Search results for: concentration technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11075

Search results for: concentration technique

9785 Effective Solvents for Proteins Recovery from Microalgae

Authors: Win Nee Phong, Tau Chuan Ling, Pau Loke Show

Abstract:

From an industrial perspective, the exploitation of microalgae for protein source is of great economical and commercial interest due to numerous attractive characteristics. Nonetheless, the release of protein from microalgae is limited by the multiple layers of the rigid thick cell wall that generally contain a large proportion of cellulose. Thus an efficient cell disruption process is required to rupture the cell wall. The conventional downstream processing methods which typically involve several unit operational steps such as disruption, isolation, extraction, concentration and purification are energy-intensive and costly. To reduce the overall cost and establish a feasible technology for the success of the large-scale production, microalgal industry today demands a more cost-effective and eco-friendly technique in downstream processing. One of the main challenges to extract the proteins from microalgae is the presence of rigid cell wall. This study aims to provide some guidance on the selection of the efficient solvent to facilitate the proteins released during the cell disruption process. The effects of solvent types such as methanol, ethanol, 1-propanol and water in rupturing the microalgae cell wall were studied. It is interesting to know that water is the most effective solvent to recover proteins from microalgae and the cost is cheapest among all other solvents.

Keywords: green, microalgae, protein, solvents

Procedia PDF Downloads 258
9784 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals

Authors: Yunus Onur Yildiz, Mesut Kirca

Abstract:

In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.

Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation

Procedia PDF Downloads 277
9783 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Washwater

Authors: Syazwani Idrus, S. Charles J. Banks, Sonia Heaven

Abstract:

The study compared the performance of upflow anaerobic sludge blanket (UASB) reactors and anaerobic filters (AF) for the treatment of wheat straw washwater (WSW) which has a high concentration of Potassium ions. The trial was conducted at mesophilic temperatures (37 °C). The digesters were started up over a 48-day period using a synthetic wastewater feed and reached an organic loading rate (OLR) of 6 g COD L^-1 day^-1 with a specific methane production (SMP) of 0.333 L CH4 g^-1 COD. When the feed was switched to WSW it was not possible to maintain the same loading rate as the SMP in all reactors fell sharply to less than 0.1 L CH4 g^-1 COD, with the AF affected more than the UASB. On reducing the OLR to 3 g COD L^-1 day^-1 the reactors recovered to produce 0.21 L CH4 g^-1 CODadded and gave 82% COD removal. A discrepancy between the COD consumed and the methane produced could be accounted for through increased maintenance energy requirement of the microbial community for osmo-regulation as K+ was found to accumulate in the sludge and in the UASB reached a concentration of 4.5 mg K g^-1 wet weight of granules.

Keywords: anaerobic digestion, osmotic stress, chemical oxygen demand, specific methane production

Procedia PDF Downloads 655
9782 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System

Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin

Abstract:

Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.

Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers

Procedia PDF Downloads 150
9781 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles

Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica

Abstract:

Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.

Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation

Procedia PDF Downloads 301
9780 Mugil cephalus Presents a Feasible Alternative To Lates calcarifer Farming in Brackishwater: Evidence From Grey Mullet Mugil Cephalus Farming in Bangladesh

Authors: Asif Hasan

Abstract:

Among the reported suitable mariculture species in Bangladesh, seabass and mullet are the two most popular candidates due to their high market values. Several field studies conducted on the culture of seabass in Bangladesh, it still remains a challenge to commercially grow this species due to its exclusive carnivorous nature. In contrast, the grey mullet (M. cephalus) is a fast-growing, omnivorous euryhaline fish that has shown excellent growth in many areas including South Asia. Choice of a sustainable aquaculture technique must consider the productivity and yield as well as their environmental suitability. This study was designed to elucidate the ecologically suitable culture technique of M. cephalus in brakishwater ponds by comparing the biotic and abiotic components of pond ecosystem. In addition to growth parameters (yield, ADG, SGR, weight gain, FCR), Physicochemical parameters (Temperature, DO, pH, salinity, TDS, transparency, ammonia, and Chlorophyll-a concentration) and biological community composition (phytoplankton, zooplankton and benthic macroinvertebrates) were investigated from ponds under Semi-intensive, Improve extensive and Traditional culture system. While temperature were similar in the three culture types, ponds under improve-extensive showed better environmental conditions with significantly higher mean DO and transparency, and lower TDS and Chlorophyll-a. The abundance of zooplankton, phytoplankton and benthic macroinvertebrates were apparently higher in semi-intensive ponds. The Analysis of Similarity (ANOSIM) suggested moderate difference in the planktonic community composition. While the fish growth parameters of M. cephalus and total yield did not differ significantly between three systems, M. cephalus yield (kg/decimal) was apparently higher in semi-intensive pond due to high stocking density and intensive feeding. The results suggested that the difference between the three systems were due to more efficient utilization of nutrients in improve extensive ponds which affected fish growth through trophic cascades. This study suggested that different culture system of M. cephalus is an alternative and more beneficial method owing to its ecological and economic benefits in brackishwater ponds.

Keywords: Mugil cephalus, pond ecosystem, mariculture, fisheries management

Procedia PDF Downloads 73
9779 The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke

Authors: Yadong Liu

Abstract:

The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h.

Keywords: coke containing iron, formation and concentration and growth of TiC, reduction and carbonization, titanium-bearing slag

Procedia PDF Downloads 149
9778 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
9777 Polymer Advancement with Poly(High Internal Phase Emulsion) Poly(S/DVB) Modified via Layer-by-Layer for CO2 Adsorption

Authors: Saifon Chongthub

Abstract:

The purpose of this research is to synthesize adsorbent foam for CO2 adsorption. The polymer was prepared from poly High Internal Phase Emulsion (PolyHIPE) using styrene as monomer and divinylbenzene as comonomer. Its morphology was determined by Scanning Electron Microscopy (SEM). To further increased CO2 adsorption of the prepared polyHIPE, the layer by layer (LbL) technique was applied, which alternated polyelectrolyte injection between layers of Poly(styrenesulfonate) (PSS) and Poly(diallyldimetyl-ammonium chloride)(PDADMAC) as primary layer, and layers of PSS and polyetyleneimine (PEI) as secondary layer.

Keywords: high internal phase emulsion, polyHIPE, surface modification, layer by layer technique, CO2 adsorption

Procedia PDF Downloads 289
9776 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer

Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe

Abstract:

The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.

Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 114
9775 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique

Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François

Abstract:

Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.

Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus

Procedia PDF Downloads 363
9774 Push-Out Bond Strength of Two Root-End Filling Materials in Root-End Cavities Prepared by Er,Cr: YSGG Laser or Ultrasonic Technique

Authors: Noushin Shokouhinejad, Hasan Razmi, Reza Fekrazad, Saeed Asgary, Ammar Neshati, Hadi Assadian, Sanam Kheirieh

Abstract:

This study compared the push-out bond strength of mineral trioxide aggregate (MTA) and a new endodontic cement (NEC) as root-end filling materials in root-end cavities prepared by ultrasonic technique (US) or Er,Cr:YSGG laser (L). Eighty single-rooted extracted human teeth were endodontically treated, apicectomised and randomly divided into four following groups (n = 20): US/MTA, US/NEC, L/MTA and L/NEC. In US/MTA and US/NEC groups, rooted cavities were prepared with ultrasonic retrotip and filled with MTA and NEC, respectively. In L/MTA and L/NEC groups, root-end cavities were prepared using Er, Cr:YSGG laser and filled with MTA and NEC, respectively. Each root was cut apically to create a 2 mm-thick root slice for measurement of bond strength using a universal testing machine. Then, all slices were examined to determine the mode of bond failure. Data were analysed using two-way ANOVA. Root-end filling materials showed significantly higher bond strength in root-end cavities prepared using the ultrasonic technique (US/MTA and US/NEC) (P < 0.001). The bond strengths of MTA and NEC did not differ significantly. The failure modes were mainly adhesive for MTA, but cohesive for NEC. In conclusion, bond strengths of MTA and NEC to root-end cavities were comparable and higher in ultrasonically prepared cavities.

