Search results for: digital transformation artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6672

Search results for: digital transformation artificial intelligence

5382 Opportunities and Challenges of Digital Diplomacy in the Public Diplomacy of the Islamic Republic of Iran

Authors: Somayeh Pashaee

Abstract:

The ever-increasing growth of the Internet and the development of information and communication technology have prompted the politicians of different countries to use virtual networks as an efficient tool for their foreign policy. The communication of governments and countries, even in the farthest places from each other, through electronic networks, has caused vast changes in the way of statecraft and governance. Importantly, in the meantime, diplomacy, which is always based on information and communication, has been affected by the new prevailing conditions and new technologies more than other areas and has faced greater changes. The emergence of virtual space and the formation of new communication tools in the field of public diplomacy has led to the redefinition of the framework of diplomacy and politics in the international arena and the appearance of a new aspect of diplomacy called digital diplomacy. Digital diplomacy is in the concept of changing relations from a face-to-face and traditional way to a non-face-to-face and new way, and its purpose is to solve foreign policy issues using virtual space. Digital diplomacy, by affecting diplomatic procedures and its change, explains the role of technology in the visualization and implementation of diplomacy in different ways. The purpose of this paper is to investigate the position of digital diplomacy in the public diplomacy of the Islamic Republic of Iran. The paper tries to answer these two questions in a descriptive-analytical way, considering the progress of communication and the role of virtual space in the service of diplomacy, what is the approach of the Islamic Republic of Iran towards digital diplomacy and the use of a new way of establishing foreign relations in public diplomacy? What capacities and damages are facing the country after the use of this type of new diplomacy? In this paper, various theoretical concepts in the field of public diplomacy and modern diplomacy, including Geoff Berridge, Charles Kegley, Hans Tuch and Ronald Peter Barston, as well as the theoretical framework of Marcus Holmes on digital diplomacy, will be used as a conceptual basis to support the analysis. As a result, in order to better achieve the political goals of the country, especially in foreign policy, the approach of the Islamic Republic of Iran to public diplomacy with a focus on digital diplomacy should be strengthened and revised. Today, only emphasizing on advancing diplomacy through traditional methods may weaken Iran's position in the public opinion level from other countries.

Keywords: digital diplomacy, public diplomacy, islamic republic of Iran, foreign policy, opportunities and challenges

Procedia PDF Downloads 118
5381 Educational Related Information Technology Department Transformation: A Case Study

Authors: P. Joongsiri, K. Pattanapisuth, P. Siwatintuko, S. Vasupongayya

Abstract:

This paper presents a case study of developing a four-year plan for the information technology department at the Faculty of Engineering, Prince of Songkla University, Thailand. This work can be used as a case study for other in-house information technology department in a higher educational environment. The result of this paper is the guideline of the four year plan creation process which is generated by analyzing the related theories and several best practices.

Keywords: strategic plan, management information system, information technology department governance, best practices, organization transformation

Procedia PDF Downloads 459
5380 Illuminating Shades: Exploring the Symbiosis of Eco-friendly Practices and Digital Photography in the Kumasi Metropolis

Authors: Ebenezer Kofi Enninful, Abraham Boakye-Amponsah, Collins Kwesi Fordjour

Abstract:

In the last decade, there have been calls to replace carbon emissions with green technology globally to save the planet. There is a rising need to evaluate industry players' understanding of and use of eco-friendly practices due to the growing shrewdness of environmental challenges worldwide. The key aim of this research was to assess the symbiotic relationship between eco-conscious initiatives and digital photography practices within the Kumasi Metropolis. The study used a multidisciplinary approach to investigate the complex dynamics, opportunities, and problems that result from the blend of digital image technologies and environmentally conscious concepts. For research design both the qualitative and quantitative approaches were employed. The data collections instruments included interviews, questionnaires, and observations. A total of 58 digital photography professionals were contacted via quantitative survey while qualitative perceptions were gathered via interviews of 8 studio technicians and 6 key photography studio directors on an observation approach. The study assessed the awareness levels as regards environmental concerns and scrutinized the extent to which eco-friendly practices are incorporated into various stages of the digital photography production. The results showed how environmentally conscious industry participants currently are, underscoring the opportunities and teething troubles in implementing eco-friendly practices within the Kumasi metropolis.

