Search results for: nursing interventions classification
3374 A Survey of Types and Causes of Medication Errors and Related Factors in Clinical Nurses
Authors: Kouorsh Zarea, Fatemeh Hassani, Samira Beiranvand, Akram Mohamadi
Abstract:
Background and Objectives: Medication error in hospitals is a major cause of the errors which disrupt the health care system. The aim of this study was to assess the nurses’ medication errors and related factors. Material and methods: This was a descriptive study on 225 nurses in various hospitals, selected through multistage random sampling. Data was collected by three researcher made tools; demographic, medication error and related factors questionnaires. Data was analyzed by descriptive statistics, Chi-square, Kruskal-Wallis, One-way analysis of variance. Results: Based on the results obtained, the type of medication errors giving drugs to patients later or earlier (55.6%), multiple oral medication together regardless of their interactions (36%) and the postoperative analgesic without a prescription (34.2%), respectively. In addition, factors such as the shortage of nurses to patients’ ratio (57.3%), high load functions (51.1%) and fatigue caused by the extra work (40.4%), were the most important factors affecting the incidence of medication errors. The fear of legal issues (40%) are the most important factor is the lack of reported medication errors. Conclusions: Based on the results, effective management and promotion motivate nurses. Therefore, increasing scientific and clinical expertise in the field of nursing medication orders is recommended to prevent medication errors in various states of nursing intervention. Employing experienced staff in areas with high risk of medication errors and also supervising less-experienced staff through competent personnel are also suggested.Keywords: medication error, nurse, clinical care, drug errors
Procedia PDF Downloads 2663373 A Service-Learning Experience in the Subject of Adult Nursing
Authors: Eva de Mingo-Fernández, Lourdes Rubio Rico, Carmen Ortega-Segura, Montserrat Querol-García, Raúl González-Jauregui
Abstract:
Today, one of the great challenges that the university faces is to get closer to society and transfer knowledge. The competency-based training approach favours a continuous interaction between practice and theory, which is why it is essential to establish real experiences with reflection and debate and to contrast them with personal and professional knowledge. Service-learning (SL) consists of an integration of academic learning with service in the community, which enables teachers to transfer knowledge with social value and students to be trained on the basis of experience of real needs and problems with the aim of solving them. SLE combines research, teaching, and social value knowledge transfer with the real social needs and problems of a community. Goal: The objective of this study was to design, implement, and evaluate a service-learning program in the subject of adult nursing for second-year nursing students. Methodology: After establishing collaboration with eight associations of people with different pathologies, the students were divided into eight groups, and each group was assigned an association. The groups were made up of 10-12 students. The associations willing to participate were for the following conditions: diabetes, multiple sclerosis, cancer, inflammatory bowel disease, fibromyalgia, heart, lung, and kidney diseases. The methodological design consisting of 5 activities was then applied. Three activities address personal and individual reflections, where the student initially describes what they think it is like to live with a certain disease. They then express their reflections resulting from an interview conducted by peers, in person or online, with a person living with this particular condition, and after sharing the results of their reflections with the rest of the group, they make an oral presentation in which they present their findings to the other students. This is followed by a service task in which the students collaborate in different activities of the association, and finally, a third individual reflection is carried out in which the students express their experience of collaboration. The evaluation of this activity is carried out by means of a rubric for both the reflections and the presentation. It should be noted that the oral presentation is evaluated both by the rest of the classmates and by the teachers. Results: The evaluation of the activity, given by the students, is 7.80/10, commenting that the experience is positive and brings them closer to the reality of the people and the area.Keywords: academic learning integration, knowledge transfer, service-learning, teaching methodology
