Temple i.e. maceration in 95% ethanol and boiling in water. For anti-inflammation activity, both extracts were tested for suppression of nitric oxide (NO) production in LPS-induced RAW 264.7 cells. They were also tested for antioxidant activity by DPPH radical scavenging assay. This study found that the ethanolic extract of Heliotropium indicum exhibited higher inhibitory activity of NO release than Indomethacin as a positive control (IC50 value of 24.17±2.12 and 34.67±6.23 μg/mL, respectively). For DPPH radical scavenging assay, the ethanolic extract also exhibited antioxidant activity but less than BHT as a antioxidant compound (EC50 values = 28.91±4.26 and 13.08±0.29 μg/mL, respectively). In contrast, its water extract had no inhibitory activity on NO release (IC50 > 100 μg/mL) and no inhibitory activity on DPPH radicals (EC50 values > 100 μg/mL). The results showed correlation between anti-inflammation and antioxidant activity and these results also support using this plant to treat cancer patients.

Keywords: Heliotropium indicum, RAW 264.7, DPPH, Khampramong Temple

Procedia PDF Downloads 522
3178 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films

Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji

Abstract:

Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.

Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction

Procedia PDF Downloads 451
3177 A Case Study of Building Behavior Damaged during 26th Oct, 2015 Earthquake in Northern Areas of Pakistan

Authors: Rahmat Ali, Amjad Naseer, Abid A. Shah

Abstract:

This paper is an attempt to presents the performance of building observed during 26th Oct, 2015 earthquake in District Swat and Shangla region. Most of the buildings in the earthquake hit areas were built with Rubble stone masonry, dress Stone Masonry, brick masonry with and without RC column, Brick masonry with RC beams and column, Block Masonry with and without RC column. It was found that most of the buildings were built without proper supervision and without following any codes. A majority of load bearing masonry walls were highly affected during the earthquake. The load bearing walls built with rubble stone masonry were collapsed resulting huge damages and loss of property and life. Load bearing bricks masonry walls were also affected in most of the region. In some residential buildings the bricks were crushed in a single brick walls. Severe cracks were also found in double brick masonry walls. In RC frame structure beams and columns were also seriously affected. A majority of building structures were non-engineered. Some buildings designed by unskilled local consultants were also affected during the earthquake. Several architectural and structural mistakes were also found in various buildings designed by local consultant. It was found that the structures were collapsed prematurely either because of unskillful labor and using substandard materials or avoiding delicate repair, maintenance, and health monitoring activities because of lack of available sophisticated technology in our country.

Keywords: cracks, collapse, earthquake, masonry, repair

Procedia PDF Downloads 480
3176 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University

Authors: Karishma Kashyap, Subha D. Parida

Abstract:

Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performance

Keywords: building optimization, green building, post occupancy evaluation, stakeholder engagement

Procedia PDF Downloads 341
3175 Clonal Dissemination of Pseudomonas aeruginosa Isolates in Kermanshah Hospitals, West of Iran

Authors: Alisha Akya, Afsaneh salami

Abstract:

Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen associated with nosocomial infections. One of the major concerns for the treatment of P. aeruginosa infections is its resistant to a variety of antibiotics. The purpose of this study was to assess the dissemination of p. aeruginosa isolates obtained from major hospitals in Kermanshah, west of Iran. Materials and Methods: Antibiotic susceptibility testing was performed using the minimal inhibitory concentrations. Mettalo-beta-lactamase was investigated using the double disk diffusion (DDST) test and PCR. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE). Results: The 60 P. aeruginosa isolates, 30 (50%) were resistant to gentamicin, 38 (63/3%) to piperacilin, 42 (70%) to ceftazidime, and 45 (75%) to cefepime. Twenty-nine (48/3%) isolates were MBLs producer based on the DDST test. Five (8/3%) isolates were positive for VIM gene and 4 of them were from burn specimens. PFGE analysis among MBLs producers revealed 12 distinct genotype patterns. A pattern covering the highest number of strains was determined as the dominant clone. Conclusions: Our study showed that P. aeruginosa strains can be spread between patients in hospitals or acquired from different environmental sources. P. aeruginosa isolates were highly resistant to antibiotics and, therefore, the susceptibility of isolates to antibiotics should be tested before treatment. Given the clinical significance of MBLs producing isolates, identification of these organisms is essential in the hospitals in order to get a better therapeutic response and control of bacterial dissemination.

Keywords: clonal dissemination, mettalo-beta-lactamase, Pseudomonas aeruginosa, PFGE

Procedia PDF Downloads 310
3174 An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis

Authors: D. Karibasavaraja, Ramesh M.R., Sufiyan Ahmed, Noyonika M.R., Sameeksha A. V., Mamatha J., Samiksha S. Urs

Abstract:

This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites.

Keywords: toughness, fracture, impact strength, banana fibers, pineapple fibers, tensile strength, SEM analysis

Procedia PDF Downloads 130
3173 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction

Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter

Abstract:

Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.

Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink

Procedia PDF Downloads 521
3172 Application Reliability Method for the Analysis of the Stability Limit States of Large Concrete Dams

Authors: Mustapha Kamel Mihoubi, Essadik Kerkar, Abdelhamid Hebbouche

Abstract:

According to the randomness of most of the factors affecting the stability of a gravity dam, probability theory is generally used to TESTING the risk of failure and there is a confusing logical transition from the state of stability failed state, so the stability failure process is considered as a probable event. The control of risk of product failures is of capital importance for the control from a cross analysis of the gravity of the consequences and effects of the probability of occurrence of identified major accidents and can incur a significant risk to the concrete dam structures. Probabilistic risk analysis models are used to provide a better understanding the reliability and structural failure of the works, including when calculating stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of the reliability analysis methods including the methods used in engineering. It is in our case of the use of level II methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type FORM (First Order Reliability Method), SORM (Second Order Reliability Method). By way of comparison, a second level III method was used which generates a full analysis of the problem and involving an integration of the probability density function of, random variables are extended to the field of security by using of the method of Mont-Carlo simulations. Taking into account the change in stress following load combinations: normal, exceptional and extreme the acting on the dam, calculation results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities thus causing a significant decrease in strength, especially in the presence of combinations of unique and extreme loads. Shear forces then induce a shift threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case THE increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit state, monte-carlo, reliability, probability, sliding, Taylor

Procedia PDF Downloads 307
3171 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications

Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray

Abstract:

The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.

Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model

Procedia PDF Downloads 116
3170 Passive Solar-Driven Membrane Distiller for Desalination: Effect of Middle Layer Material and Thickness on Desalination Performance

Authors: Glebert C. Dadol, Camila Flor Y. Lobarbio, Noel Peter B. Tan

Abstract:

Water scarcity is a global problem. One of the promising solutions to this challenge is the use of membrane-based desalination technologies. In this study, a passive solar-driven membrane (PSDM) distillation was employed to test its desalination performance. The PSDM was fabricated using a TiNOX sheet solar absorber, cellulose-based hydrophilic top and bottom layers, and a middle layer. The effects of the middle layer material and thickness on the desalination performance in terms of distillate flow rate, productivity, and salinity were investigated. An air-gap screen mesh (2 mm, 4 mm, 6 mm thickness) and a hydrophobic PTFE membrane (0.3 mm thickness) were used as middle-layer materials. Saltwater input (35 g/L NaCl) was used for the PSDM distiller on a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate flow rate and productivity of 1.08 L/m²-h and 1.47 L/kWh, respectively, were achieved using a 2 mm air-gap middle layer, but it also resulted in a high salinity of 25.20 g/L. Increasing the air gap lowered the salinity but also decreased the flow rate and productivity. The lowest salinity of 1.07 g/L was achieved using 6 mm air gap, but the flow rate and productivity were reduced to 0.08 L/m²-h and 0.17 L/kWh, respectively. The use of a hydrophobic PTFE membrane, on the other hand, did not offer a significant improvement in its performance. A PDSM distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. Various modifications and optimizations to the distiller can be done to improve its performance further.

Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation

Procedia PDF Downloads 111
3169 Using Life Cycle Assessment in Potable Water Treatment Plant: A Colombian Case Study

Authors: Oscar Orlando Ortiz Rodriguez, Raquel A. Villamizar-G, Alexander Araque

Abstract:

There is a total of 1027 municipal development plants in Colombia, 70% of municipalities had Potable Water Treatment Plants (PWTPs) in urban areas and 20% in rural areas. These PWTPs are typically supplied by surface waters (mainly rivers) and resort to gravity, pumping and/or mixed systems to get the water from the catchment point, where the first stage of the potable water process takes place. Subsequently, a series of conventional methods are applied, consisting in a more or less standardized sequence of physicochemical and, sometimes, biological treatment processes which vary depending on the quality of the water that enters the plant. These processes require energy and chemical supplies in order to guarantee an adequate product for human consumption. Therefore, in this paper, we applied the environmental methodology of Life Cycle Assessment (LCA) to evaluate the environmental loads of a potable water treatment plant (PWTP) located in northeastern Colombia following international guidelines of ISO 14040. The different stages of the potable water process, from the catchment point through pumping to the distribution network, were thoroughly assessed. The functional unit was defined as 1 m³ of water treated. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results allowed determining that in the plant, the largest impact was caused by Clarifloc (82%), followed by Chlorine gas (13%) and power consumption (4%). In this context, the company involved in the sustainability of the potable water service should ideally reduce these environmental loads during the potable water process. A strategy could be the use of Clarifloc can be reduced by applying coadjuvants or other coagulant agents. Also, the preservation of the hydric source that supplies the treatment plant constitutes an important factor, since its deterioration confers unfavorable features to the water that is to be treated. By concluding, treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior vary from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operation cycle.

Keywords: climate change, environmental impact, life cycle assessment, treated water

Procedia PDF Downloads 213
3168 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 64
3167 Light Sensitive Plasmonic Nanostructures for Photonic Applications

Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi

Abstract:

In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures

Procedia PDF Downloads 286