Keywords: eco-friendly, practices, sustainability, environment

Procedia PDF Downloads 9
5379 Meta-analysis of Technology Acceptance for Mobile and Digital Libraries in Academic Settings

Authors: Nosheen Fatima Warraich

Abstract:

One of the most often used models in information system (IS) research is the technology acceptance model (TAM). This meta-analysis aims to measure the relationship between TAM variables, Perceived Ease of Use (PEOU), and Perceived Usefulness (PU) with users’ attitudes and behavioral intention (BI) in mobile and digital libraries context. It also examines the relationship of external variables (information quality and system quality) with TAM variables (PEOU and PU) in digital libraries settings. This meta-analysis was performed through PRISMA-P guidelines. Four databases (Google Scholar, Web of Science, Scopus, and LISTA) were utilized for searching, and the search was conducted according to defined criteria. The findings of this study revealed a large effect size of PU and PEOU with BI. There was also a large effect size of PU and PEOU with attitude. A medium effect size was found between SysQ -> PU, InfoQ-> PU, and SysQ -> PEOU. However, there was a small effect size between InfoQ and PEOU. It fills the literature gap and also confirms that TAM is a valid model for the acceptance and use of technology in mobile and digital libraries context. Thus, its findings would be helpful for developers and designers in designing and developing mobile library apps. It will also be beneficial for library authorities and system librarians in designing and developing digital libraries in academic settings.

Keywords: technology acceptance model (tam), perceived ease of use, perceived usefulness, information quality, system quality, meta-analysis, systematic review, digital libraries, and mobile library apps.

Procedia PDF Downloads 76
5378 Building a Framework for Digital Emergency Response System for Aged, Long Term Care and Chronic Disease Patients in Asia Pacific Region

Authors: Nadeem Yousuf Khan

Abstract:

This paper proposes the formation of a digital emergency response system (dERS) in the aged, long-term care, and chronic disease setups in the post-COVID healthcare ecosystem, focusing on the Asia Pacific market where the aging population is increasing significantly. It focuses on the use of digital technologies such as wearables, a global positioning system (GPS), and mobile applications to build an integrated care system for old folks with co-morbidities and other chronic diseases. The paper presents a conceptual framework of a connected digital health ecosystem that not only provides proactive care to registered patients but also prevents the damages due to sudden conditions such as strokes by alerting and treating the patients in a digitally connected and coordinated manner. A detailed review of existing digital health technologies such as wearables, GPS, and mobile apps was conducted in context with the new post-COVID healthcare paradigm, along with a detailed literature review on the digital health policies and usability. A good amount of research papers is available in the application of digital health, but very few of them discuss the formation of a new framework for a connected digital ecosystem for the aged care population, which is increasing around the globe. A connected digital emergency response system has been proposed by the author whereby all registered patients (chronic disease and aged/long term care) will be connected to the proposed digital emergency response system (dERS). In the proposed ecosystem, patients will be provided with a tracking wrist band and a mobile app through which the control room will be monitoring the mobility and vitals such as atrial fibrillation (AF), blood sugar, blood pressure, and other vital signs. In addition to that, an alert in case if the patient falls down will add value to this system. In case of any variation in the vitals, an alert is sent to the dERS 24/7, and dERS clinical staff immediately trigger that alert which goes to the connected hospital and the adulatory service providers, and the patient is escorted to the nearest connected tertiary care hospital. By the time, the patient reaches the hospital, dERS team is ready to take appropriate clinical action to save the life of the patient. Strokes or myocardial infarction patients can be prevented from disaster if they are accessible to engagement healthcare. This dERS will play an effective role in saving the lives of aged patients or patients with chronic co-morbidities.