Procedia PDF Downloads 673372 Quality of Life of Health Professionals during the COVID-19 Pandemic
Authors: Elucir Gir, Myllena Nilce de Freitas Surmano, Laelson Rochelle Milanês Sousa, Mayra Gonçalves Menegueti, Ana Cristina de Oliveira E Silva, Renata Karina Reis
Abstract:
Objective: To analyze the factors associated with the worsening of the quality of life of health professionals in the Southeast region of Brazil during the COVID-19 pandemic and its associated factors. Method: Analytical cross-sectional study carried out with health professionals from the southeastern region of Brazil. Data collection took place through an online survey with a form stored on the Survey Monkey platform. Bivariate analysis was used, and the chi-square test was adopted, followed by the multiple binary logistic regression model based on the stepwise method. Results: 3,493 health professionals participated in the study. Factors associated with worsening quality of life were: Professional Category (Nursing assistant) [OR 1.851 (95%CI 1.035-3.311) p= 0.038]; types of people who provided care (people in general) [OR 1.445 (95%CI 1.072-1.945) p=0.015]; Supply of good quality PPE by the institution where he works (no) [OR 1.595 (CI 95% 1.144-2.223) p= 0.006] and Supply of good quality PPE by the institution where he works (in part) [OR 1.563 (CI 95% 1.257-1.943) p < 0.001]. Conclusion: The factors associated with the worsening of the quality of life of health professionals during the COVID-19 pandemic were: Professional Category (Nursing assistant); types of people who provided assistance (people in general); Supply of sufficient PPE by the institution where you work (no) and Supply of good quality PPE by the institution where you work (in part). Future studies should investigate to what extent QoL can be improved based on modifiable factors.Keywords: COVID-19, quality of life, health professionals, respiratory infections
Procedia PDF Downloads 913371 Assessment of Human Factors Analysis and Classification System in Construction Accident Prevention
Authors: Zakari Mustapha, Clinton Aigbavboa, Wellington Didi Thwala
Abstract:
Majority of the incidents and accidents in complex high-risk systems that exist in the construction industry and other sectors have been attributed to unsafe acts of workers. The purpose of this paper was to asses Human Factors Analysis and Classification System (HFACS) in construction accident prevention. The study was conducted through the use of secondary data from journals, books and internet to achieve the objective of the study. The review of literature looked into details of different views from different scholars about HFACS framework in accidents investigations. It further highlighted on various sections or disciplines of accident occurrences in human performance within the construction. The findings from literature review showed that unsafe acts of a worker and unsafe working conditions are the two major causes of accident in the construction industry.Most significant factor in the cause of site accident in the construction industry is unsafe acts of a worker. The findings also show how the application of HFACS framework in the investigation of accident will lead to the identification of common trends. Further findings show that provision for the prevention of accident will be made based on past accident records to identify and prioritize where intervention is needed within the construction industry.Keywords: accident, construction, HFACS, unsafe acts
Procedia PDF Downloads 3213370 Orotic Acid-Induced Fatty Liver in Mink: Characterization and Testing of Bioactive Peptides for Prevention and Treatment
Authors: Don Buddika Oshadi Malaweera, Lora Harris, Bruce Rathgeber, Chibuike C. Udenigwe, Kirsti Rouvinen-Watt
Abstract:
