Search results for: personalized medicine application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1833

Search results for: personalized medicine application

573 Immersive and Interactive Storytelling: Exploring Narratives and Online Multisensory Experience for Cultural Memory and Collective Awareness through Graphic Novel

Authors: Cristina Greco

Abstract:

The spread of the digital and we-based technologies has led to a transformation process, which has coincided with an increase in the number of cases who are beyond the mainstream storytelling and its codes on the interaction with the user. On the base of a previous research on i-docs and virtual museums, this study analyses interactive and immersive online Graphic Novel – one-page, animated, illustrated, and hybrid – to reflect on the transformational implications of this expressive form on the user perception, remembrance, and awareness. The way in which the user experiences a certain level of interaction with the story and immersion in the semantic and figurative universe would bring user’s attention, activating introspection and self-reflection processes, perception, imagination, and creativity. This would have to do with the involvement of different senses – visual, proprioceptive, tactile, auditory, and vestibular – and the activation of a phenomenon of synaesthesia (involuntary cross-modal sensory association) – where, for example, the aural reconnect the user to another sense, providing a multisensory experience. The case studies show specific forms of interactive and immersive graphic novel and reflect on application that has sought to engage innovative ways to communicate different messages and stimulate cultural memory and collective awareness. The visual semiotic and narrative analysis of the distinctive traits of such a complex textuality, along with a study of the user’s experience through observation in naturalistic settings and interviews, allows us to question the functioning of these configurations, with regard to the relationships between the figurative dimension, the perceptive activity, and their impact on the user’s engagement.

Keywords: collective awareness, cultural memory, graphic novel, interactive and immersive storytelling

Procedia PDF Downloads 144
572 User-Perceived Quality Factors for Certification Model of Web-Based System

Authors: Jamaiah H. Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadi Yah Jusoh

Abstract:

One of the most essential issues in software products is to maintain it relevancy to the dynamics of the user’s requirements and expectation. Many studies have been carried out in quality aspect of software products to overcome these problems. Previous software quality assessment models and metrics have been introduced with strengths and limitations. In order to enhance the assurance and buoyancy of the software products, certification models have been introduced and developed. From our previous experiences in certification exercises and case studies collaborating with several agencies in Malaysia, the requirements for user based software certification approach is identified and demanded. The emergence of social network applications, the new development approach such as agile method and other varieties of software in the market have led to the domination of users over the software. As software become more accessible to the public through internet applications, users are becoming more critical in the quality of the services provided by the software. There are several categories of users in web-based systems with different interests and perspectives. The classifications and metrics are identified through brain storming approach with includes researchers, users and experts in this area. The new paradigm in software quality assessment is the main focus in our research. This paper discusses the classifications of users in web-based software system assessment and their associated factors and metrics for quality measurement. The quality model is derived based on IEEE structure and FCM model. The developments are beneficial and valuable to overcome the constraints and improve the application of software certification model in future.

Keywords: software certification model, user centric approach, software quality factors, metrics and measurements, web-based system

Procedia PDF Downloads 400
571 Application of Biopolymer for Adsorption of Methylene Blue Dye from Simulated Effluent: A Green Method for Textile Industry Wastewater Treatment

Authors: Rabiya, Ramkrishna Sen

Abstract:

The textile industry releases huge volume of effluent containing reactive dyes in the nearby water bodies. These effluents are significant source of water pollution since most of the dyes are toxic in nature. Moreover, it scavenges the dissolved oxygen essential to the aquatic species. Therefore, it is necessary to treat the dye effluent before it is discharged in the nearby water bodies. The present study focuses on removing the basic dye methylene blue from simulated wastewater using biopolymer. The biopolymer was partially purified from the culture of Bacillus licheniformis by ultrafiltration. Based on the elution profile of the biopolymer from ion exchange column, it was found to be a negatively charged molecule. Its net anionic nature allows the biopolymer to adsorb positively charged molecule, methylene blue. The major factors which influence the removal of dye by the biopolymer such as incubation time, pH, initial dye concentration were evaluated. The methylene blue uptake by the biopolymer is more (14.84 mg/g) near neutral pH than in acidic pH (12.05mg/g) of the water. At low pH, the lower dissociation of the dye molecule as well as the low negative charge available on the biopolymer reduces the interaction between the biopolymer and dye. The optimum incubation time for maximum removal of dye was found to be 60 min. The entire study was done with 25 mL of dye solution in 100 mL flask at 25 °C with an amount of 11g/L of biopolymer. To study the adsorption isotherm, the dye concentration was varied in the range of 25mg/L to 205mg/L. The dye uptake by the biopolymer against the equilibrium concentration was plotted. The plot indicates that the adsorption of dye by biopolymer follows the Freundlich adsorption isotherm (R-square 0.99). Hence, these studies indicate the potential use of biopolymer for the removal of basic dye from textile wastewater in an ecofriendly and sustainable way.