Keywords: bond strength, Er, Cr:YSGG laser, MTA, NEC, root-end cavity

Procedia PDF Downloads 345
9773 Intelligent Driver Safety System Using Fatigue Detection

Authors: Samra Naz, Aneeqa Ahmed, Qurat-ul-ain Mubarak, Irum Nausheen

Abstract:

Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident.

Keywords: drowsiness, eye closure, fatigue detection, yawn detection

Procedia PDF Downloads 293
9772 Sublethal Effects of Clothianidin and Summer Oil on the Demographic Parameters and Population Projection of Bravicoryne Brassicae(Hemiptera: Aphididae)

Authors: Mehdi Piri Ouchtapeh, Fariba Mehrkhou, Maryam Fourouzan

Abstract:

The cabbage aphid, Bravicoryne brassicae (Hemiptera: Aphididae), is known as an economically important and oligophagous pest of different cole crops. The polyvolitine characteristics of B. brassicae resulted in resistance to insecticides. For this purpose, in this study, the sub-lethal concentration (LC25) of two insecticides, clothianidin and summer oil, on the life table parameters and population projection of cabbage aphid were studied at controlled condition (20±1 ℃, R.H. 60 ±5 % and a photoperiod of 16:8 h (L:D). The dipping method was used in bioassay and life table studies. Briefly, the leaves of cabbage containing 15 the same-aged (24h) adults of cabbage aphid (four replicates) were dipped into the related concentrations of insecticides for 10 s. The sub-lethal (LC25) obtained concentration were used 5.822 and 108.741 p.p.m for clothianidin and summer oil, respectively. The biological and life table studies were done using at least 100, 93 and 82 the same age of eggs for control, summer oil and clothianidin treatments respectively. The life history data of the greenhouse whitefly cohorts exposed to sublethal concentration of the aforementioned insecticides were analyzed using the computer program TWOSEX–MSChart based on the age-stage, two-sex life table theory. The results of this study showed that the used insecticides affected the developmental time, survival rate, adult longevity, and fecundity of the F1 generation. The developmental time on control, clothianidin and summer oil treatments was obtained (5.91 ± 0.10 days), (7.64 ± 0.12 days) and (6.66 ± 0.10 days), respectively. The sublethal concentration of clothianidin resulted in decreasing of adult longevity (8.63 ± 0.30 days), fecundity (14.14 ± 87 nymphs), survival rate (71%) and the life expectancy (10.26 days) of B. brassicae, as well. Additionally, usage of LC25 insecticides led to decreasing of the net reproductive rate (R0) of the cabbage aphid compared to summer oil and control treatments. The intrinsic rate of increase (r) (day-1) was decreased in F1 adults of cabbage aphid compared with other treatments. Additionally, the population projection results were accordance with the population growth rate of cabbage aphid. Therefore, the findings of this research showed that, however, both of the insecticides were effective on cabbage aphid population, but clothianidin was more effective and could be consider in the management of aforementioned pest.

Keywords: the cabbage aphid, sublethal effects, survival rate, population projection, life expectancy

Procedia PDF Downloads 79
9771 Exposure to Radon on Air in Tourist Caves in Bulgaria

Authors: Bistra Kunovska, Kremena Ivanova, Jana Djounova, Desislava Djunakova, Zdenka Stojanovska

Abstract:

The carcinogenic effects of radon as a radioactive noble gas have been studied and show a strong correlation between radon exposure and lung cancer occurrence, even in the case of low radon levels. The major part of the natural radiation dose in humans is received by inhaling radon and its progenies, which originates from the decay chain of U-238. Indoor radon poses a substantial threat to human health when build-up occurs in confined spaces such as homes, mines and caves and the risk increases with the duration of radon exposure and is proportional to both the radon concentration and the time of exposure. Tourist caves are a case of special environmental conditions that may be affected by high radon concentration. Tourist caves are a recognized danger in terms of radon exposure to cave workers (guides, employees working in shops built above the cave entrances, etc.), but due to the sensitive nature of the cave environment, high concentrations cannot be easily removed. Forced ventilation of the air in the caves is considered unthinkable due to the possible harmful effects on the microclimate, flora and fauna. The risks to human health posed by exposure to elevated radon levels in caves are not well documented. Various studies around the world often detail very high concentrations of radon in caves and exposure of employees but without a follow-up assessment of the overall impact on human health. This study was developed in the implementation of a national project to assess the potential health effects caused by exposure to elevated levels of radon in buildings with public access under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018. The purpose of the work is to assess the radon level in Bulgarian caves and the exposure of the visitors and workers. The number of caves (sampling size) was calculated for simple random selection from total available caves 65 (sampling population) are 13 caves with confidence level 95 % and confidence interval (margin of error) approximately 25 %. A measurement of the radon concentration in air at specific locations in caves was done by using CR-39 type nuclear track-etch detectors that were placed by the participants in the research team. Despite the fact that all of the caves were formed in karst rocks, the radon levels were rather different from each other (97–7575 Bq/m3). An assessment of the influence of the orientation of the caves in the earth's surface (horizontal, inclined, vertical) on the radon concentration was performed. Evaluation of health hazards and radon risk exposure causing by inhaling the radon and its daughter products in each surveyed caves was done. Reducing the time spent in the cave has been recommended in order to decrease the exposure of workers.

Keywords: tourist caves, radon concentration, exposure, Bulgaria

Procedia PDF Downloads 189
9770 Dividend Payout and Capital Structure: A Family Firm Perspective

Authors: Abhinav Kumar Rajverma, Arun Kumar Misra, Abhijeet Chandra

Abstract:

Family involvement in business is universal across countries, with varying characteristics. Firms of developed economies have diffused ownership structure; however, that of emerging markets have concentrated ownership structure, having resemblance with that of family firms. Optimization of dividend payout and leverage are very crucial for firm’s valuation. This paper studies dividend paying behavior of National Stock Exchange listed Indian firms from financial year 2007 to 2016. The final sample consists of 422 firms and of these more than 49% (207) are family firms. Results reveal that family firms pay lower dividend and are more leveraged compared to non-family firms. This unique data set helps to understand dividend behavior and capital structure of sample firms over a long-time period and across varying family ownership concentration. Using panel regression models, this paper examines factors affecting dividend payout and capital structure and establishes a link between the two using Two-stage Least Squares regression model. Profitability shows a positive impact on dividend and negative impact on leverage, confirming signaling and pecking order theory. Further, findings support bankruptcy theory as firm size has a positive relation with dividend and leverage and volatility shows a negative relation with both dividend and leverage. Findings are also consistent with agency theory, family ownership concentration has negative relation with both dividend payments and leverage. Further, the impact of family ownership control confirms the similar finding. The study further reveals that firms with high family ownership concentration (family control) do have an impact on determining the level of private benefits. Institutional ownership is not significant for dividend payments. However, it shows significant negative relation with leverage for both family and non-family firms. Dividend payout and leverage show mixed association with each other. This paper provides evidence of how varying level of family ownership concentration and ownership control influences the dividend policy and capital structure of firms in an emerging market like India and it can have significant contribution towards understanding and formulating corporate dividend policy decisions and capital structure for emerging economies, where majority of firms exhibit behavior of family firm.

Keywords: dividend, family firms, leverage, ownership structure

Procedia PDF Downloads 280
9769 Effect of Entomopathogenic Fungi on the Food Consumption of Acrididae Species

Authors: S. Kumar, R. Sultana

Abstract:

This study was conducted to evaluate the effect of Aspergillus species on acridid populations which are major agricultural pests of rice, sugarcane, wheat, maize and fodder crops in Pakistan. Three and replicates i.e. Aspergillus flavus, A. fumigatus and A. niger, excluding the control, were held under laboratory conditions. It was observed that consumption faecal production of acridids was significantly reduced after the pathogenic application of Aspergillus. In the control replicate, the mortality ratio for stage (N4-N6) was maximum on day 2nd i.e. [F10.7 = 18.33, P < 0.05] followed by [F4.20 = 07.85, P < 0.05] and [F3.77 = 06.11, P < 0.05] on 4th and 3rd day, respectively. Similarly, it was a minimum i.e. [F0.48 = 84.65, P < 0.05] on the 1st day. It was also noted that faecal production of Acridid nymphs was not significantly affected when treated with conidial concentration in H2O formulation; however, it was significantly reduced after the contamination with conidial concentration in oil. The high morality of acridids after contamination of Aspergillus supports their use as bio-control agent for reducing pest population. The present study recommends that exploration and screening must be conducted to provide additional pathogens for evaluation as potential biological control against grasshoppers and locusts.