Keywords: aged care, atrial fibrillation, digital health, digital emergency response system, digital technology

Procedia PDF Downloads 122
5377 Digital Manufacturing: Evolution and a Process Oriented Approach to Align with Business Strategy

Authors: Abhimanyu Pati, Prabir K. Bandyopadhyay

Abstract:

The paper intends to highlight the significance of Digital Manufacturing (DM) strategy in support and achievement of business strategy and goals of any manufacturing organization. Towards this end, DM initiatives have been given a process perspective, while not undermining its technological significance, with a view to link its benefits directly with fulfilment of customer needs and expectations in a responsive and cost-effective manner. A digital process model has been proposed to categorize digitally enabled organizational processes with a view to create synergistic groups, which adopt and use digital tools having similar characteristics and functionalities. This will throw future opportunities for researchers and developers to create a unified technology environment for integration and orchestration of processes. Secondly, an effort has been made to apply “what” and “how” features of Quality Function Deployment (QFD) framework to establish the relationship between customers’ needs – both for external and internal customers, and the features of various digital processes, which support for the achievement of these customer expectations. The paper finally concludes that in the present highly competitive environment, business organizations cannot thrive to sustain unless they understand the significance of digital strategy and integrate it with their business strategy with a clearly defined implementation roadmap. A process-oriented approach to DM strategy will help business executives and leaders to appreciate its value propositions and its direct link to organization’s competitiveness.

Keywords: knowledge management, cloud computing, knowledge management approaches, cloud-based knowledge management

Procedia PDF Downloads 310
5376 Generative AI in Higher Education: Pedagogical and Ethical Guidelines for Implementation

Authors: Judit Vilarmau

Abstract:

Generative AI is emerging rapidly and transforming higher education in many ways, occasioning new challenges and disrupting traditional models and methods. The studies and authors explored remark on the impact on the ethics, curriculum, and pedagogical methods. Students are increasingly using generative AI for study, as a virtual tutor, and as a resource for generating works and doing assignments. This point is crucial for educators to make sure that students are using generative AI with ethical considerations. Generative AI also has relevant benefits for educators and can help them personalize learning experiences and promote self-regulation. Educators must seek and explore tools like ChatGPT to innovate without forgetting an ethical and pedagogical perspective. Eighteen studies were systematically reviewed, and the findings provide implementation guidelines with pedagogical and ethical considerations.

Keywords: ethics, generative artificial intelligence, guidelines, higher education, pedagogy

Procedia PDF Downloads 89
5375 The Perils of Flagging Pirates: How Gender, False Consensus and Normative Messages Influence Digital Piracy Intentions

Authors: Kate Whitman, Zahra Murad, Joe Cox, Adam Cox

Abstract:

This study investigates the influence of normative communications on digital piracy intentions. Although descriptive norms are thought to influence behavior, the study examines the potential bias in one's own behavior, leading to false consensus—a phenomenon perpetuating undesirable activities. The research tests the presence of false consensus and the effect of correcting normative predictions on changes in piracy intentions, examining gender differences. Results from a controlled experiment (N = 684) indicate that normative communications, reflecting the "real" norm based on government data (N=5000), increase (decrease) piracy intentions among men (women) underestimating their peers' behavior. Conversely, neither men nor women overestimating their peers' piracy show any notable change in intentions. Considering men consume more illegal content than women, suggesting they pose a higher risk, the study highlights the need for cautious use of normative communications. Therefore, policymakers should minimize the visibility of piracy behavior for effective digital piracy management.

Keywords: digital piracy, false consensus, normative interventions, persuasive messages

Procedia PDF Downloads 59
5374 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.

Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate

Procedia PDF Downloads 127
5373 The Impact of Artificial Intelligence on Human Developments Obligations and Theories

Authors: Seham Elia Moussa Shenouda

Abstract:

The relationship between development and human rights has long been the subject of academic debate. To understand the dynamics between these two concepts, various principles are adopted, from the right to development to development-based human rights. Despite the initiatives taken, the relationship between development and human rights remains unclear. However, the overlap between these two views and the idea that efforts should be made in the field of human rights have increased in recent years. It is then evaluated whether the right to sustainable development is acceptable or not. The article concludes that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which is a good answer to the question posed above. This book therefore cites regional and international human rights agreements such as , as well as the jurisprudence and interpretative guidelines of human rights institutions, to prove this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 44
5372 Flushing Model for Artificial Islands in the Persian Gulf

Authors: Sawsan Eissa, Momen Gharib, Omnia Kabbany

Abstract:

A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection.