Keywords: biopolymer, methylene blue dye, textile industry, wastewater

Procedia PDF Downloads 137
570 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats

Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.

Keywords: MDA, TBA, ciprofloxacin, HPLC-UV

Procedia PDF Downloads 319
569 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain

Authors: Vijay H. Ingole, Efthimia Lioliou

Abstract:

Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.

Keywords: indirubin, bacterial strain, fermentation, HPLC

Procedia PDF Downloads 16
568 Effect of Muscle Energy Technique on Anterior Pelvic Tilt in Lumbar Spondylosis Patients

Authors: Enas El Sayed Abutaleb, Mohamed Taher Eldesoky, Shahenda Abd El Rasol

Abstract:

Background: Muscle energy techniques (MET) have been widely used by manual therapists over the past years, but still limited research validated its use and there was limited evidence to substantiate the theories used to explain its effects. Objective: To investigate the effect of muscle energy technique (MET) on anterior pelvic tilt in patients with lumbar spondylosis. Design: Randomized controlled trial. Subjects: Thirty patients with anterior pelvic tilt from both sexes were involved, aged between 35 to 50 years old and they were divided into MET and control groups with 15 patients in each. Methods: All patients received 3 sessions/week for 4 weeks where the study group received MET, Ultrasound and Infrared, and the control group received U.S and I.R only. Pelvic angle was measured by palpation meter, pain severity by the visual analogue scale and functional disabilities by the Oswestry disability index. Results: Both groups showed significant improvement in all measured variables. The MET group was significantly better than the control group in pelvic angle, pain severity, and functional disability as p-value were (0.001, 0.0001, 0.0001) respectively. Conclusion and implication: The study group fulfilled greater improvement in all measured variables than the control group which implies that application of MET in combination with U.S and I.R were more effective in improving pelvic tilting angle, pain severity and functional disabilities than using electrotherapy only.

Keywords: anterior pelvic tilt, lumbar spondylosis, muscle energy technique exercise, pelvic tilting angle

Procedia PDF Downloads 391
567 Efficiency and Scale Elasticity in Network Data Envelopment Analysis: An Application to International Tourist Hotels in Taiwan

Authors: Li-Hsueh Chen

Abstract:

Efficient operation is more and more important for managers of hotels. Unlike the manufacturing industry, hotels cannot store their products. In addition, many hotels provide room service, and food and beverage service simultaneously. When efficiencies of hotels are evaluated, the internal structure should be considered. Hence, based on the operational characteristics of hotels, this study proposes a DEA model to simultaneously assess the efficiencies among the room production division, food and beverage production division, room service division and food and beverage service division. However, not only the enhancement of efficiency but also the adjustment of scale can improve the performance. In terms of the adjustment of scale, scale elasticity or returns to scale can help to managers to make decisions concerning expansion or contraction. In order to construct a reasonable approach to measure the efficiencies and scale elasticities of hotels, this study builds an alternative variable-returns-to-scale-based two-stage network DEA model with the combination of parallel and series structures to explore the scale elasticities of the whole system, room production division, food and beverage production division, room service division and food and beverage service division based on the data of international tourist hotel industry in Taiwan. The results may provide valuable information on operational performance and scale for managers and decision makers.