Keywords: acridid, agriculture, formulation, grasshoppers

Procedia PDF Downloads 258
9768 Investigation of the Grain-Boundary Segregation Transition in the Binary Fe-C Alloy

Authors: Végh Ádám, Mekler Csaba, Dezső András, Szabó Dávid, Stomp Dávid, Kaptay György

Abstract:

Grain boundary segregation transition (GBST) has been calculated by a thermodynamic model in binary alloys. The method is used on cementite (Fe3C) segregation in base-centered cubic (ferrite) iron (Fe) in the Fe-C binary system. The GBST line is shown in the Fe3C lacking part of the phase diagram with high solvent (Fe) concentration. At a lower solute content (C) or at higher temperature the grain boundary is composed mostly of the solvent atoms (Fe). On higher concentration compared to the GBST line or at lower temperature a phase transformation occurs at the grain boundary, the latter mostly composed of the associates (Fe3C). These low-segregation and high-segregation states are first order interfacial phase transitions of the grain boundary and can be transformed into each other reversibly. These occur when the GBST line is crossed by changing the bulk composition or temperature.

Keywords: GBST, cementite, segregation, Fe-C alloy

Procedia PDF Downloads 583
9767 Reducing Crash Risk at Intersections with Safety Improvements

Authors: Upal Barua

Abstract:

Crash risk at intersections is a critical safety issue. This paper examines the effectiveness of removing an existing off-set at an intersection by realignment, in reducing crashes. Empirical Bayes method was applied to conduct a before-and-after study to assess the effect of this safety improvement. The Transportation Safety Improvement Program in Austin Transportation Department completed several safety improvement projects at high crash intersections with a view to reducing crashes. One of the common safety improvement techniques applied was the realignment of intersection approaches removing an existing off-set. This paper illustrates how this safety improvement technique is applied at a high crash intersection from inception to completion. This paper also highlights the significant crash reductions achieved from this safety improvement technique applying Empirical Bayes method in a before-and-after study. The result showed that realignment of intersection approaches removing an existing off-set can reduce crashes by 53%. This paper also features the state of the art techniques applied in planning, engineering, designing and construction of this safety improvement, key factors driving the success, and lessons learned in the process.

Keywords: crash risk, intersection, off-set, safety improvement technique, before-and-after study, empirical Bayes method

Procedia PDF Downloads 245
9766 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method

Procedia PDF Downloads 288
9765 Synthesis and Characterizations of Lead-free BaO-Doped TeZnCaB Glass Systems for Radiation Shielding Applications

Authors: Rezaul K. Sk., Mohammad Ashiq, Avinash K. Srivastava

Abstract:

The use of radiation shielding technology ranging from EMI to high energy gamma rays in various areas such as devices, medical science, defense, nuclear power plants, medical diagnostics etc. is increasing all over the world. However, exposure to different radiations such as X-ray, gamma ray, neutrons and EMI above the permissible limits is harmful to living beings, the environment and sensitive laboratory equipment. In order to solve this problem, there is a need to develop effective radiation shielding materials. Conventionally, lead and lead-based materials are used in making shielding materials, as lead is cheap, dense and provides very effective shielding to radiation. However, the problem associated with the use of lead is its toxic nature and carcinogenic. So, to overcome these drawbacks, there is a great need for lead-free radiation shielding materials and that should also be economically sustainable. Therefore, it is necessary to look for the synthesis of radiation-shielding glass by using other heavy metal oxides (HMO) instead of lead. The lead-free BaO-doped TeZnCaB glass systems have been synthesized by the traditional melt-quenching method. X-ray diffraction analysis confirmed the glassy nature of the synthesized samples. The densities of the developed glass samples were increased by doping the BaO concentration, ranging from 4.292 to 4.725 g/cm3. The vibrational and bending modes of the BaO-doped glass samples were analyzed by Raman spectroscopy, and FTIR (Fourier-transform infrared spectroscopy) was performed to study the functional group present in the samples. UV-visible characterization revealed the significance of optical parameters such as Urbach’s energy, refractive index and optical energy band gap. The indirect and direct energy band gaps were decreased with the BaO concentration whereas the refractive index was increased. X-ray attenuation measurements were performed to determine the radiation shielding parameters such as linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), attenuation factor (Att%) and lead equivalent thickness of the lead-free BaO-doped TeZnCaB glass system. It was observed that the radiation shielding characteristics were enhanced with the addition of BaO content in the TeZnCaB glass samples. The glass samples with higher contents of BaO have the best attenuation performance. So, it could be concluded that the addition of BaO into TeZnCaB glass samples is a significant technique to improve the radiation shielding performance of the glass samples. The best lead equivalent thickness was 2.626 mm, and these glasses could be good materials for medical diagnostics applications.

Keywords: heavy metal oxides, lead-free, melt-quenching method, x-ray attenuation

Procedia PDF Downloads 31
9764 Manganese and Other Geothermal Minerals Exposure to Residents in Ketenger Village, Banyumas, Indonesia

Authors: Rita Yuniatun, Dewi Fadlilah Firdausi, Anida Hanifah, Putrisuvi Nurjannah Zalqis, Erza Nur Afrilia, Akrima Fajrin Nurimani, Andrew Luis Krishna

Abstract:

Manganese (Mn) is one of the potential contaminants minerals geothermal water. Preliminary studies conducted in Ketenger village, the nearest village with Baturaden hot spring, showed that the concentration of Mn in water supply has exceeded the reference value. Mineral contamination problem in Ketenger village is not only Mn, but also other potential geothermal minerals, such as chromium (Cr), iron (Fe), sulfide (S2-), nickel (Ni), cobalt (Co), and zinc (Zn). It becomes a concern because generally the residents still use ground water as the water source for their daily needs, including drinking and cooking. Therefore, this study aimed to determine the distribution of mineral contamination in drinking water and food and to estimate the health risks possibility from the exposure. Four minerals (Mn, Fe, S2-, and Cr6+) were analyzed in drinking water, carbohydrate sources, vegetables, fishes, and fruits. The test results indicate that Mn concentration in drinking water is 0.35 mg/L, has exceeded the maximum contaminant level (MCL) according to the US EPA (MCL = 0.005 mg/L), whereas other minerals still comply with the standards. In addition, we found that the average of Mn concentration in the carbohydrate sources is quite high (1.87 mg/Kg). Measurement results in Chronic Daily Intake (CDI) and the Risk Quotient (RQ) found that exposure to manganese and other geothermal minerals in drinking water and food are safe from the non-carcinogenic effects in each age group (RQ<1). So, geothermal mineral concentrations in drinking water and food has no effect on non-carcinogenic risk in Ketenger’s residents because of CDI is also influenced by other parameters such as the duration of exposure and the rate of consumption. However, it was found that intake of essential minerals (Mn and Fe) are deficient in every age group. So that, the addition of Mn and Fe intake is recommended.

Keywords: CDI, contaminant, geothermal minerals, manganese, RQ

Procedia PDF Downloads 267
9763 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate

Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano

Abstract:

The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.

