Redefining Health Information Systems with Machine Learning: Harnessing the Potential of AI-Powered Data Fusion Ecosystems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87599
Redefining Health Information Systems with Machine Learning: Harnessing the Potential of AI-Powered Data Fusion Ecosystems

Authors: Shohoni Mahabub

Abstract:

Health Information Systems (HIS) are essential to contemporary healthcare; nonetheless, they frequently encounter challenges such as data fragmentation, inefficiencies, and an absence of real-time analytics. The advent of machine learning (ML) and artificial intelligence (AI) provides a revolutionary potential to address these difficulties via AI-driven data fusion ecosystems. These ecosystems integrate many health data sources, including electronic health records (EHRs), wearable devices, and genetic data, with sophisticated machine learning techniques such as natural language processing (NLP) and predictive analytics to produce actionable insights. Through the integration of strong data intake layers, secure interoperability protocols, and privacy-preserving models, these ecosystems provide individualized treatment, early illness diagnosis, and enhanced operational efficiency. This paradigm change enhances clinical decision-making and rectifies systemic inefficiencies in healthcare delivery. Nonetheless, adoption presents problems such as data privacy concerns, ethical considerations, and scalability constraints. The study examines options such as federated learning for safe, decentralized data sharing, explainable AI for transparency, and cloud-based infrastructure for scalability to address these issues. These ecosystems aim to address health equity disparities, particularly in resource-limited environments, and improve public health surveillance, notably in pandemic response initiatives. This article emphasizes the revolutionary potential of AI-driven data fusion ecosystems in redefining Health Information Systems by providing an implementation roadmap and showcasing successful deployment case studies. The suggested method promotes a cooperative initiative among legislators, healthcare professionals, and technology to establish a cohesive, efficient, and patient-centric healthcare model.

Keywords: AI-powered healthcare systems, data fusion ecosystem, predictive analytics, digital health interoperability

Procedia PDF Downloads 9