Search results for: multiple sills emplacement
3492 Content and Langauge Integrated Learning: English and Art History
Authors: Craig Mertens
Abstract:
Teaching art history or any other academic subject to EFL students can be done successfully. A course called Western Images was created to teach Japanese students art history while only using English in the classroom. An approach known as Content and Language Integrated Learning (CLIL) was used as a basis for this course. This paper’s purpose is to state the reasons why learning about art history is important, go through the process of creating content for the course, and suggest multiple tasks to help students practice the critical thinking skills used in analyzing and drawing conclusions of works of art from western culture. As a guide for this paper, Brown’s (1995) six elements of a language curriculum will be used. These stages include needs analysis, goals and objectives, assessment, materials, teaching method and tasks, and evaluation of the course. The goal here is to inspire debate and discussion regarding CLIL and its pros and cons, and to question current curriculum in university language courses.Keywords: art history, EFL, content and language integration learning, critical thinking
Procedia PDF Downloads 5973491 Scalable Performance Testing: Facilitating The Assessment Of Application Performance Under Substantial Loads And Mitigating The Risk Of System Failures
Authors: Solanki Ravirajsinh
Abstract:
In the software testing life cycle, failing to conduct thorough performance testing can result in significant losses for an organization due to application crashes and improper behavior under high user loads in production. Simulating large volumes of requests, such as 5 million within 5-10 minutes, is challenging without a scalable performance testing framework. Leveraging cloud services to implement a performance testing framework makes it feasible to handle 5-10 million requests in just 5-10 minutes, helping organizations ensure their applications perform reliably under peak conditions. Implementing a scalable performance testing framework using cloud services and tools like JMeter, EC2 instances (Virtual machine), cloud logs (Monitor errors and logs), EFS (File storage system), and security groups offers several key benefits for organizations. Creating performance test framework using this approach helps optimize resource utilization, effective benchmarking, increased reliability, cost savings by resolving performance issues before the application is released. In performance testing, a master-slave framework facilitates distributed testing across multiple EC2 instances to emulate many concurrent users and efficiently handle high loads. The master node orchestrates the test execution by coordinating with multiple slave nodes to distribute the workload. Slave nodes execute the test scripts provided by the master node, with each node handling a portion of the overall user load and generating requests to the target application or service. By leveraging JMeter's master-slave framework in conjunction with cloud services like EC2 instances, EFS, CloudWatch logs, security groups, and command-line tools, organizations can achieve superior scalability and flexibility in their performance testing efforts. In this master-slave framework, JMeter must be installed on both the master and each slave EC2 instance. The master EC2 instance functions as the "brain," while the slave instances operate as the "body parts." The master directs each slave to execute a specified number of requests. Upon completion of the execution, the slave instances transmit their results back to the master. The master then consolidates these results into a comprehensive report detailing metrics such as the number of requests sent, encountered errors, network latency, response times, server capacity, throughput, and bandwidth. Leveraging cloud services, the framework benefits from automatic scaling based on the volume of requests. Notably, integrating cloud services allows organizations to handle more than 5-10 million requests within 5 minutes, depending on the server capacity of the hosted website or application.Keywords: identify crashes of application under heavy load, JMeter with cloud Services, Scalable performance testing, JMeter master and slave using cloud Services
Procedia PDF Downloads 273490 The Anti-Inflammatory Effects of Nanodiamond Particles and Lipoic Acid on Rats' Cardiovascular System
Authors: Beata Skibska, Andrzej Stanczak, Agnieszka Skibska
Abstract:
Nanodiamond (ND) is a carbon nanomaterial that has high biocompatibility, and it has a very positive effect on a number of biochemical processes. NDs have great potential in treating multiple inflammation-associated diseases. The purpose of this study was to investigate the anti-inflammatory effect of nanodiamonds and lipoic acid (LA) (as antioxidants) on rats' cardiovascular systems after lipopolysaccharide (LPS) administration. Animal experiments enabled the determination of how nanodiamonds act when applied independently or in combination with lipoic acid. The effect of NDs and LA on C-reactive protein (CRP) levels and heart edema was evaluated. NDs and LA administered after LPS administration attenuated heart edema and significantly decreased the CRP level. The results suggest that NDs and LA play an important role in LPS-induced inflammation in the heart. NDs find new applications in modern biomedical science and biotechnologies.Keywords: nanodiamonds, lipoic acid, inflammation, cardiovascular system
Procedia PDF Downloads 873489 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 1083488 Investigation of the Relationship between Physical Activity and Stress and Mental Health in the Elderly
Authors: Mohamad Reza Khodabakhsh
Abstract:
Physical activity is important because it affects the stress and mental health of the elderly. The purpose of this research is to examine the relationship between the physical activity of the elderly and stress and mental health. The current research is correlational research, and the studied population includes all the elderly who are engaged in sports in the parks of Mashhad city in 2021. The whole community consists of 200 people. Sampling was done by the headcount method. The tool used in this research is a questionnaire. The physical activity questionnaire is Likert. General GHQ is based on the self-report method. The study method is correlation type to find the relationship between predictor and predicted variables, and the multiple regression method was used for the relationships between the sub-components. And the results showed that physical activity has the effect of reducing the stress of the elderly and improving their mental health. In general, the results of this research indicate the confirmation of the research hypotheses.Keywords: relationship, physical activity, stress, mental health, elderly
Procedia PDF Downloads 973487 Endometriosis: The Optimal Treatment of Recurrent Endometrioma in Infertile Patients
Authors: Smita Lakhotia, C. Kew, S. H. M. Siraj, B. Chern
Abstract:
Up to 50% of those with endometriosis may suffer from infertility due to either distorted pelvic anatomy/impaired oocyte release or inhibit ovum pickup and transport, altered peritoneal function, endocrine and anovulatory disorders, including LUF, impaired implantation, progesterone resistance or decreased levels of cellular immunity. The dilemma continues as to whether the surgery or IVF is the optimal management for such recurrent endometriomas. The core question is whether surgery adds anything of value for infertile women with recurrent endometriosis or not. Complete and detailed information on risks and benefits of treatment alternatives must be offered to patients, giving a realistic estimate of chances of success of repetitive surgery and of multiple IVF cycles in order to allow unbiased choices between different possible optionsAn individualized treatment plan should be developed taking into account patient age, duration of infertility, previous pregnancies and specific clinical conditions and wish.Keywords: recurrent endometriosis, infertility, oocyte release, pregnancy
Procedia PDF Downloads 2443486 Social and Economic Aspects of Unlikely but Still Possible Welfare to Work Transitions from Long-Term Unemployed
Authors: Andreas Hirseland, Lukas Kerschbaumer
Abstract:
In Germany, during the past years there constantly are about one million long term unemployed who did not benefit from the prospering labor market while most short term unemployed did. Instead, they are continuously dependent on welfare and sometimes precarious short-term employment, experiencing work poverty. Long term unemployment thus turns into a main obstacle to regular employment, especially if accompanied by other impediments such as low level education (school/vocational), poor health (especially chronical illness), advanced age (older than fifty), immigrant status, motherhood or engagement in care for other relatives. Almost two thirds of all welfare recipients have multiple impediments which hinder a successful transition from welfare back to sustainable and sufficient employment. Hiring them is often considered as an investment too risky for employers. Therefore formal application schemes based on formal qualification certificates and vocational biographies might reduce employers’ risks but at the same time are not helpful for long-term unemployed and welfare recipients. The panel survey ‘Labor market and social security’ (PASS; ~15,000 respondents in ~10,000 households), carried out by the Institute of Employment Research (the research institute of the German Federal Labor Agency), shows that their chance to get back to work tends to fall to nil. Only 66 cases of such unlikely transitions could be observed. In a sequential explanatory mixed-method study, the very scarce ‘success stories’ of unlikely transitions from long term unemployment to work were explored by qualitative inquiry – in-depth