Keywords: hydrodynamics, flushing, delft 3d, Persian Gulf, artificial islands.

Procedia PDF Downloads 61
5371 Jurisprudential Terms of Istiḥālah (Transformation) in Cosmetic Products (An Analytical Study)

Authors: Hassan Sher

Abstract:

God has made this world with all of his essences and beautified it with his countless blessings. In Islam, no doubt, beauty is a very important characteristic but also an aspect of the body and the heart. In a world where the standards of beauty seem to change from year to year according to trends and norms. Moreover, in this world, many people want to look good and feel satisfied and will be willing to go through many ways for their ideal look. likewise, several products came into use for beautifying, cleansing, and promoting attractiveness. These products include components of cosmetics, they are utilized for health and beauty purposes. There are concerns regarding the existence of harmful or ḥarām chemicals, but With the advancement in (technology), it results in the transformation of unlawful and forbidden cosmetic products into permissible several new ingredients and products. The process of transforming certain items or products from one form to another, Muslim jurists tend to use terms like Istiḥālah (transformation).Istiḥālah is an Islamic principle unknown to many Muslims. LinguisticallyIstiḥālah carries the meaning of a transformation or a change in the nature of a thing into something else.According to the religious contact, Istiḥālah signifies a turning of a matter from a state of impurity or inedibility into a matter of different nature, name, properties, and characteristics (colour, taste, and smell) (Zuhayli, 1997). This principle, which is unanimously accepted by Muslim scholars, are breaths of fresh air to Muslims suffering from the suffocation of excessive prohibition. This will allow the invention to be utilized fully. This research tends to highlight the different ideological concepts of Istiḥālah from the perspective of Islamic Shariah and jurisprudence and its application in cosmetic products. However, the study focuses on the issues related to alcohol and pig ingredients in beauty products.

Keywords: istiḥālah. harām, jurisprudence, cosmetic, pig

Procedia PDF Downloads 133
5370 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping

Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung

Abstract:

Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.

Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)

Procedia PDF Downloads 257
5369 Evaluation of Opposite Type Heterologous MAT Genes Transfer in the Filamentous Fungi Neofusicoccum mediterraneum and Verticillium dahliae

Authors: Stavros Palavouzis, Alexandra Triantafyllopoulou, Aliki Tzima, Epaminondas Paplomatas

Abstract:

Mating-type genes are present in most filamentous fungi, even though teleomorphs for all species have not been recorded. Our study tries to explore the effect of different growth conditions on the expression of MAT genes in Neofusicoccum mediterraneum. As such, selected isolates were grown in potato dextrose broth or in water agar supplemented with pine needles under a 12 h photoperiod, as well as in constant darkness. Mycelia and spores were collected at different time points, and RNA extraction was performed, with the extracted product being used for cDNA synthesis. New primers for MAT gene expression were designed while qPCR results are underway. The second part of the study involved the isolation and cloning in a selected pGEM-T vector of the Botryosphaeria dothidea MAT1 1 1 and MAT1 2 1 mating genes, including flanking regions. As a next step, the genes were amplified using newly designed primers with engineered restriction sites. Amplicons were excised and subsequently sub-cloned in appropriate binary vectors. The constructs were afterward inserted into Agrobacterium tumefaciens and utilized for Agrobacterium-mediated transformation (ATMT) of Neofusicoccum mediterraneum. At the same time, the transformation of a Verticillium dahliae tomato race 1 strain (70V) was performed as a control. While the procedure was successful in regards to V. dahliae, transformed strains of N. mediterraneum could not be obtained. At present, a new transformation protocol, which utilizes a combination of protoplast and Agro transformation, is being evaluated.