Keywords: efficiency, scale elasticity, network data envelopment analysis, international tourist hotel

Procedia PDF Downloads 221
566 Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model

Authors: Maryam Tajadod

Abstract:

The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located.

Keywords: bone metastases, lutetium-177, radium-223, actinium-225, absorbed dose

Procedia PDF Downloads 107
565 Corrosion Response of Friction Stir Processed Mg-Zn-Zr-RE Alloy

Authors: Vasanth C. Shunmugasamy, Bilal Mansoor

Abstract:

Magnesium alloys are increasingly being considered for structural systems across different industrial sectors, including precision components of biomedical devices, owing to their high specific strength, stiffness and biodegradability. However, Mg alloys exhibit a high corrosion rate that restricts their application as a biomaterial. For safe use as biomaterial, it is essential to control their corrosion rates. Mg alloy corrosion is influenced by several factors, such as grain size, precipitates and texture. In Mg alloys, microgalvanic coupling between the α-Mg matrix and secondary precipitates can exist, which results in an increased corrosion rate. The present research addresses this challenge by engineering the microstructure of a biodegradable Mg–Zn–RE–Zr alloy by friction stir processing (FSP), a severe plastic deformation process. The FSP-processed Mg alloys showed improved corrosion resistance and mechanical properties. FSPed Mg alloy showed refined grains, a strong basal texture and broken and uniformly distributed secondary precipitates in the stir zone. Mg, alloy base material, exposed to In vitro corrosion medium showed micro galvanic coupling between precipitate and matrix, resulting in the unstable passive layer. However, FS processed alloy showed uniform corrosion owing to stable surface film formation. The stable surface film is attributed to refined grains, preferred texture and distribution of precipitates. The research results show promising potential for Mg alloy to be developed as a biomaterial.

Keywords: biomaterials, severe plastic deformation, magnesium alloys, corrosion

Procedia PDF Downloads 36
564 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation

Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun

Abstract:

The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.

Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence

Procedia PDF Downloads 327
563 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques

Authors: Edwin Javier Cortes, Surupa Shaw

Abstract:

In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.

Keywords: flow control, efficiency, passive control, active control

Procedia PDF Downloads 66
562 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery

Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang

Abstract:

Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.

Keywords: solar, pothothermal, membrane, MWCNT

Procedia PDF Downloads 98
561 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex(X 0,02) Solid Solutions

Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze

Abstract:

Si-Ge solid solutions (bulk poly- and monocrystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. In this light complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, electrophysical characteristics, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at a room temperatures. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers concentration 5.1014-1.1015cm-3, dislocation density 5.103-1.104cm-2, microhardness according to Vickers method 900-1200 Kg/mm2. Investigate samples are characterized with 0,5x0,5x(10-15) mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Tendency to decrease of dynamic mechanical characteristics is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.

Keywords: Microhardness, internal friction, shear modulus, Monocrystalline

Procedia PDF Downloads 351
560 Acute Intraperitoneal Toxicity of Sesbania grandiflora (Katuray) Methanolic Flower Extract in Swiss Albino Mice

Authors: Levylee Bautista, Dawn Grace Santos, Aishwarya Veluchamy, Jesusa Santos, Ghafoor Haque, Jr. I, Rodolfo Rafael

Abstract:

Sesbania grandiflora is widely used in traditional medicine to treat a wide range of ailments. Assessment of its toxic properties is hence crucial when considering public health protection because exposure to plant extracts may pose adverse effects on consumers. This study aimed to investigate the acute intraperitoneal toxicity of S. grandiflora flower methanolic extract (SGFME) in Swiss albino mice. Four different concentrations (11.25, 22.5, 40, and 90 mg/kg) of SGFME were administered intraperitoneally and immediate behavioral and clinical signs were observed. All concentrations of SGFME-treated mice exhibited gasping and faster respiratory rate, writhing, reddening and fanning of the ears, paralysis of the hind leg, and mortality. Such reactions may be attributed to the histamine and saponin content of S. grandiflora. Results of this study suggests that intraperitoneal administration of SGFME produced significant adverse effect in mice, therefore, caution should be exercised in using it as herbal remedy since there is little control over its quality.