Fatty liver disease is among the three most severe health concerns for mink and believed to occur through the same mechanism as nursing sickness. In North America, nursing sickness affects about 45% of mink farms and in Canada, approximately 50,000 mink females is affected annually. Orotic acid (OA) plays a critical role in lipid metabolism and can increase hepatic lipids by enhancing Sterol regulatory element binding protein-1c expression and decreasing Carnitine palmitoyl transferase I activity. This study was conducted to identify particular pathways and regulatory control points involved in fatty liver development, and evaluate the effectiveness of arginine and bioactive peptides for prevention and treatment of fatty liver disease in mink. A total of 45 mink were used in 9 treatments. The experimental diets consisted of 1% OA, 2% L-arginine and 5% of whey protein hydrolysates. At the end of 10 days of experimental period, the mink were anaesthetized, sampled for blood and euthanized, samples were obtained for histological, biochemical and molecular assays. The blood samples will be analyzed for clinical chemistry and triacylglycerol. The liver samples will be analyzed for total lipid content and analyzed for 6 genes of interest involved in adipogenic transformation, ER stress, and liver inflammation.Keywords: fatty liver, L-arginine, mink, orotic acid, whey protein hydrolysates
Procedia PDF Downloads 3023369 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques
Authors: Kishor Chandra Kandpal, Amit Kumar
Abstract:
The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests
Procedia PDF Downloads 2033368 A Retrospective Study - Demographical, Clinical and Pharmacological Correlate of Seclusion, Self-Discharge, Physical Aggression and Use of PRN Psychotropics Within The First 72 Hours Of Admission in The Acute Psychiatric Unit in Saudi Arabia
Authors: Asma AlAmri, Ahmed Hassab Errasoul
Abstract:
Background & Objectives: Psychiatric disorders are common, affecting approximately one of five adults (17.6%) of the population. While most patients can be successfully treated as outpatients, admission to psychiatric wards is required during relapses or as part of crisis intervention. The first 72h of admission could be particularly critical due to increased risk of physical violence, non-medical discharge and absconding. Many patients requiring interventions such as seclusion, physical restrain, PRN psychotropic medications. This study aims to investigate the relationship between demographical, clinical and pharmacological factors in one hand and certain outcomes (physical aggression, use of PRN medications, need for seclusions and non-medical discharges) within the first 72hours of admission to acute psychiatric wards in KKUH/Riyadh Methods: All admissions to psychiatric wards over a 20 month period, between (May 2015- January 2017) were included. Data was collected on demographics, diagnosis, psychotropic medications prescription, documented physical aggression, and seclusion, self-discharge and absconding. Results: 134 males and 171 females were admitted over the study period. Mean age was 34.2 years (SD 11.96).48.9% (n=149) were single and most patients (n=198) were either unemployed or in educations. Bipolar disorder was the most frequent diagnosis recorded on admission (39.3%, n=120); followed by Schizophrenia and related disorders (34.8%; n=106). Most patients (77.4%, n= 236) received regular psychotropic medications on admission. Vis a vis, 223 patients (73%) received PRN medications. Nominal regression model revealed positive relationship between “no psychotropics prescribed on admission” and self-discharge in women but not in men. No statistically significant relationship was found between age, gender, admission diagnosis and use of regular psychotropic medications on admission and need for seclusion, time spent in seclusion, documented physical aggression and use of PRN medications. Conclusion: Contrary to what is expected, our study does not show association between gender, physical aggression and need for seclusion. This could be due to poor documentation practices by nursing staff in male ward comparing with those in the female ward. Use of PRN psychotropics in the first 72 hours of admission was quite high possibly leading to a “ceiling effect”. A limitation of this study is the retrospective data collection.Keywords: discharge against medical advice, physical aggression, psychotropics, seclusion
Procedia PDF Downloads 1303367 Acceptance and Commitment Therapy as a Treatment for Alcohol Use Disorders in South Korea
Authors: Kim Eunha
