Search results for: wood powder (shisham)
189 A Study on the Performance Improvement of Zeolite Catalyst for Endothermic Reaction
Authors: Min Chang Shin, Byung Hun Jeong, Jeong Sik Han, Jung Hoon Park
Abstract:
In modern times, as flight speeds have increased due to improvements in aircraft and missile engine performance, thermal loads have also increased. Because of the friction heat of air flow with high speed on the surface of the vehicle, it is not easy to cool the superheat of the vehicle by the simple air cooling method. For this reason, a cooling method through endothermic heat is attracting attention by using a fuel that causes an endothermic reaction in a high-speed vehicle. There are two main ways of cooling the fuel through the endothermic reaction. The first is physical heat absorption. When the temperature rises, there is a sensible heat that accompanies it. The second is the heat of reaction corresponding to the chemical heat absorption, which absorbs heat during the fuel decomposes. Generally, since the decomposition reaction of the fuel proceeds at a high temperature, it does not achieve a great efficiency in cooling the high-speed flight body. However, when the catalyst is used, decomposition proceeds at a low temperature thereby increasing the cooling efficiency. However, when the catalyst is used as a powder, the catalyst enters the engine and damages the engine or the catalyst can deteriorate the performance due to the sintering. On the other hand, when used in the form of pellets, catalyst loss can be prevented. However, since the specific surface of pellet is small, the efficiency of the catalyst is low. And it can interfere with the flow of fuel, resulting in pressure loss and problems with fuel injection. In this study, we tried to maximize the performance of the catalyst by preparing a hollow fiber type pellet for zeolite ZSM-5, which has a higher amount of heat absorption, than other conventional pellets. The hollow fiber type pellet was prepared by phase inversion method. The hollow fiber type pellet has a finger-like pore and sponge-like pore. So it has a higher specific surface area than conventional pellets. The crystal structure of the prepared ZSM-5 catalyst was confirmed by XRD, and the characteristics of the catalyst were analyzed by TPD/TPR device. This study was conducted as part of the Basic Research Project (Pure-17-20) of Defense Acquisition Program Administration.Keywords: catalyst, endothermic reaction, high-speed vehicle cooling, zeolite, ZSM-5
Procedia PDF Downloads 312188 Integrating Computer-Aided Manufacturing and Computer-Aided Design for Streamlined Carpentry Production in Ghana
Authors: Benson Tette, Thomas Mensah
Abstract:
As a developing country, Ghana has a high potential to harness the economic value of every industry. Two of the industries that produce below capacity are handicrafts (for instance, carpentry) and information technology (i.e., computer science). To boost production and maintain competitiveness, the carpentry sector in Ghana needs more effective manufacturing procedures that are also more affordable. This issue can be resolved using computer-aided manufacturing (CAM) technology, which automates the fabrication process and decreases the amount of time and labor needed to make wood goods. Yet, the integration of CAM in carpentry-related production is rarely explored. To streamline the manufacturing process, this research investigates the equipment and technology that are currently used in the Ghanaian carpentry sector for automated fabrication. The research looks at the various CAM technologies, such as Computer Numerical Control routers, laser cutters, and plasma cutters, that are accessible to Ghanaian carpenters yet unexplored. We also investigate their potential to enhance the production process. To achieve the objective, 150 carpenters, 15 software engineers, and 10 policymakers were interviewed using structured questionnaires. The responses provided by the 175 respondents were processed to eliminate outliers and omissions were corrected using multiple imputations techniques. The processed responses were analyzed through thematic analysis. The findings showed that adaptation and integration of CAD software with CAM technologies would speed up the design-to-manufacturing process for carpenters. It must be noted that achieving such results entails first; examining the capabilities of current CAD software, then determining what new functions and resources are required to improve the software's suitability for carpentry tasks. Responses from both carpenters and computer scientists showed that it is highly practical and achievable to streamline the design-to-manufacturing process through processes such as modifying and combining CAD software with CAM technology. Making the carpentry-software integration program more useful for carpentry projects would necessitate investigating the capabilities of the current CAD software and identifying additional features in the Ghanaian ecosystem and tools that are required. In conclusion, the Ghanaian carpentry sector has a chance to increase productivity and competitiveness through the integration of CAM technology with CAD software. Carpentry companies may lower labor costs and boost production capacity by automating the fabrication process, giving them a competitive advantage. This study offers implementation-ready and representative recommendations for successful implementation as well as important insights into the equipment and technologies available for automated fabrication in the Ghanaian carpentry sector.Keywords: carpentry, computer-aided manufacturing (CAM), Ghana, information technology(IT)
Procedia PDF Downloads 98187 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures
Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim
Abstract:
Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate
Procedia PDF Downloads 122186 The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec
Authors: Nairy Kechichian
Abstract:
The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021.Keywords: covered bridge, wood-steel, short span, town Québécois structure
Procedia PDF Downloads 67185 Prediction of Sound Transmission Through Framed Façade Systems
Authors: Fangliang Chen, Yihe Huang, Tejav Deganyar, Anselm Boehm, Hamid Batoul
Abstract:
With growing population density and further urbanization, the average noise level in cities is increasing. Excessive noise is not only annoying but also leads to a negative impact on human health. To deal with the increasing city noise, environmental regulations bring up higher standards on acoustic comfort in buildings by mitigating the noise transmission from building envelope exterior to interior. Framed window, door and façade systems are the leading choice for modern fenestration construction, which provides demonstrated quality of weathering reliability, environmental efficiency, and installation ease. The overall sound insulation of such systems depends both on glasses and frames, where glass usually covers the majority of the exposed surfaces, thus it is the main source of sound energy transmission. While frames in modern façade systems become slimmer for aesthetic appearance, which contribute to a minimal percentage of exposed surfaces. Nevertheless, frames might provide substantial transmission paths for sound travels through because of much less mass crossing the path, thus becoming more critical in limiting the acoustic performance of the whole system. There are various methodologies and numerical programs that can accurately predict the acoustic performance of either glasses or frames. However, due to the vast variance of size and dimension between frame and glass in the same system, there is no satisfactory theoretical approach or affordable simulation tool in current practice to access the over acoustic performance of a whole façade system. For this reason, laboratory test turns out to be the only reliable source. However, laboratory test is very time consuming and high costly, moreover different lab might provide slightly different test results because of varieties of test chambers, sample mounting, and test operations, which significantly constrains the early phase design of framed façade systems. To address this dilemma, this study provides an effective analytical methodology to predict the acoustic performance of framed façade systems, based on vast amount of acoustic test results on glass, frame and the whole façade system consist of both. Further test results validate the current model is able to accurately predict the overall sound transmission loss of a framed system as long as the acoustic behavior of the frame is available. Though the presented methodology is mainly developed from façade systems with aluminum frames, it can be easily extended to systems with frames of other materials such as steel, PVC or wood.Keywords: city noise, building facades, sound mitigation, sound transmission loss, framed façade system
Procedia PDF Downloads 61184 Immunohistochemical Study on the Effect of Tetracycline Loaded on Nanochitosan in the Treatment of Induced Infection with Porphyromonas gingivalis
Authors: Rania Hanafi Mahmoud Said, Rasha Mohamed Taha
Abstract:
Background: The use of nanoparticles for medication delivery offers the possibility of avoiding the negative effects of systemic antibiotic dosing as well as antibiotic resistance in bacteria. Aim of the study: The goal of this study was to see the efficiency of local administration of tetracycline loaded on nano chitosan in the treatment of the induced infection of the albino rats gingiva with Porphyromonas gingivalis through Immunohistochemical localization of Interleukin-1beta (IL-1β) as a proinflammatory cytokine.Material and methods: Fifty adult male albino rats 150 - 180 grams body weight used in this investigation. Any changes in rats’ weights were detected. The male albino rats were divided haphazardly into five groups as Group I involved ten rats; they served as a normal negative control group. Group II involved ten rats; they were infected once with P.gingivalis that was injected into the interdental gingiva. Group III involved ten rats; they were subjected to the same procedure as group II and then to daily injection at the site of infection with diluted tetracycline powder. Group IV involved ten rats; they were subjected to the same procedure as group II and then to daily injection of nano Chitosan at the site of injection. Group V involved ten rats; they were subjected to the same procedure as group II and then to daily injection of tetracycline loaded on nano Chitosan at the site of injection. After rats had been euthanized, the extraction and preparation of their gingiva were carried out in order to examine histologically and immunohistochemically. Results: The light microscopic results of groups II, III, and IV showed degeneration represented by swollen epithelial cells, collagen fibers dissociation of the connective tissue of lamina propria, and areas of basement membrane discontinuation, while groups I and V showed an almost normal histological picture of gingival tissue. Immunohistochemical results showed a significant difference in Group II and III when compared to control. No significant difference appears in group V when compared to the control (group I). Conclusion: Using nanochitosan as a carrier for tetracycline is a new technology to get over the increasing resistance of tetracycline.Keywords: immunohistochemistry, P.gingivalis, nano-chitosan, tetracycline, periodontitis
Procedia PDF Downloads 126183 Effects of Conversion of Indigenous Forest to Plantation Forest on the Diversity of Macro-Fungi in Kereita Forest, Kikuyu Escarpment, Kenya
Authors: Susan Mwai, Mary Muchane, Peter Wachira, Sheila Okoth, Muchai Muchane, Halima Saado
Abstract:
Tropical forests harbor a wide range of biodiversity and rich macro-fungi diversity compared to the temperate regions in the World. However, biodiversity is facing the threat of extinction following the rate of forest loss taking place before proper study and documentation of macrofungi is achieved. The present study was undertaken to determine the effect of converting indigenous habitat to plantation forest on macrofungi diversity. To achieve the objective of this study, an inventory focusing on macro-fungi diversity was conducted within Kereita block in Kikuyu Escarpment forest which is on the southern side of Aberdare mountain range. The macrofungi diversity was conducted in the indigenous forest and in more than 15 year old Patula plantation forest , during the wet (long rain season, December 2014) and dry (Short rain season, May, 2015). In each forest type, 15 permanent (20m x 20m) sampling plots distributed across three (3) forest blocks were used. Both field and laboratory methods involved recording abundance of fruiting bodies, taxonomic identity of species and analysis of diversity indices and measures in terms of species richness, density and diversity. R statistical program was used to analyze for species diversity and Canoco 4.5 software for species composition. A total number of 76 genera in 28 families and 224 species were encountered in both forest types. The most represented taxa belonged to the Agaricaceae (16%), Polyporaceae (12%), Marasmiaceae, Mycenaceae (7%) families respectively. Most of the recorded macro-fungi were saprophytic, mostly colonizing the litter 38% and wood 34% based substrates, which was followed by soil organic dwelling species (17%). Ecto-mycorrhiza fungi (5%) and parasitic fungi (2%) were the least encountered. The data established that indigenous forests (native ecosystems) hosts a wide range of macrofungi assemblage in terms of density (2.6 individual fruit bodies / m2), species richness (8.3 species / plot) and species diversity (1.49/ plot level) compared to the plantation forest. The Conversion of native forest to plantation forest also interfered with species composition though did not alter species diversity. Seasonality was also shown to significantly affect the diversity of macro-fungi and 61% of the total species being present during the wet season. Based on the present findings, forested ecosystems in Kenya hold diverse macro-fungi community which warrants conservation measures.Keywords: diversity, Indigenous forest, macro-fungi, plantation forest, season