Keywords: anamorph, heterothallism, perithecia, pycnidia, sexual stage

Procedia PDF Downloads 180
5368 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic

Procedia PDF Downloads 207
5367 Examination of Readiness of Teachers in the Use of Information-Communication Technologies in the Classroom

Authors: Nikolina Ribarić

Abstract:

This paper compares the readiness of chemistry teachers to use information and communication technologies in chemistry in 2018. and 2021. A survey conducted in 2018 on a sample of teachers showed that most teachers occasionally use visualization and digitization tools in chemistry teaching (65%) but feel that they are not educated enough to use them (56%). Also, most teachers do not have adequate equipment in their schools and are not able to use ICT in teaching or digital tools for visualization and digitization of content (44%). None of the teachers find the use of digitization and visualization tools useless. Furthermore, a survey conducted in 2021 shows that most teachers occasionally use visualization and digitization tools in chemistry teaching (83%). Also, the research shows that some teachers still do not have adequate equipment in their schools and are not able to use ICT in chemistry teaching or digital tools for visualization and digitization of content (14%). Advances in the use of ICT in chemistry teaching are linked to pandemic conditions and the obligation to conduct online teaching. The share of 14% of teachers who still do not have adequate equipment to use digital tools in teaching is worrying.

Keywords: chemistry, digital content, e-learning, ICT, visualization

Procedia PDF Downloads 156
5366 International Students in the US: Personality and Cross-Cultural Adaptability

Authors: Nhi Phuoc Thuc Le

Abstract:

Cross-cultural adaptability —one’s readiness to interact with people who are different from oneself or to adapt to living in another culture— is essential to the well-being and experience of international students. This research was set out to find the correlation between certain personality traits of international students and their likelihood to adapt to the U.S., the host culture. The study used Qualtrics, an online survey, to investigate the relationships between international students’ social self-efficacy, ego-resiliency, cultural intelligence, Big Five personality traits and cross-cultural adaptability (sociocultural and psychological adaptability). The data were analysed with the software SPSS. The findings of this quantitative study show that high scores in ego-resiliency, social self-efficacy, cultural intelligence and personality traits (including extraversion, agreeableness, intellect and conscientiousness) are correlated with better cross-cultural adaptation. Meanwhile, the Big-Five trait neuroticism is correlated with lower cross-cultural adaptability. Such insight is suggested to help international students be better prepared for an immersion into the US culture.

Keywords: Big Five, cross-cultural adaptability, cultural intelligence, ego-resiliency, international students, personality, self-efficacy

Procedia PDF Downloads 194
5365 Redefining Health Information Systems with Machine Learning: Harnessing the Potential of AI-Powered Data Fusion Ecosystems

Authors: Shohoni Mahabub

Abstract:

Health Information Systems (HIS) are essential to contemporary healthcare; nonetheless, they frequently encounter challenges such as data fragmentation, inefficiencies, and an absence of real-time analytics. The advent of machine learning (ML) and artificial intelligence (AI) provides a revolutionary potential to address these difficulties via AI-driven data fusion ecosystems. These ecosystems integrate many health data sources, including electronic health records (EHRs), wearable devices, and genetic data, with sophisticated machine learning techniques such as natural language processing (NLP) and predictive analytics to produce actionable insights. Through the integration of strong data intake layers, secure interoperability protocols, and privacy-preserving models, these ecosystems provide individualized treatment, early illness diagnosis, and enhanced operational efficiency. This paradigm change enhances clinical decision-making and rectifies systemic inefficiencies in healthcare delivery. Nonetheless, adoption presents problems such as data privacy concerns, ethical considerations, and scalability constraints. The study examines options such as federated learning for safe, decentralized data sharing, explainable AI for transparency, and cloud-based infrastructure for scalability to address these issues. These ecosystems aim to address health equity disparities, particularly in resource-limited environments, and improve public health surveillance, notably in pandemic response initiatives. This article emphasizes the revolutionary potential of AI-driven data fusion ecosystems in redefining Health Information Systems by providing an implementation roadmap and showcasing successful deployment case studies. The suggested method promotes a cooperative initiative among legislators, healthcare professionals, and technology to establish a cohesive, efficient, and patient-centric healthcare model.

Keywords: AI-powered healthcare systems, data fusion ecosystem, predictive analytics, digital health interoperability

Procedia PDF Downloads 15
5364 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array

Authors: Rachid Dehini, Brahim Berbaoui

Abstract:

The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)

Procedia PDF Downloads 333
5363 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm

Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang

Abstract:

In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.

Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm

Procedia PDF Downloads 152
5362 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 484
5361 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 92
5360 An Enhanced Digital Forensic Model for Internet of Things Forensic

Authors: Tina Wu, Andrew Martin

Abstract:

The expansion of the Internet of Things (IoT) brings a new level of threat. Attacks on IoT are already being used by criminals to form botnets, launch Distributed Denial of Service (DDoS) and distribute malware. This opens a whole new digital forensic arena to develop forensic methodologies in order to have the capability to investigate IoT related crimes. However, existing proposed IoT forensic models are still premature requiring further improvement and validation, many lack details on the acquisition and analysis phase. This paper proposes an enhanced theoretical IoT digital forensic model focused on identifying and acquiring the main sources of evidence in a methodical way. In addition, this paper presents a theoretical acquisition framework of the different stages required in order to be capable of acquiring evidence from IoT devices.

Keywords: acquisition, Internet of Things, model, zoning

Procedia PDF Downloads 272
5359 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony

Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim

Abstract:

This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.

Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting

Procedia PDF Downloads 330
5358 Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks

Authors: Tugce Talay, Kadir Erkan

Abstract:

In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque.

Keywords: AFPM, ANSYS Maxwell, cogging torque, design optimisation, efficiency, NNTOOL

Procedia PDF Downloads 221
5357 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence

Procedia PDF Downloads 331
5356 Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment

Authors: Chih Yuan Chen, Chien Chon Chen, Jin-Shyong Lin

Abstract:

The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression.

Keywords: nanostructure bainitic steel, tempered, TEM, nano-twin, dislocation debris, accommodation

Procedia PDF Downloads 536
5355 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition

Authors: Arūnas Burinskas

Abstract:

Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.

Keywords: Bertrand and Cournot Competition, competition model, industry 4.0, industrial organisation, monopolistic competition

Procedia PDF Downloads 140
5354 The Learning Impact of a 4-Dimensional Digital Construction Learning Environment

Authors: Chris Landorf, Stephen Ward

Abstract:

This paper addresses a virtual environment approach to work integrated learning for students in construction-related disciplines. The virtual approach provides a safe and pedagogically rigorous environment where students can apply theoretical knowledge in a simulated real-world context. The paper describes the development of a 4-dimensional digital construction environment and associated learning activities funded by the Australian Office for Learning and Teaching. The environment was trialled with over 1,300 students and evaluated through questionnaires, observational studies and coursework analysis. Results demonstrate a positive impact on students’ technical learning and collaboration skills, but there is need for further research in relation to critical thinking skills and work-readiness.

Keywords: architectural education, construction industry, digital learning environments, immersive learning

Procedia PDF Downloads 411
5353 Innovative Business Models in the Era of Digital Tourism: Examining Their Impact on International Travel, Local Businesses, and Residents’ Quality of Life

Authors: Madad Ali

Abstract:

In the contemporary landscape of international travel, the infusion of digital technologies has given rise to innovative business models that are reshaping the dynamics of tourism. This research delves into the transformative potential of these novel business models within the realm of digital tourism and their multifaceted impact on local businesses, residents' quality of life, and the overall travel experience. The study focuses on the captivating backdrop of Yunnan Province, China, renowned for its rich cultural heritage and diverse ethnic minorities, to uncover the intricate nuances of this phenomenon. The primary objectives of this research encompass the identification and categorization of emerging business models facilitated by digital technologies, their implications on tourist engagement, and their integration into the operations of local businesses. By employing a mixed-methods approach, blending qualitative techniques like interviews and content analysis with quantitative tools such as surveys and data analysis, the study provides a comprehensive evaluation of these business models' effects on various dimensions of the tourism landscape. The distinctiveness of this research lies in its exclusive focus on Yunnan Province, China. By concentrating on Yunnan Province, the research contributes exceptional insights into the interplay between digital tourism, ethnic diversity, cultural heritage, and sustainable development. The study's outcomes hold significance for both scholarly discourse and the stakeholders involved in shaping the region's tourism strategies.

Keywords: business model, digital tourism, international travel, local businesses, quality of life

Procedia PDF Downloads 60