Abstract:
This study examined a group-based intervention for alcohol use disorders based on the principles of acceptance and commitment therapy (ACT) in patients (N=22; 63.7% female; M = 38.2 years old; 100% South Korean) in a residential alcohol addiction treatment program. Patients were randomly assigned to either ACT group (receiving the ACT intervention) or control group (receiving treatment as usual). The ACT intervention consisted of four 2-hr group sessions scheduled during two weeks. The first session focused on the negative effects of suppression and avoidance, and a rationale for defusion and acceptance using several of the well-known ACT metaphors (e.g., Two Scales Metaphor, Man in the Hole). The second session taught defusion and acceptance skills through such exercises as mindfulness, cutting a sour fruit, naming one’s thoughts, and physicalizing. The third session included another mindfulness exercise and encouraged the participants to identify their values and set up life goals. The last session included more discussion on values and life goals, especially related to family and intimacy. The effects of the interventions were assessed using intent-to-treat analyses. The ACT interventions resulted in smaller immediate gains in motivation to stay sober and reductions in depression, anxiety, and experiential avoidance. In addition, at a 2-month follow up, those who attended the ACT group reported a lower average level of alcohol consumption and higher treatment attendance compared to the control group. These preliminary findings suggest that additional treatment and testing of ACT for alcohol use disorders will be crucial.Keywords: acceptance and commitment therapy, alcohol use disorders, defusion, values
Procedia PDF Downloads 2203366 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3763365 Study of Three-Dimensional Computed Tomography of Frontoethmoidal Cells Using International Frontal Sinus Anatomy Classification
Authors: Prabesh Karki, Shyam Thapa Chettri, Bajarang Prasad Sah, Manoj Bhattarai, Sudeep Mishra
Abstract:
Introduction: Frontal sinus is frequently described as the most difficult sinus to access surgically due to its proximity to the cribriform plate, orbit, and anterior ethmoid artery. Frontal sinus surgery requires a detailed understanding of the cellular structure and FSDP unique to each patient, making high-resolution CT scans an indispensable tool to assess the difficulty of planned sinus surgery. International Frontal Sinus Anatomy Classification (IFAC) was developed to provide a more precise nomenclature for cells in the frontal recess, classifying cells based on their anatomic origin. Objectives: To assess the proportion of frontal cell variants defined by IFAC, variation with respect to age and gender. Methods: 54 cases were enrolled after a detailed clinical history, thorough general and physical examinations, and CT a report ordered in a film. Assessment and tabulation of the presence of frontal cells according to the IFAC analyzed. The prevalence of each cell type was calculated, and data were entered in MS Excel and analyzed using Statistical Package for the Social Sciences (SPSS). Descriptive statistics and frequencies were defined for categorical and numerical variables. Frequency, percentage, the mean and standard deviation were calculated. Result: Among 54 patients, 30 (55.6%) were male and 24 (44.4%) were female. The patient enrolled ranged from 18 to 78 years. Majority33.3% (n=18) were in age group of >50 years.According to IFAC, Agger nasi cells (92.6%) were most common, whereas supraorbital ethmoidal cells were least common 16 (29.6%). Prevalence of other frontoethmoidal cells was SAC- 57.4%, SAFC- 38.9%, SBC- 74.1%, SBFC- 33.3%, FSC- 38.9% of 54 cases. Conclusion: IFAC is an international consensus document that describes an anatomically precise nomenclature for classifying frontoethmoidal cells' anatomy. This study has defined the prevalence, symmetry and reliability of frontoethmoidal cells as established by the IFAC system as in other parts of the world.Keywords: frontal sinus, frontoethmoidal cells, international frontal sinus anatomy classification
Procedia PDF Downloads 1003364 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 793363 System for Electromyography Signal Emulation Through the Use of Embedded Systems
Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.