Procedia PDF Downloads 214182 Bringing the World to Net Zero Carbon Dioxide by Sequestering Biomass Carbon
Authors: Jeffrey A. Amelse
Abstract:
Many corporations aspire to become Net Zero Carbon Carbon Dioxide by 2035-2050. This paper examines what it will take to achieve those goals. Achieving Net Zero CO₂ requires an understanding of where energy is produced and consumed, the magnitude of CO₂ generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between CO₂ and biomass carbon sequestration. Short reviews are provided for prior technologies proposed for reducing CO₂ emissions from fossil fuels or substitution by renewable energy, to focus on their limitations and to show that none offer a complete solution. Of these, CO₂ sequestration is poised to have the largest impact. It will just cost money, scale-up is a huge challenge, and it will not be a complete solution. CO₂ sequestration is still in the demonstration and semi-commercial scale. Transportation accounts for only about 30% of total U.S. energy demand, and renewables account for only a small fraction of that sector. Yet, bioethanol production consumes 40% of U.S. corn crop, and biodiesel consumes 30% of U.S. soybeans. It is unrealistic to believe that biofuels can completely displace fossil fuels in the transportation market. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient and inefficient use of biomass carbon. Both biofuels and CO₂ sequestration reduce future CO₂ emissions from continued use of fossil fuels. They will not remove CO₂ already in the atmosphere. Planting more trees has been proposed as a way to reduce atmospheric CO₂. Trees are a temporary solution. When they complete their Carbon Cycle, they die and release their carbon as CO₂ to the atmosphere. Thus, planting more trees is just 'kicking the can down the road.' The only way to permanently remove CO₂ already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO₂ and sequestering biomass carbon. Sequestering tree leaves is proposed as a solution. Unlike wood, leaves have a short Carbon Cycle time constant. They renew and decompose every year. Allometric equations from the USDA indicate that theoretically, sequestrating only a fraction of the world’s tree leaves can get the world to Net Zero CO₂ without disturbing the underlying forests. How can tree leaves be permanently sequestered? It may be as simple as rethinking how landfills are designed to discourage instead of encouraging decomposition. In traditional landfills, municipal waste undergoes rapid initial aerobic decomposition to CO₂, followed by slow anaerobic decomposition to methane and CO₂. The latter can take hundreds to thousands of years. The first step in anaerobic decomposition is hydrolysis of cellulose to release sugars, which those who have worked on cellulosic ethanol know is challenging for a number of reasons. The key to permanent leaf sequestration may be keeping the landfills dry and exploiting known inhibitors for anaerobic bacteria.Keywords: carbon dioxide, net zero, sequestration, biomass, leaves
Procedia PDF Downloads 129181 Radar Cross Section Modelling of Lossy Dielectrics
Authors: Ciara Pienaar, J. W. Odendaal, J. Joubert, J. C. Smit
Abstract:
Radar cross section (RCS) of dielectric objects play an important role in many applications, such as low observability technology development, drone detection, and monitoring as well as coastal surveillance. Various materials are used to construct the targets of interest such as metal, wood, composite materials, radar absorbent materials, and other dielectrics. Since simulated datasets are increasingly being used to supplement infield measurements, as it is more cost effective and a larger variety of targets can be simulated, it is important to have a high level of confidence in the predicted results. Confidence can be attained through validation. Various computational electromagnetic (CEM) methods are capable of predicting the RCS of dielectric targets. This study will extend previous studies by validating full-wave and asymptotic RCS simulations of dielectric targets with measured data. The paper will provide measured RCS data of a number of canonical dielectric targets exhibiting different material properties. As stated previously, these measurements are used to validate numerous CEM methods. The dielectric properties are accurately characterized to reduce the uncertainties in the simulations. Finally, an analysis of the sensitivity of oblique and normal incidence scattering predictions to material characteristics is also presented. In this paper, the ability of several CEM methods, including method of moments (MoM), and physical optics (PO), to calculate the RCS of dielectrics were validated with measured data. A few dielectrics, exhibiting different material properties, were selected and several canonical targets, such as flat plates and cylinders, were manufactured. The RCS of these dielectric targets were measured in a compact range at the University of Pretoria, South Africa, over a frequency range of 2 to 18 GHz and a 360° azimuth angle sweep. This study also investigated the effect of slight variations in the material properties on the calculated RCS results, by varying the material properties within a realistic tolerance range and comparing the calculated RCS results. Interesting measured and simulated results have been obtained. Large discrepancies were observed between the different methods as well as the measured data. It was also observed that the accuracy of the RCS data of the dielectrics can be frequency and angle dependent. The simulated RCS for some of these materials also exhibit high sensitivity to variations in the material properties. Comparison graphs between the measured and simulation RCS datasets will be presented and the validation thereof will be discussed. Finally, the effect that small tolerances in the material properties have on the calculated RCS results will be shown. Thus the importance of accurate dielectric material properties for validation purposes will be discussed.Keywords: asymptotic, CEM, dielectric scattering, full-wave, measurements, radar cross section, validation
Procedia PDF Downloads 240180 Materials and Techniques of Anonymous Egyptian Polychrome Cartonnage Mummy Mask: A Multiple Analytical Study
Authors: Hanaa A. Al-Gaoudi, Hassan Ebeid
Abstract:
The research investigates the materials and processes used in the manufacturing of an Egyptian polychrome cartonnage mummy mask with the aim of dating this object and establishing trade patterns of certain materials that were used and available at the time of ancient Egypt. This anonymous-source object was held in the basement storage of the Egyptian Museum in Cairo (EMC) and has never been on display. Furthermore, there is no information available regarding its owner, provenance, date, and even the time of its possession by the museum. Moreover, the object is in a very poor condition where almost two-thirds of the mask was bent and has never received any previous conservation treatment. This research has utilized well-established multi-analytical methods to identify the considerable diversity of materials that have been used in the manufacturing of this object. These methods include Computed Tomography Scan (CT scan) to acquire detailed pictures of the inside physical structure and condition of the bended layers. Dino-Lite portable digital microscope, scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-EDX), and the non-invasive imaging technique of multispectral imaging (MSI) to obtain information about the physical characteristics and condition of the painted layers and to examine the microstructure of the materials. Portable XRF Spectrometer (PXRF) and X-Ray powder diffraction (XRD) to identify mineral phases and the bulk element composition in the gilded layer, ground, and pigments; Fourier-transform infrared (FTIR) to identify organic compounds and their molecular characterization; accelerator mass spectrometry (AMS 14C) to date the object. Preliminary results suggest that there are no human remains inside the object, and the textile support is linen fibres with tabby weave 1/1 and these fibres are in a very bad condition. Several pigments have been identified, such as Egyptian blue, Magnetite, Egyptian green frit, Hematite, Calcite, and Cinnabar; moreover, the gilded layers are pure gold and the binding media in the pigments is Arabic gum and animal glue in the textile support layer.Keywords: analytical methods, Egyptian museum, mummy mask, pigments, textile
Procedia PDF Downloads 126179 Enhancing Skills of Mothers of Asthmatic Children in Techniques of Drug Administration
Authors: Erna Judith Roach, Nalini Bhaskaranand
Abstract:
Background & Significance: Asthma is the most common chronic disease among children. Education is the cornerstone of management of asthma to help the affected children. In India there are about 1.5- 3.0 million asthmatic children in the age group of 5-11 years. Many parents face management dilemmas in administration of medications to their children. Mothers being primary caregivers of children are often responsible for administering medications to them. The purpose of the study was to develop an educational package on techniques of drug administration for mothers of asthmatic children and determine its effectiveness in terms of improvement in skill in drug administration. Methodology: A quasi- experimental time series pre-test post -test control group design was used. Mothers of asthmatic children attending paediatric outpatient departments of selected hospitals along with their children between 5 and 12 years were included. Sample size consisted of 40 mothers in the experimental and 40 mothers in the control groups. Block randomization was used to assign samples to both the groups. The data collection instruments used were Baseline Proforma, Clinical Proforma, Daily asthma drug intake and symptoms diary and Observation Rating Scales on technique of using a metered dose inhaler with spacer; metered dose inhaler with facemask; metered dose inhaler alone and dry powder inhaler. The educational package consisted of a video and booklet on techniques of drug administration. Data were collected at baseline, 1, 3 and 6 months. Findings: The mean post-test scores in techniques of drug administration were higher than the mean pre-test scores in the experimental group in all techniques. The Friedman test (p < 0.01), Wilcoxon Signed Rank test (p < 0.008) and Mann Whitney U (p < 0.01) showed statistically significant difference in the experimental group than the control group. There was significant decrease in the average number of symptom days (11 Vs. 4 days/ month) and hospital visits (5 to 1 per month) in the experimental group when compared to the control group. Conclusion: The educational package was found to be effective in improving the skill of mothers in drug administration in all the techniques, especially with using the metered dose inhaler with spacer.Keywords: childhood asthma, drug administration, mothers of children, inhaler
Procedia PDF Downloads 423178 Dendroremediation of a Defunct Lead Acid Battery Recycling Site
Authors: Alejandro Ruiz-Olivares, M. del Carmen González-Chávez, Rogelio Carrillo-González, Martha Reyes-Ramos, Javier Suárez Espinosa
Abstract:
Use of automobiles has increased and proportionally, the demand for batteries to impulse them. When the device is aged, all the battery materials are reused through lead acid battery recycling (LABR). Importation of used lead acid batteries in Mexico has increased in the last years since many recycling factories have been settled in the country. Inadequate disposal of lead-acid battery recycling (LABR) wastes left soil severely polluted with Pb, Cu, and salts (Na+, SO2− 4, PO3− 4). Soil organic amendments may contribute with essential nutrients and sequester (scavenger compounds) metals to allow plant establishment. The objective of this research was to revegetate a former lead-acid battery recycling site aided with organic amendments. Seven tree species (Acacia farnesiana, Casuarina equisetifolia, Cupressus lusitanica, Eucalyptus obliqua, Fraxinus excelsior, Prosopis laevigata and Pinus greggii) and two organic amendments (vermicompost and vermicompost + sawdust mixture) were tested for phytoremediation of a defunct LABR site. Plants were irrigated during the dry season. Monitoring of the soils was carried out during the experiment: Available metals, salts concentrations and their spatial pattern in soil were analyzed. Plant species and amendments were compared through analysis of covariance and longitudinal analysis. High concentrations of extractable (DTPA-TEA-CaCl₂) metals (up to 15,685 mg kg⁻¹ and 478 mg kg⁻¹ for Pb and Cu) and soluble salts (292 mg kg-1 and 23,578 mg kg-1 for PO3− 4and SO2− 4) were found in the soil after three and six months of setting up the experiment. Lead and Cu concentrations were depleted in the rhizosphere after amendments addition. Spatial pattern of PO3− 4, SO2− 4 and DTPA-extractable Pb and Cu changed slightly through time. In spite of extreme soil conditions the plant species planted: A. farnesiana, E. obliqua, C. equisetifolia and F. excelsior had 100% of survival. Available metals and salts differently affected each species. In addition, negative effect on growth due to Pb accumulated in shoots was observed only in C. lusitanica. Many specimens accumulated high concentrations of Pb ( > 1000 mg kg-1) in shoots. C. equisetifolia and C. lusitanica had the best rate of growth. Based on the results, all the evaluated species may be useful for revegetation of Pb-polluted soils. Besides their use in phytoremediation, some ecosystem services can be obtained from the woodland such as encourage wildlife, wood production, and carbon sequestration. Further research should be conducted to analyze these services.Keywords: heavy metals, inadequate disposal, organic amendments, phytoremediation with trees
Procedia PDF Downloads 285177 Genetic Diversity Analysis in Ecological Populations of Persian Walnut
Authors: Masoud Sheidai, Fahimeh Koohdar, Hashem Sharifi
Abstract:
Juglans regia (L.) commonly known as Persian walnut of the genus Juglans L. (Juglandaceae) is one of the most important cultivated plant species due to its high-quality wood and edible nuts. The genetic diversity analysis is essential for conservation and management of tree species. Persian walnut is native from South-Eastern Europe to North-Western China through Tibet, Nepal, Northern India, Pakistan, and Iran. The species like Persian walnut, which has a wide range of geographical distribution, should harbor extensive genetic variability to adapt to environmental fluctuations they face. We aimed to study the population genetic structure of seven Persian walnut populations including three wild and four cultivated populations by using ISSR (Inter simple sequence repeats) and SRAP (Sequence related amplified polymorphism) molecular markers. We also aimed to compare the genetic variability revealed by ISSR neutral multilocus marker and rDNA ITS sequences. The studied populations differed in morphological features as the samples in each population were clustered together and were separate from the other populations. Three wild populations studied were placed close to each other. The mantel test after 5000 times permutation performed between geographical distance and morphological distance in Persian walnut populations produced significant correlation (r = 0.48, P = 0.002). Therefore, as the populations become farther apart, they become more divergent in morphological features. ISSR analysis produced 47 bands/ loci, while we obtained 15 SRAP bands. Gst and other differentiation statistics determined for these loci revealed that most of the ISSR and SRAP loci have very good discrimination power and can differentiate the studied populations. AMOVA performed for these loci produced a significant difference (< 0.05) supporting the above-said result. AMOVA produced significant genetic difference based on ISSR data among the studied populations (PhiPT = 0.52, P = 0.001). AMOVA revealed that 53% of the total variability is due to among population genetic difference, while 47% is due to within population genetic variability. The results showed that both multilocus molecular markers and ITS sequences can differentiate Persian walnut populations. The studied populations differed genetically and showed isolation by distance (IBD). ITS sequence based MP and Bayesian phylogenetic trees revealed that Iranian walnut cultivars form a distinct clade separated from the cultivars studied from elsewhere. Almost all clades obtained have high bootstrap value. The results indicated that a combination of multilpcus and sequencing molecular markers can be used in genetic differentiation of Persian walnut.Keywords: genetic diversity, population, molecular markers, genetic difference
Procedia PDF Downloads 162176 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use
Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz
Abstract:
Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering
Procedia PDF Downloads 504175 12 Real Forensic Caseworks Solved by the DNA STR-Typing of Skeletal Remains Exposed to Extremely Environment Conditions without the Conventional Bone Pulverization Step
Authors: Chiara Della Rocca, Gavino Piras, Andrea Berti, Alessandro Mameli
Abstract:
DNA identification of human skeletal remains plays a valuable role in the forensic field, especially in missing persons and mass disaster investigations. Hard tissues, such as bones and teeth, represent a very common kind of samples analyzed in forensic laboratories because they are often the only biological materials remaining. However, the major limitation of using these compact samples relies on the extremely time–consuming and labor–intensive treatment of grinding them into powder before proceeding with the conventional DNA purification and extraction step. In this context, a DNA extraction assay called the TBone Ex kit (DNA Chip Research Inc.) was developed to digest bone chips without powdering. Here, we simultaneously analyzed bone and tooth samples that arrived at our police laboratory and belonged to 15 different forensic casework that occurred in Sardinia (Italy). A total of 27 samples were recovered from different scenarios and were exposed to extreme environmental factors, including sunlight, seawater, soil, fauna, vegetation, and high temperature and humidity. The TBone Ex kit was used prior to the EZ2 DNA extraction kit on the EZ2 Connect Fx instrument (Qiagen), and high-quality autosomal and Y-chromosome STRs profiles were obtained for the 80% of the caseworks in an extremely short time frame. This study provides additional support for the use of the TBone Ex kit for digesting bone fragments/whole teeth as an effective alternative to pulverization protocols. We empirically demonstrated the effectiveness of the kit in processing multiple bone samples simultaneously, largely simplifying the DNA extraction procedure and the good yield of recovered DNA for downstream genetic typing in highly compromised forensic real specimens. In conclusion, this study turns out to be extremely useful for forensic laboratories, to which the various actors of the criminal justice system – such as potential jury members, judges, defense attorneys, and prosecutors – required immediate feedback.Keywords: DNA, skeletal remains, bones, tbone ex kit, extreme conditions
Procedia PDF Downloads 48174 Investigating Early Markers of Alzheimer’s Disease Using a Combination of Cognitive Tests and MRI to Probe Changes in Hippocampal Anatomy and Functionality
Authors: Netasha Shaikh, Bryony Wood, Demitra Tsivos, Michael Knight, Risto Kauppinen, Elizabeth Coulthard
Abstract:
Background: Effective treatment of dementia will require early diagnosis, before significant brain damage has accumulated. Memory loss is an early symptom of Alzheimer’s disease (AD). The hippocampus, a brain area critical for memory, degenerates early in the course of AD. The hippocampus comprises several subfields. In contrast to healthy aging where CA3 and dentate gyrus are the hippocampal subfields with most prominent atrophy, in AD the CA1 and subiculum are thought to be affected early. Conventional clinical structural neuroimaging is not sufficiently sensitive to identify preferential atrophy in individual subfields. Here, we will explore the sensitivity of new magnetic resonance imaging (MRI) sequences designed to interrogate medial temporal regions as an early marker of Alzheimer’s. As it is likely a combination of tests may predict early Alzheimer’s disease (AD) better than any single test, we look at the potential efficacy of such imaging alone and in combination with standard and novel cognitive tasks of hippocampal dependent memory. Methods: 20 patients with mild cognitive impairment (MCI), 20 with mild-moderate AD and 20 age-matched healthy elderly controls (HC) are being recruited to undergo 3T MRI (with sequences designed to allow volumetric analysis of hippocampal subfields) and a battery of cognitive tasks (including Paired Associative Learning from CANTAB, Hopkins Verbal Learning Test and a novel hippocampal-dependent abstract word memory task). AD participants and healthy controls are being tested just once whereas patients with MCI will be tested twice a year apart. We will compare subfield size between groups and correlate subfield size with cognitive performance on our tasks. In the MCI group, we will explore the relationship between subfield volume, cognitive test performance and deterioration in clinical condition over a year. Results: Preliminary data (currently on 16 participants: 2 AD; 4 MCI; 9 HC) have revealed subfield size differences between subject groups. Patients with AD perform with less accuracy on tasks of hippocampal-dependent memory, and MCI patient performance and reaction times also differ from healthy controls. With further testing, we hope to delineate how subfield-specific atrophy corresponds with changes in cognitive function, and characterise how this progresses over the time course of the disease. Conclusion: Novel sequences on a MRI scanner such as those in route in clinical use can be used to delineate hippocampal subfields in patients with and without dementia. Preliminary data suggest that such subfield analysis, perhaps in combination with cognitive tasks, may be an early marker of AD.Keywords: Alzheimer's disease, dementia, memory, cognition, hippocampus