Keywords: ammonium nitrate, malachite, copper oxide, leaching

Procedia PDF Downloads 189
9762 Synthesis of Y2O3 Films by Spray Coating with Milled EDTA ・Y・H Complexes

Authors: Keiji Komatsu,Tetsuo Sekiya, Ayumu Toyama, Atsushi Nakamura, Ikumi Toda, Shigeo Ohshio, Hiroyuki Muramatsu, Hidetoshi Saitoh

Abstract:

Yttrium oxide (Y2O3) films have been successfully deposited with yttrium-ethylenediaminetetraacetic acid (EDTA・Y・H) complexes prepared by various milling techniques. The effects of the properties of the EDTA・Y・H complex on the properties of the deposited Y2O3 films have been analyzed. Seven different types of the raw EDTA・Y・H complexes were prepared by various commercial milling techniques such as ball milling, hammer milling, commercial milling, and mortar milling. The milled EDTA・Y・H complexes exhibited various particle sizes and distributions, depending on the milling method. Furthermore, we analyzed the crystal structure, morphology and elemental distribution profile of the metal oxide films deposited on stainless steel substrate with the milled EDTA・Y・H complexes. Depending on the milling technique, the flow properties of the raw powders differed. The X-ray diffraction pattern of all the samples revealed the formation of Y2O3 crystalline phase, irrespective of the milling technique. Of all the different milling techniques, the hammer milling technique is considered suitable for fabricating dense Y2O3 films.

Keywords: powder sizes and distributions, flame spray coating techniques, Yttrium oxide

Procedia PDF Downloads 395
9761 Focalization Used as a Narrative Strategy Mirroring Fadia Faqir’s Ideology in Pillars of Salt 1996

Authors: Malika Hammouche

Abstract:

The novel Pillars of Salt, written by Fadia Faqir in 1996, is a good example where storytelling is utilized as a traditional material to underline the author’s womanist ideology. A study of narrative could be fruitfully combined with that of ideology in this case. This combination could be demonstrated through the narrative technique used by Fadia Faqir in Pillars of Salt (1996), reflecting her anti-colonial ideology. The first step of this work will highlight the storyteller’s narrative in the novel representing, on the one hand, the imperial voice, and on the other exoticism and orientalism. The second step will demonstrate how Faqir’s narrative technique uses focalization as a narratological tool to negotiate her space. Faqir gives a voice to the female protagonist of the novel within the androcentric bias of Arab narrative theory to point to and amend the orientalist discourse typical to colonial literature. The orientalist discourse is represented through the voice of the storyteller in the novel. The juxtaposition of the storyteller’s and the female protagonist narratives is borrowed from the Arab literary background. It is a postcolonial counter-discursive strategy used by the author as a traditional material to underline her Arabo Islamic Womanist ideology in this novel.

Keywords: Arabo Islamic womanism, focalization, ideology, narrative technique, orientalist

Procedia PDF Downloads 240
9760 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan

Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi

Abstract:

This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).

Keywords: PAHs, source identification, diagnostic ratio, principal component analysis, positive matrix factorization

Procedia PDF Downloads 267
9759 Electrospinning Parameters: Effect on the Morphology of Polylactic Acid/Polybutylene Succinate Fibers

Authors: Hamad Al-Turaif, Usman Saeed

Abstract:

The development of nanofibers with the help of electrospinning is being prioritized as a method of choice because of the simplicity and efficiency of the process. The parameters of the electrospinning process effectively convert the polymer solution into an electrospun final product made of the desired diameter of nanofiber. The aim of the study presented is to recognize and analyze the effect of proposed parameters on biodegradable and biocompatible polylactic acid (PLA)/polybutylene succinate (PBS) nanofiber developed by the electrospinning process. The morphology of the fiber is characterized by implementing Scanning Electron Microscope. Studies were conducted to characterize the result of using different electrospinning parameters on the final diameter and orientation of fiber. It was determined that varying polymer solution concentration, feed rate, and applied voltage show different outcomes. The best results were obtained at 6% polymer solution concentration, 20 kV, and 0.5 ml/h, which can be applicable for biomedical applications. Finally, protein adsorption and mechanical testing were conducted on the PLA/PBS fiber.

Keywords: electrospinning, polylactic acid, polybutylene succinate, morphology

Procedia PDF Downloads 132
9758 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: biochemical reactor, fermentation process, modelling, adaptive control

Procedia PDF Downloads 129
9757 Decision Support System for Solving Multi-Objective Routing Problem

Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal

Abstract:

This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.

Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path

Procedia PDF Downloads 414
9756 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration

Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas

Abstract:

Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.

Keywords: dough, experimental, numerical, rupture

Procedia PDF Downloads 122