Abstract:
This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.Keywords: classification, electromyography, embedded system, emulation, physiological signals
Procedia PDF Downloads 1113362 A Data Driven Methodological Approach to Economic Pre-Evaluation of Reuse Projects of Ancient Urban Centers
Authors: Pietro D'Ambrosio, Roberta D'Ambrosio
Abstract:
The upgrading of the architectural and urban heritage of the urban historic centers almost always involves the planning for the reuse and refunctionalization of the structures. Such interventions have complexities linked to the need to take into account the urban and social context in which the structure and its intrinsic characteristics such as historical and artistic value are inserted. To these, of course, we have to add the need to make a preliminary estimate of recovery costs and more generally to assess the economic and financial sustainability of the whole project of re-socialization. Particular difficulties are encountered during the pre-assessment of costs since it is often impossible to perform analytical surveys and structural tests for both structural conditions and obvious cost and time constraints. The methodology proposed in this work, based on a multidisciplinary and data-driven approach, is aimed at obtaining, at very low cost, reasonably priced economic evaluations of the interventions to be carried out. In addition, the specific features of the approach used, derived from the predictive analysis techniques typically applied in complex IT domains (big data analytics), allow to obtain as a result indirectly the evaluation process of a shared database that can be used on a generalized basis to estimate such other projects. This makes the methodology particularly indicated in those cases where it is expected to intervene massively across entire areas of historical city centers. The methodology has been partially tested during a study aimed at assessing the feasibility of a project for the reuse of the monumental complex of San Massimo, located in the historic center of Salerno, and is being further investigated.Keywords: evaluation, methodology, restoration, reuse
Procedia PDF Downloads 1873361 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 273360 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 1193359 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model
Procedia PDF Downloads 2073358 The Importance of Mental Health Literacy: Interventions in a Psychiatry Service of Hospital José Joaquim Fernandes, Portugal
Authors: Mariana Mangas, Yaroslava Martins, Ana Charraz, Ana Matos Pires
Abstract:
Introduction: Health literacy empowers people of knowledge, motivation and skills to access, understand, evaluate and mobilize information relating to health. Although the benefits of public knowledge of physical disease are widely accepted, knowledge about mental disorder has been compatibly neglected. Nowadays there is considerably evidence that literacy is of great importance for the promotion of health and prevention of mental illness. Objective: Disclosure the concept and importance of mental health literacy and introduce the literacy program of Psychiatry Service of Hospital José Joaquim Fernandes. Methodology: A search was conducted on PubMed, using keywords “literacy” and “mental health”. A description of mental health literacy interventions implemented on Psychiatry Service of Hospital José Joaquim Fernandes was performed, namely, psychoeducation programs for depression and bipolar disorder. Results and discussion: Health literacy enables patient to be able to actively participate in his treatment. The improving of mental health literacy can promote early identification of mental disorders, improve treatment results, increase the use of health services and allow the community to take action to achieve better mental health. Psychoeducation is very useful in improving the course of disease and in reducing the number of episodes and hospitalizations. Bipolar patients who received psychoeducation and pharmacotherapy have no relapses during the program and last year. Conclusion: Mental health literacy is not simply a matter of having knowledge, rather, it is knowledge linked to action which can benefit mental health.Keywords: mental health, literacy, psychoeducation, knowledge, empowerment
Procedia PDF Downloads 5473357 Investigation of the Historical Background of Monumental Mosques in Kocaeli, Turkey by IRT Techniques
Authors: Emre Kishalı, Neslihan TürkmenoğLu Bayraktar
Abstract:
Historical buildings may face various impacts throughout their life cycle. There have been environmental, structural, public works actions on old monuments influencing sustainability and maintenance issues. As a result, ancient monuments can have been undergone various changes in the context of restoration and repair. Currently, these buildings face integrated conditions including city planning macro solutions, old intervention methods, modifications in building envelope and artefacts in terms of conservation. Moreover, documentation of phases is an essential for assessing the historical building, yet it can result in highly complicated and interwoven issues. Herein, two monuments constructed in the 16th century are selected as case studies in Kocaeli, Turkey which are located in different micro climatic conditions and/or exposed to different interventions and which are important for the city as cultural property. Pertev Paşa Mosque (also known as Yenicuma Mosque) -constructed by Architect Sinan-; Gebze Çoban Mustafa Paşa Mosque -constructed in 1523 and known as the work of Architect Sinan but various names asserted as the architect of building according to resources. Active water infiltration and damages, recent material interventions, hidden niches, and foundation techniques of the mosque are investigated via Infrared Thermography under the project of 114K284, “Non-Destructive Test Applications, in the Context of Planned Conservation, through Historical Mosques of Kocaeli: Coban Mustafa Pasa Mosque, Fevziye Mosque and Pertev Pasa Mosque” funded by TUBITAK. It is aimed to reveal active deteriorations on building elements generated by unwanted effects of structural and climatic conditions, historical interventions, and modifications by monitoring the variation of surface temperature and humidity by IRT visualization method which is an important non- destructive process for investigation of monuments in the conservation field in the context of planned conservation. It is also concluded that in-situ monitoring process via IRT through different climatic conditions give substantial information on the behaviour of the envelope to the physical environmental conditions by observation of thermal performance, degradations. However, it is obvious that monitoring of historical buildings cannot be pursued by implementing a single non-destructive technique to have complete data of the structure.Keywords: IRT, non-destructive test, planned conservation, mosque
Procedia PDF Downloads 3523356 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine
Procedia PDF Downloads 1443355 Knowledge and Perceptions of Final-year Students towards Pharmacovigilance and Adverse Drug Reaction Reporting at the Faculty of Medical Sciences, Al-Razi University - Sana`a - Yemen
Authors: Nabil A. Albaser
Abstract:
Background: There is a serious problem with adverse drug reactions (ADRs) everywhere, including Yemen. Since it helps with the detection, assessment, reporting and prevention of ADRs, pharmacovigilance (PV) is an essential part of the healthcare system. The unbiased reporting of ADRs remains the foundation of PV. Students majoring in healthcare should acquire the knowledge and skills necessary to conduct PV in a range of clinical settings. The primary objective of this study was to evaluate the understanding and attitudes of final-year Pharmacy, Nursing, and Midwifery students at Al-Razi University in Sana'a, Yemen, regarding PV and ADRs reporting. Methods: The study followed descriptive cross-sectional approach. A validated, self-administered questionnaire with three parts—demographic information, knowledge, and perceptions of Pharmacovigilance was online distributed to final-year Pharmacy, Nursing, and Midwifery students. The questionnaire was given to 175 students; 122 of them responded with a percentage (69.7%). Results: The majority of respondents were male (79.5%). More than the tow-third of the students, 68.9%, were beyond the age of 23. Although the majority of students, 80%, heard about the terms of ADRs and PV, but only 50% and 57.4% of the respondents, respectively, could define the both terms correctly. However, only 11.48 % of them, nevertheless, took a PV course. More than a half of them (56.6%) had a positive perceptions towards pharmacovigilance and ADR reporting and had a moderate degree of knowledge (68.9%). Conclusion: The study demonstrated that the participants lacked sufficient knowledge of pharmacovigilance and ADR reporting. They showed a moderate level of understanding of reporting ADRs as well as a favorable opinion of dealing with and reporting ADRs. Yemen's health care curriculum should include lessons on pharmacovigilance.Keywords: adverse drug reaction reporting, pharmacovigilance, yemen, knowlegde
Procedia PDF Downloads 1183354 Exploring Introducing a Plant-Based Diet into Patient Education in the Primary Care Setting, and the Positive Effects on Combatting Common Chronic Illnesses Such as Hypertension, Hyperlipidemia, and Diabetes Mellitus Type II
Authors: Arielle Ferdinand
Abstract:
A plant-based diet focuses on foods from plant sources, limiting or altogether omitting animal products. Some of the most common chronic illnesses seen in primary care are hypertension, hyperlipidemia, and diabetes type II. These common chronic illnesses can often be debilitating, costly, time-consuming, and, when left untreated, can lead to an early death. Treatment and maintenance of care are also labor intensive for the patient. They are often required to have at least four blood pressure checks yearly and a hemoglobin A1C checked quarterly. Though preventative interventions and prevention education should be included in patient visits in the primary care setting, education about dietary interventions, such as a plant-based diet, also yields positive outcomes for patients who already have hypertension, hyperlipidemia, and diabetes mellitus type 2. Evidence will show that incorporating a plant-based diet results in decreased blood pressure, as well as decreased levels of LDL-C, improved post-prandial glucose levels, and a reduction in HbA1C. It is cost-effective for the patient by generally lower grocery costs, and it can either reduce or prevent the need to pay for more office visits and pharmacotherapy. Incorporating this method of dietary changes is an easy intervention during a primary care office visit that would greatly benefit the patient in many ways.Keywords: plant-based, nutrition, diabetes, hyperlipidemia