Procedia PDF Downloads 573173 Extraction, Isolation and Comparative Phtochemical Study of Aegle Marmelos, Calendula Officinalis and Fenugreek
Authors: Nitin Rajan, Kashif Shakeel, Shashank Tiwari, Shachan Sagar
Abstract:
Background: - Aegle Marmelos (Bael) leaf extract is taken twice daily to treat ophthalmia, ulcers, and intestinal worms, among other ailments. Poultice made from bael leaf is used in the treatment of eye conditions. The leaf juice has a variety of therapeutic applications, with the most notable being the treatment of diabetes. Fenugreek is used to cure red spots around the eyes, as well as to soften the throat and chest and to give relief from coughing. The use of this plant in the form of infusion, powder, pomade, and decoction has been extremely popular in Iranian traditional medicine. The plant may be used to wash one's vaginal linings. This plant is used as an emollient in the lack of appetite, treatment of pellagra, and gastrointestinal problems, as well as a general tonic. Calendula officinalis leaves are used to treat varicose veins on the outside of the body by infusing them. In Europe, the leaves are diaphoretic and resolvent in nature, while the blooms are employed as an emmenagogue and antispasmodic stimulant in Canada and the United States. The flowers were decocted and served as a posset drink when smallpox and measles were common in England, and the fresh juice was used to treat jaundice. Objective: - This study is done to compare the physicochemical parameter of the alcoholic extract of the leaves of Aegle Marmelos, Calendula Officinalis, and Fenugreek. Materials and Methods: Extraction and Isolation of Aegle Marmelos, Calendula Officinalis, Fenugreek, were done. Preliminary phytochemical study for alkaloids, cardiac glycosides, flavonoids, glycosides, phenols, resins, saponins, steroids, tannins, terpenoids of the extract was done individual by using the standard procedure. Result: - The phytochemical screening of Aegle Marmelos, Calendula Officinalis, and Fenugreek shows the presence of alkaloids, carbohydrates, total phenolics, total flavonoids, tannins, saponins gum. Conclusion: - In this study, we have found that crude aqueous and organic solvent extracts of Aegle Marmelos, Calendula Officinalis, and Fenugreek leaves contain some important bioactive compounds and it justifies their use in the traditional medicines for the treatment of different diseases.Keywords: Aegle Marmelos, Calendula Officinalis, Fenugreek, physiochemical parameter
Procedia PDF Downloads 155172 Development of a Sprayable Piezoelectric Material for E-Textile Applications
Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby
Abstract:
E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile
Procedia PDF Downloads 465171 The Characteristics of the Operating Parameters of the Vertical Axis Wind Turbine for the Selected Wind Speed
Authors: Zdzislaw Kaminski, Zbigniew Czyz
Abstract:
The paper discusses the results of the research into a wind turbine with a vertical axis of rotation which was performed with the open return wind tunnel, Gunt HM 170, at the laboratory of the Department of Thermodynamics, Fluid Mechanics and Propulsion Aviation Systems of Lublin University of Technology. Wind tunnel experiments are a necessary step to construct any new type of wind turbine, to validate design assumptions and numerical results. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angle α increases, the working surface which absorbs wind kinetic energy also increases. The study was performed on scaled and geometrically similar models with the criteria of similarity relevant for the type of research preserved. The rotors with varied angular apertures of their blades were printed for the research with a powder 3D printer, ZPrinter® 450. This paper presents the research results for the selected flow speed of 6.5 m/s for the three angular apertures of the rotor blades, i.e. 30°, 60°, 90° at varied speeds. The test stand enables the turbine rotor to be braked to achieve the required speed and airflow speed and torque to be recorded. Accordingly, the torque and power as a function of airflow were plotted. The rotor with its adjustable blades enables turbine power to be adjusted within a wide range of wind speeds. A variable angular aperture of blade working surfaces α in a wind turbine enables us to control the speed of the turbine and consequently its output power. Reducing the angular aperture of working surfaces results in reduced speed, and if a special current generator applied, electrical output power is reduced, too. Speed adjusted by changing angle α enables the maximum load acting on rotor blades to be controlled. The solution under study is a kind of safety against a damage of a turbine due to possible high wind speed.Keywords: drive torque, renewable energy, power, wind turbine, wind tunnel
Procedia PDF Downloads 258170 Gossypol Extraction from Cotton Seed and Evaluation of Cotton Seed and Boll-cotton-pol Extract on Treatment of Cutaneous Leishmaniasis Resistant to Drugs
Authors: M. Mirmohammadi, S. Taghdisi, F. Anali
Abstract:
Gossypol is a yellow anti-nutritional compound found in the cotton plant. This substance exists in the cottonseed and other parts of the cotton plant, such as bark, leaves, and stems. Chemically, gossypol is a very active polyphenolic aldehyde compound, and due to this polyphenolic structure, it has antioxidant and therapeutic properties. On the other hand, this compound, especially in free form, has many toxic effects, that its excessive consumption can be very dangerous for humans and animals. In this study, gossypol was extracted as a derivative compound of gossypol acetic acid from cottonseed using the n-hexane solvent with an efficiency of 0.84 ± 0.04, which compared to the Gossypol extracted from cottonseed oil with the same method (cold press) showed a significant difference with its efficiency of 1.14 ± 0.06. Therefore, it can be suggested to use cottonseed oil to extract this valuable compound. In the other part of this research, cottonseed extracts and cotton bolls extracts were obtained by two methods of soaking and Soxhlet with hydroalcoholic solvent taken with a ratio of (25:75), then by using extracts and corn starch powder, four herbal medicine code was created and after receiving the code of ethics (IR.SSU.REC.1398.136) the therapeutic effect of each one on the Cutaneous leishmaniasis resistant to drugs (caused by the leishmaniasis parasite) was investigated in real patients and its results was compared with the common drug glucantime (local ampoule) (n = 36). Statistical studies showed that the use of herbal medicines prepared with cottonseed extract and cotton bolls extract has a significant positive effect on the treatment of the disease’s wounds (p-value > 0.05) compared to the control group (only ethanol). Also, by comparing the average diameter of the wounds after a two-month treatment period, no significant difference was found between the use of ointment containing extracts and local glucantime ampoules (p-value < 0.05). Bolls extract extracted with the Soxhlet method showed the best therapeutic effects, although there was no significant difference between them (p-value < 0.05). Therefore, there is acceptable reliability to recommend this medicine for the treatment of Cutaneous leishmaniasis resistant to drugs without the side effects of the chemical drug glucantime and the pain of injecting the ampoule.Keywords: cottonseed oil, gossypol, cotton boll, cutaneous leishmaniasis
Procedia PDF Downloads 95169 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles
Authors: M. Vadivel, R. Ramesh Babu
Abstract:
Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization
Procedia PDF Downloads 317168 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration
Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis
Abstract:
The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds
Procedia PDF Downloads 111167 The Composition of Biooil during Biomass Pyrolysis at Various Temperatures
Authors: Zoltan Sebestyen, Eszter Barta-Rajnai, Emma Jakab, Zsuzsanna Czegeny
Abstract:
Extraction of the energy content of lignocellulosic biomass is one of the possible pathways to reduce the greenhouse gas emission derived from the burning of the fossil fuels. The application of the bioenergy can mitigate the energy dependency of a country from the foreign natural gas and the petroleum. The diversity of the plant materials makes difficult the utilization of the raw biomass in power plants. This problem can be overcome by the application of thermochemical techniques. Pyrolysis is the thermal decomposition of the raw materials under inert atmosphere at high temperatures, which produces pyrolysis gas, biooil and charcoal. The energy content of these products can be exploited by further utilization. The differences in the chemical and physical properties of the raw biomass materials can be reduced by the use of torrefaction. Torrefaction is a promising mild thermal pretreatment method performed at temperatures between 200 and 300 °C in an inert atmosphere. The goal of the pretreatment from a chemical point of view is the removal of water and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor degradation of cellulose and lignin in the biomass. Thus, the stability of biomass against biodegradation increases, while its energy density increases. The volume of the raw materials decreases so the expenses of the transportation and the storage are reduced as well. Biooil is the major product during pyrolysis and an important by-product during torrefaction of biomass. The composition of biooil mostly depends on the quality of the raw materials and the applied temperature. In this work, thermoanalytical techniques have been used to study the qualitative and quantitative composition of the pyrolysis and torrefaction oils of a woody (black locust) and two herbaceous samples (rape straw and wheat straw). The biooil contains C5 and C6 anhydrosugar molecules, as well as aromatic compounds originating from hemicellulose, cellulose, and lignin, respectively. In this study, special emphasis was placed on the formation of the lignin monomeric products. The structure of the lignin fraction is different in the wood and in the herbaceous plants. According to the thermoanalytical studies the decomposition of lignin starts above 200 °C and ends at about 500 °C. The lignin monomers are present among the components of the torrefaction oil even at relatively low temperatures. We established that the concentration and the composition of the lignin products vary significantly with the applied temperature indicating that different decomposition mechanisms dominate at low and high temperatures. The evolutions of decomposition products as well as the thermal stability of the samples were measured by thermogravimetry/mass spectrometry (TG/MS). The differences in the structure of the lignin products of woody and herbaceous samples were characterized by the method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). As a statistical method, principal component analysis (PCA) has been used to find correlation between the composition of lignin products of the biooil and the applied temperatures.Keywords: pyrolysis, torrefaction, biooil, lignin
Procedia PDF Downloads 329166 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase
Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick
Abstract:
This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers
Procedia PDF Downloads 162165 Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes
Authors: Fama Jallow, Melody Neaves, Professor Mcgregor
Abstract:
The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market.Keywords: hydrogen production, electrode, lattice structure, Africa
Procedia PDF Downloads 70164 Occurrence and Habitat Status of Osmoderma barnabita in Lithuania
Authors: D. Augutis, M. Balalaikins, D. Bastyte, R. Ferenca, A. Gintaras, R. Karpuska, G. Svitra, U. Valainis
Abstract:
Osmoderma species complex (consisting of Osmoderma eremita, O. barnabita, O. lassallei and O. cristinae) is a scarab beetle serving as indicator species in nature conservation. Osmoderma inhabits cavities containing sufficient volume of wood mould usually caused by brown rot in veteran deciduous trees. As the species, having high demands for the habitat quality, they indicate the suitability of the habitat for a number of other specialized saproxylic species. Since typical habitat needed for Osmoderma and other species associated with hollow veteran trees is rapidly declining, the species complex is protected under various legislation, such as Bern Convention, EU Habitats Directive and the Red Lists of many European states. Natura 2000 sites are the main tool for conservation of O. barnabita in Lithuania, currently 17 Natura 2000 sites are designated for the species, where monitoring is implemented once in 3 years according to the approved methodologies. Despite these monitoring efforts in species reports, provided to EU according to the Article 17 of the Habitats Directive, it is defined on the national level, that overall assessment of O. barnabita is inadequate and future prospects are poor. Therefore, research on the distribution and habitat status of O. barnabita was launched on the national level in 2016, which was complemented by preparatory actions of LIFE OSMODERMA project. The research was implemented in the areas equally distributed in the whole area of Lithuania, where O. barnabita was previously not observed, or not observed in the last 10 years. 