Keywords: acute toxicity test, histamine, medicinal plants, Sesbania grandiflora

Procedia PDF Downloads 163
559 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: time history dynamic analysis, basic modal displacement, earthquake-induced demands, shear steel structures

Procedia PDF Downloads 351
558 Isolation and Screening of Laccase Producing Basidiomycetes via Submerged Fermentations

Authors: Mun Yee Chan, Sin Ming Goh, Lisa Gaik Ai Ong

Abstract:

Approximately 10,000 different types of dyes and pigments are being used in various industrial applications yearly, which include the textile and printing industries. However, these dyes are difficult to degrade naturally once they enter the aquatic system. Their high persistency in natural environment poses a potential health hazard to all form of life. Hence, there is a need for alternative dye removal strategy in the environment via bioremediation. In this study, fungi laccase is investigated via commercial agar dyes plates and submerged fermentation to explore the application of fungi laccase in textile dye wastewater treatment. Two locally isolated basidiomycetes were screened for laccase activity using media added with commercial dyes such as 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), guaiacol and Remazol Brillant Blue R (RBBR). Isolate TBB3 (1.70±0.06) and EL2 (1.78±0.08) gave the highest results for ABTS plates with the appearance of greenish halo on around the isolates. Submerged fermentation performed on Isolate TBB3 with the productivity 3.9067 U/ml/day, whereas the laccase activity for Isolate EL2 was much lower (0.2097 U/ml/day). As isolate TBB3 showed higher laccase production, it was subjected to molecular characterization by DNA isolation, PCR amplification and sequencing of ITS region of nuclear ribosomal DNA. After being compared with other sequences in National Center for Biotechnology Information (NCBI database), isolate TBB3 is probably from species Trametes hirsutei. Further research work can be performed on this isolate by upscale the production of laccase in order to meet the demands of the requirement for higher enzyme titer for the bioremediation of textile dyes.

Keywords: bioremediation, dyes, fermentation, laccase

Procedia PDF Downloads 350
557 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts

Procedia PDF Downloads 249
556 The Effect of an e-Learning Program of Basic Cardiopulmonary Resuscitation for Students of an Emergency Medical Technician Program

Authors: Itsaree Padphai, Jiranan Pakpeian, Suksun Niponchai

Abstract:

This study is a descriptive research which aims to: 1) Compare the difference of knowledge before and after using the e-Learning program entitled “Basic Cardiopulmonary Resuscitation for Students in an Emergency Medical Technician Diploma Program”, and 2) Assess the students’ satisfaction after using the said program. This research is a kind of teaching and learning management supplemented with the e-Learning system; therefore, the purposively selected samples are 44 first-year and class-16 students of an emergency medical technician diploma program who attend the class in a second semester of academic year 2012 in Sirindhorn College of Public Health, Khon Kaen province. The research tools include 1) the questionnaire for general information of the respondents, 2) the knowledge tests before and after using the e-Learning program, and 3) an assessment of satisfaction in using the e-Learning program. The statistics used in data analysis percentage, include mean, standard deviation, and inferential statistics: paired t-test. 1. The general information of the respondents was mostly 37 females representing 84.09 percent. The average age was 19.5 years (standard deviation was 0.81), the maximum age was 21 years, and the minimum age was 19 years respectively. Students (35 subjects) admitted that they preferred the methods of teaching and learning by using the e-Learning systems. This was totally 79.95 percent. 2. A comparison on the difference of knowledge before and after using the e-Learning program showed that the mean before an application was 6.64 (standard deviation was 1.94) and after was 18.84 (standard deviation 1.03), which was higher than the knowledge of students before using the e-Learning program with the statistical significance (P value < 0.001). 3. For the satisfaction after using the e-Learning program, it was found that students’ satisfaction was at a very good level with the mean of 4.93 (standard deviation was 0.11).

Keywords: e-Learning, cardiopulmonary resuscitation, diploma program, Khon Kaen Province

Procedia PDF Downloads 394
555 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 465
554 Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction

Authors: Dibya Jivan Pati, Kazuhisa Iki, Riken Homma

Abstract:

Unlike other metro cities of India, Bhubaneswar–the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it’s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it’s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs.