Procedia PDF Downloads 913353 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece
Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos
Abstract:
The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening
Procedia PDF Downloads 2923352 Advancing Our Understanding of Age-Related Changes in Executive Functions: Insights from Neuroimaging, Genetics and Cognitive Neurosciences
Authors: Yasaman Mohammadi
Abstract:
Executive functions are a critical component of goal-directed behavior, encompassing a diverse set of cognitive processes such as working memory, cognitive flexibility, and inhibitory control. These functions are known to decline with age, but the precise mechanisms underlying this decline remain unclear. This paper provides an in-depth review of recent research investigating age-related changes in executive functions, drawing on insights from neuroimaging, genetics, and cognitive neuroscience. Through an interdisciplinary approach, this paper offers a nuanced understanding of the complex interplay between neural mechanisms, genetic factors, and cognitive processes that contribute to executive function decline in aging. Here, we investigate how different neuroimaging methods, like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have helped scientists better understand the brain bases for age-related declines in executive function. Additionally, we discuss the role of genetic factors in mediating individual differences in executive functions across the lifespan, as well as the potential for cognitive interventions to mitigate age-related decline. Overall, this paper presents a comprehensive and integrative view of the current state of knowledge regarding age-related changes in executive functions. It underscores the need for continued interdisciplinary research to fully understand the complex and dynamic nature of executive function decline in aging, with the ultimate goal of developing effective interventions to promote healthy cognitive aging.Keywords: executive functions, aging, neuroimaging, cognitive neuroscience, working memory, cognitive training
Procedia PDF Downloads 673351 Triangular Geometric Feature for Offline Signature Verification
Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad
Abstract:
Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier
Procedia PDF Downloads 3783350 The Impacts of Negative Moral Characters on Health: An Article Review
Authors: Mansoor Aslamzai, Delaqa Del, Sayed Azam Sajid
Abstract:
Introduction: Though moral disorders have a high burden, there is no separate topic regarding this problem in the International Classification of Diseases (ICD). Along with the modification of WHO ICD-11, spirituality can prevent the rapid progress of such derangement as well. Objective: This study evaluated the effects of bad moral characters on health, as well as carried out the role of spirituality in the improvement of immorality. Method: This narrative article review was accomplished in 2020-2021 and the articles were searched through the Web of Science, PubMed, BMC, and Google scholar. Results: Based on the current review, most experimental and observational studies revealed significant negative effects of unwell moral characters on the overall aspects of health and well-being. Nowadays, a lot of studies established the positive role of spirituality in the improvement of health and moral disorder. The studies concluded, facilities must be available within schools, universities, and communities for everyone to learn the knowledge of spirituality and improve their unwell moral character world. Conclusion: Considering the negative relationship between unwell moral characters and well-being, the current study proposes the addition of moral disorder as a separate topic in the WHO International Classification of Diseases. Based on this literature review, spirituality will improve moral disorder and establish excellent moral traits.Keywords: bad moral characters, effect, health, spirituality and well-being
Procedia PDF Downloads 1833349 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 1283348 Effectiveness of Prehabilitation on Improving Emotional and Clinical Recovery of Patients Undergoing Open Heart Surgeries
Authors: Fatma Ahmed, Heba Mostafa, Bassem Ramdan, Azza El-Soussi
Abstract:
Background: World Health Organization stated that by 2020 cardiac disease will be the number one cause of death worldwide and estimates that 25 million people per year will suffer from heart disease. Cardiac surgery is considered an effective treatment for severe forms of cardiovascular diseases that cannot be treated by medical treatment or cardiac interventions. In spite of the benefits of cardiac surgery, it is considered a major stressful experience for patients who are candidate for surgery. Prehabilitation can decrease incidences of postoperative complications as it prepares patients for surgical stress through enhancing their defenses to meet the demands of surgery. When patients anticipate the postoperative sequence of events, they will prepare themselves to act certain behaviors, identify their roles and actively participate in their own recovery, therefore, anxiety levels are decreased and functional capacity is enhanced. Prehabilitation programs can comprise interventions that include physical exercise, psychological prehabilitation, nutritional optimization and risk factor modification. Physical exercises are associated with improvements in the functioning of the various physiological systems, reflected in increased functional capacity, improved cardiac and respiratory functions and make patients fit for surgical intervention. Prehabilitation programs should also prepare patients psychologically in order to cope with stress, anxiety and depression associated with postoperative pain, fatigue, limited ability to perform the usual activities of daily living through acting in a healthy manner. Notwithstanding the benefits of psychological preparations, there are limited studies which investigated the effect of psychological prehabilitation to confirm its effect on psychological, quality of life and physiological outcomes of patients who had undergone cardiac surgery. Aim of the study: The study aims to determine the effect of prehabilitation interventions on outcomes of patients undergoing cardiac surgeries. Methods: Quasi experimental study design was used to conduct this study. Sixty eligible and consenting patients were recruited and divided into two groups: control and intervention group (30 participants in each). One tool namely emotional, physiological, clinical, cognitive and functional capacity outcomes of prehabilitation intervention assessment tool was utilized to collect the data of this study. Results: Data analysis showed significant improvement in patients' emotional state, physiological and clinical outcomes (P < 0.000) with the use of prehabilitation interventions. Conclusions: Cardiac prehabilitation in the form of providing information about surgery, circulation exercise, deep breathing exercise, incentive spirometer training and nutritional education implemented daily by patients scheduled for elective open heart surgery one week before surgery have been shown to improve patients' emotional state, physiological and clinical outcomes.Keywords: emotional recovery, clinical recovery, coronary artery bypass grafting patients, prehabilitation
Procedia PDF Downloads 2043347 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation
Authors: Carl van Walraven, Meltem Tuna
Abstract:
Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation
Procedia PDF Downloads 2353346 Application of Italian Guidelines for Existing Bridge Management
Authors: Giovanni Menichini, Salvatore Giacomo Morano, Gloria Terenzi, Luca Salvatori, Maurizio Orlando
Abstract:
The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed.Keywords: bridge safety assessment, Italian guidelines implementation, risk classification, structural health monitoring
Procedia PDF Downloads 563345 The Role of ICTS in Improving the Quality of Public Spaces in Large Cities of the Third World
Authors: Ayat Ayman Abdelaziz Ibrahim Amayem, Hassan Abdel-Salam, Zeyad El-Sayad
Abstract:
Nowadays, ICTs have spread extensively in everyday life in an unprecedented way. A great attention is paid to the ICTs while ignoring the social aspect. With the immersive invasion of internet as well as smart phones’ applications and digital social networking, people become more socially connected through virtual spaces instead of meeting in physical public spaces. Thus, this paper aims to find the ways of implementing ICTs in public spaces to regain their status as attractive places for people, incite meetings in real life and create sustainable lively city centers. One selected example of urban space in the city center of Alexandria is selected for the study. Alexandria represents a large metropolitan city subjected to rapid transformation. Improving the quality of its public spaces will have great effects on the whole well-being of the city. The major roles that ICTs can play in the public space are: culture and art, education, planning and design, games and entertainment, and information and communication. Based on this classification various examples and proposals of ICTs interventions in public spaces are presented and analyzed to encourage good old fashioned social interaction by creating the New Social Public Place of this Digital Era. The paper will adopt methods such as questionnaire for evaluating the people’s willingness to accept the idea of using ICTs in public spaces, their needs and their proposals for an attractive place; the technique of observation to understand the people behavior and their movement through the space and finally will present an experimental design proposal for the selected urban space. Accordingly, this study will help to find design principles that can be adopted in the design of future public spaces to meet the needs of the digital era’s users with the new concepts of social life respecting the rules of place-making.Keywords: Alexandria sustainable city center, digital place-making, ICTs, social interaction, social networking, urban places
Procedia PDF Downloads 420