90 areas, such as Habitats of European importance (9070 Fennoscandian wooded pastures, 9180 Tilio-Acerion forests of slopes, screes, and ravines), Woodland key habitats (B1 broad-leaved forest, K1 single giant tree) and old manor parks, were chosen for the research after review of habitat data from the existing national databases. The first part of field inventory of the habitats was carried out in 2016 and 2017 autumn and winter seasons, when relative abundance of O. barnabita was estimated according to larval faecal pellets in the tree cavities or around the trees. The state of habitats was evaluated according to the density of suitable and potential trees, percentage of not overshadowed trees and amount of undergrowth. The second part of the field inventory was carried out in the summer with pheromone traps baited with (R)-(+)-γ –decalactone. Results of the research show not only occurrence and habitat status of O. barnabita, but also help to clarify O. barnabita habitat requirements in Lithuania, define habitat size, its structure and distribution. Also, it compares habitat needs between the regions in Lithuania and inside and outside Natura 2000 areas designated for the species.Keywords: habitat status, insect conservation, Osmoderma barnabita, veteran trees
Procedia PDF Downloads 137163 Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method
Authors: Kei Kamada, Rikito Murakami, Masahiko Ito, Mototaka Arakawa, Yasuhiro Shoji, Toshiyuki Ueno, Masao Yoshino, Akihiro Yamaji, Shunsuke Kurosawa, Yuui Yokota, Yuji Ohashi, Akira Yoshikawa
Abstract:
Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction.Keywords: crystal growth, micro-pulling-down method, Fe-Ga, Fe-Al
Procedia PDF Downloads 335162 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique
Authors: Stefano Iannello, Massimiliano Materazzi
Abstract:
Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray
Procedia PDF Downloads 172161 Inclusion Complexes of Some Imidazoline Drugs with Cucurbit[N]Uril (N=7,8): Preparation, Characterization and Theoretical Calculations
Authors: Fakhreldin O. Suliman, Alia H. Al-Battashi
Abstract:
This work explored the interaction of three different imidazoline drugs, naphazoline nitrate (NPH), oxymetazoline hydrochloride (OXY) and xylometazoline hydrochloride (XYL) with two different synthesized cucurbit[n]urils CB[n], cucurbit[7]uril (CB[7]) and cucuribit[8]uril (CB[8]). Three binary inclusion complexes have been investigated in solution and in the solid state. The solid complexes were obtained by lyophilization, whereas the physical mixtures of guests and hosts at a stoichiometric ratio of 1:1 were obtained for each drug. 1HNMR, electrospray ionization mass spectrometry (ESI-MS), and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was used to study the complexes prepared in aqueous media. The lyophilized solid complexes were characterized by Fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffractometry (PXRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). MS, FT-IR and PXRD experimental results established in this work reveal that NPH, OXY and XYL molecules form stable inclusion complexes with the two hosts. The TGA and DSC confirmed the enhancement of the thermal stability of each drug and the production of a thermally stable solid complex. The 1HNMR has shown that the protons of the guests faced shifting in ppm and broadening of their peaks upon the formation of inclusion complexes with the selected CB[n]. The aromatic protons of the guest exhibited the highest changes in the chemical shifts and shape of the NMR peaks, suggesting their inclusion into the cavity of the CB[n]. The diffusion coefficients (D), developed from the diffusion-controlled NMR Spectroscopy (DOSY) measurements, for the complexation of the selected imidazoline drugs with CB[7] and CB[8], were decreased in the presence of hosts compared to the free guests indicating the formation of the guest-host adduct. Furthermore, we conducted molecular dynamic simulations and quantum mechanics calculations on these complexes. The results of the theoretical study corroborate the experimental findings and have also shed light on the mechanism of inclusion of the guests into the two hosts. This study generates initial data for potential drug delivery or drug formulation systems for these three selected imidazoline drug compounds based on their inclusion into the CB[n] cavities.Keywords: cucurbit[n]urils, imidazoline, inclusion complexes, molecular dynamics, DFT calculations, mass spectrometry
Procedia PDF Downloads 68160 Assessment of Selected Marine Organisms from Malaysian Coastal Areas for Inhibitory Activity against the Chikungunya Virus
Authors: Yik Sin Chan, Nam Weng Sit, Fook Yee Chye, van Ofwegen Leen, de Voogd Nicole, Kong Soo Khoo
Abstract:
Chikungunya fever is an arboviral disease transmitted by the Aedes mosquitoes. It has resulted in epidemics of the disease in tropical countries in the Indian Ocean and South East Asian regions. The recent spread of this disease to the temperate countries such as France and Italy, coupled with the absence of vaccines and effective antiviral drugs make chikungunya fever a worldwide health threat. This study aims to investigate the anti-chikungunya virus activity of selected marine organism samples collected from Malaysian coastal areas, including seaweeds (Caulerpa racemosa, Caulerpa sertularioides and Kappaphycus alvarezii), a soft coral (Lobophytum microlobulatum) and a sponge (Spheciospongia vagabunda). Following lyophilization (oven drying at 40C for K. alvarezii) and grinding to powder form, each sample was subjected to sequential solvent extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and distilled water in order to extract bioactive compounds. The antiviral activity was evaluated using monkey kidney epithelial (Vero) cells infected with the virus (multiplicity of infection=1). The cell viability was determined by Neutral Red uptake assay. 70% of the 30 extracts showed weak inhibitory activity with cell viability ≤30%. Seven of the extracts exhibited moderate inhibitory activity (cell viability: 31%-69%). These were the chloroform, ethyl acetate, ethanol and methanol extracts of C. racemosa; chloroform and ethyl acetate extracts of L. microlobulatum; and the chloroform extract of C. sertularioides. Only the hexane and ethanol extracts of L. microlobulatum showed strong inhibitory activity against the virus, resulting in cell viabilities (mean±SD; n=3) of 73.3±2.6% and 79.2±0.9%, respectively. The corresponding mean 50% effective concentrations (EC50) for the extracts were 14.2±0.2 and 115.3±1.2 µg/mL, respectively. The ethanol extract of the soft coral L. microlobulatum appears to hold the most promise for further characterization of active principles as it possessed greater selectivity index (SI>5.6) compared to the hexane extract (SI=2.1).Keywords: antiviral, seaweed, sponge, soft coral, vero cell
Procedia PDF Downloads 289