Keywords: construction, dwelling unit, plastic bottle, solid waste generation, groups

Procedia PDF Downloads 473
553 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 367
552 An Investigation into Why Liquefaction Charts Work: A Necessary Step toward Integrating the States of Art and Practice

Authors: Tarek Abdoun, Ricardo Dobry

Abstract:

This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss’ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1 < 160 m/s), with this strain being about 0.03 to 0.05% for earthquake magnitude, Mw ≈ 7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by over consolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1 to 0.3%. These conclusions are validated by application to case histories corresponding to Mw ≈ 7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.

Keywords: permeability, lateral spreading, liquefaction, centrifuge modeling, shear wave velocity charts

Procedia PDF Downloads 291
551 Anticancer Effect of Isolated from the Methanolic Extract of Triticum Aestivum Straw in Mice

Authors: Savita Dixit

Abstract:

Rutin is the bioactive flavonoid isolated from the straw part of Triticum aestivum and possess various pharmacological applications. The aim of this study is to evaluate the chemopreventive potential of rutin in an experimental skin carcinogenesis mice model system. Skin tumor was induced by topical application of 7, 12-dimethyl benz(a) anthracene (DMBA) and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of rutin, it was orally administered at a concentration of (200 mg/kg and 400 mg/kg body weight) continued three times weekly for 16th weeks. The development of skin carcinogenesis was assessed by histopathological analysis. Reductions in tumor size and cumulative number of papillomas were seen due to rutin treatment. Average latent period was significantly increased as compared to carcinogen-treated control. Rutin produced a significant decrease in the activity of serum enzyme serum glutamate oxalate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin when compared with the control. They significantly increased the levels of enzyme involved in oxidative stress glutathione (GSH), superoxide dismutase (SOD) and catalase. The elevated level of lipid peroxidase in the control group was significantly inhibited by rutin administration. The results of the present study suggest the chemopreventive effect of rutin in DMBA and croton oil-induced skin carcinogenesis in swiss albino mice and one of the probable reasons would be its antioxidant potential.

Keywords: chemoprevention, papilloma, rutin, skin carcinogenesis

Procedia PDF Downloads 336
550 Treatment of Isopropyl Alcohol in Aqueous Solutions by VUV-Based AOPs within a Laminar-Falling-Film-Slurry Type Photoreactor

Authors: Y. S. Shen, B. H. Liao

Abstract:

This study aimed to develop the design equation of a laminar-falling-film-slurry (LFFS) type photoreactor for the treatment of organic wastewaters containing isopropyl alcohol (IPA) by VUV-based advanced oxidation processes (AOPs). The photoreactor design equations were established by combining with the chemical kinetics of the photocatalytic system, light absorption model within the photoreactor, and was used to predict the decomposition of IPA in aqueous solutions in the photoreactors of different geometries at various operating conditions (volumetric flow rate, oxidants, catalysts, solution pH values, UV light intensities, and initial concentration of pollutants) to verify its rationality and feasibility. By the treatment of the LFFS-VUV only process, it was found that the decomposition rates of IPA in aqueous solutions increased with the increase of volumetric flow rate, VUV light intensity, dosages of TiO2 and H2O2. The removal efficiencies of IPA by photooxidation processes were in the order: VUV/H2O2>VUV/TiO2/H2O2>VUV/TiO2>VUV only. In VUV, VUV/H2O2, VUV/TiO2/H2O2 processes, integrating with the reaction kinetic equations of IPA, the mass conservation equation and the linear light source model, the photoreactor design equation can reasonably to predict reaction behaviors of IPA at various operating conditions and to describe the concentration distribution profiles of IPA within photoreactors.The results of this research can be useful basis for the future application of the homogeneous and heterogeneous VUV-based advanced oxidation processes.

Keywords: isopropyl alcohol, photoreactor design, VUV, AOPs

Procedia PDF Downloads 374
549 The Production of Collagen and Collagen Peptides from Nile Tilapia Skin Using Membrane Technology

Authors: M. Thuanthong, W. Youravong, N. Sirinupong

Abstract:

Nile tilapia (Oreochromis niloticus) is one of fish species cultured in Thailand with a high production volume. A lot of skin is generated during fish processing. In addition, there are many research reported that fish skin contains abundant of collagen. Thus, the use of Nile tilapia skin as collagen source can increase the benefit of industrial waste. In this study, Acid soluble collagen (ASC) was extracted at 5, 15 or 25 ˚C with 0.5 M acetic acid then the acid was removed out and collagen was concentrated by ultrafiltration-diafiltration (UFDF). The triple helix collagen from UFDF process was used as substrate to produce collagen peptides by alcalase hydrolysis in an enzymatic membrane reactor (EMR) coupling with 1 kDa molecular weight cut off (MWCO) polysulfone hollow fiber membrane. The results showed that ASC extracted at high temperature (25 ˚C) with 0.5 M acetic acid for 5 h still preserved triple helix structure. In the UFDF process, the acid removal was higher than 90 % without any effect on ASC properties, particularly triple helix structure as indicated by circular dichroism spectrum. Moreover, Collagen from UFDF was used to produce collagen peptides by EMR. In EMR, collagen was pre-hydrolyzed by alcalase for 60 min before introduced to membrane separation. The EMR operation was operated for 10 h and provided a good of protein conversion stability. The results suggested that there is a successfulness of UF in application for acid removal to produce ASC with desirable preservation of its quality. In addition, the EMR was proven to be an effective process to produce low molecular weight peptides with ACE-inhibitory activity properties.

Keywords: acid soluble collagen, ultrafiltration-diafiltration, enzymatic membrane reactor, ace-inhibitory activity

Procedia PDF Downloads 475
548 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 62
547 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer

Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon

Abstract:

Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.

Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode

Procedia PDF Downloads 270
546 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature

Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy

Abstract:

Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.

Keywords: fly ash, geopolymer, potassium silicate, slag

Procedia PDF Downloads 219
545 Bio-Surfactant Production and Its Application in Microbial EOR

Authors: A. Rajesh Kanna, G. Suresh Kumar, Sathyanaryana N. Gummadi

Abstract:

There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.

Keywords: bio-surfactant, bacteria, interfacial tension, sand column

Procedia PDF Downloads 400
544 Development of Electrospun Porous Carbon Fibers from Cellulose/Polyacrylonitrile Blend

Authors: Zubair Khaliq, M. Bilal Qadir, Amir Shahzad, Zulfiqar Ali, Ahsan Nazir, Ali Afzal, Abdul Jabbar

Abstract:

Carbon fibers are one of the most demanding materials on earth due to their potential application in energy, high strength materials, and conductive materials. The nanostructure of carbon fibers offers enhanced properties of conductivity due to the larger surface area. The next generation carbon nanofibers demand the porous structure as it offers more surface area. Multiple techniques are used to produce carbon fibers. However, electrospinning followed by carbonization of the polymeric materials is easy to carry process on a laboratory scale. Also, it offers multiple diversity of changing parameters to acquire the desired properties of carbon fibers. Polyacrylonitrile (PAN) is the most used material for the production of carbon fibers due to its promising processing parameters. Also, cellulose is one of the highest yield producers of carbon fibers. However, the electrospinning of cellulosic materials is difficult due to its rigid chain structure. The combination of PAN and cellulose can offer a suitable solution for the production of carbon fibers. Both materials are miscible in the mixed solvent of N, N, Dimethylacetamide and lithium chloride. This study focuses on the production of porous carbon fibers as a function of PAN/Cellulose blend ratio, solution properties, and electrospinning parameters. These single polymer and blend with different ratios were electrospun to give fine fibers. The higher amount of cellulose offered more difficulty in electrospinning of nanofibers. After carbonization, the carbon fibers were studied in terms of their blend ratio, surface area, and texture. Cellulose contents offered the porous structure of carbon fibers. Also, the presence of LiCl contributed to the porous structure of carbon fibers.

Keywords: cellulose, polyacrylonitrile, carbon nanofibers, electrospinning, blend

Procedia PDF Downloads 198