interviews with a focus on biography accompanied by qualitative network techniques in order to get a more detailed insight of relevant actors involved in the processes which promote the transition from being a welfare recipient to work. There is strong evidence that sustainable transitions are influenced by biographical resources like habits of network use, a set of informal skills and particularly a resilient way of dealing with obstacles, combined with contextual factors rather than by job-placement procedures promoted by Job-Centers according to activation rules or by following formal paths of application. On the employer’s side small and medium-sized enterprises are often found to give job opportunities to a wider variety of applicants, often based on a slow but steadily increasing relationship leading to employment. According to these results it is possible to show and discuss some limitations of (German) activation policies targeting welfare dependency and long-term unemployment. Based on these findings, indications for more supportive small scale measures in the field of labor-market policies are suggested to help long-term unemployed with multiple impediments to overcome their situation.Keywords: against-all-odds, economic sociology, long-term unemployment, mixed-methods
Procedia PDF Downloads 2383485 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 853484 The Fake News Impact on the Public Policy Cycle: A Systemic Analysis through Documentary Survey
Authors: Aron Miranda Burgos, Ergon Cugler de Moraes Silva
Abstract:
In the present article, it is observed that the constant advancement of issues related to misinformation impacts the guarantee of the public policy cycle. Thus, it is found that the dissemination of false information has a direct influence on each of the component stages of this cycle. Therefore, in order to maintain scientific and theoretical credibility in the qualitative analysis process, it was necessary to logically interpose the concepts of firehosing of falsehood, fake news, public policy cycle, as well as using the epistemological and pragmatic mechanism at the intersection of such academic concepts, such as the scientific method. It was found, through the analysis of official documents and public notes, how the multiple theoretical perspectives evidence the commitment of the provision and elaboration of public policies, verifying the way in which the fake news impact each part of the process in this atmosphere.Keywords: firehosing of falsehood, governance, misinformation, post-truth
Procedia PDF Downloads 1393483 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 883482 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 703481 Banks' Financial Performance in Pakistan from 2012-2015
Authors: Saima Akbar
Abstract:
The global financial crisis severely and adversely impacted the Pakistanis’ financial setups with far-reaching consequences for its victims. This study aimed to analyze the various determinants of the banks’ financial performance in Pakistan. The stepwise multiple regression analysis and pre-post analysis were carried out in this regard by using SPSS ver 22. The study found that the assets quality is the most influential determinant of return over assets followed by bank size and solvency. Advances, liquidity, investments, and size have positive while poor assets quality and deposits have a negative impact on the return over assets. The comparison of the pre-crisis and post-crisis coefficient values of the independent variables revealed that the global financial crisis had exerted a significant impact on the relative ability of the financial performance determinants to explain variations in return over assets.Keywords: pre-crisis, post-crisis, coefficient values, determinants
Procedia PDF Downloads 2773480 Volcanostratigraphy Reconaissance Study Using Ridge Continuity to Solve Complex Volcanic Deposit Problems, Case Study Old Sunda Volcano
Authors: Afy Syahidan ACHMAD, Astin NURDIANA, SURYANTINI
Abstract:
In volcanic arc environment we can find multiple volcanic deposits which overlapped with another volcanic deposit so it will complicates source and distribution determination. This problem getting more difficult when we can not trace any deposit border evidences in field especially in high vegetation volcanic area, or overlapped deposit with same characteristics. Main purpose of this study is to solve complex volcanostratigraphy mapping problems trough ridge, valley, and river continuity. This method application carried out in Old Sunda Volcanic, West Java, Indonesia. Using 1:100.000 and 1:50.000 topographic map, and regional geology map, old sunda volcanic deposit was differentiated in regional level and detail level. Final product of this method is volcanostratigraphy unit determination in reconnaissance stage to simplify mapping process.Keywords: volcanostratigraphy, study, method, volcanic deposit
Procedia PDF Downloads 4023479 Competitive Strategy that Affect to the Competitive Advantage for Hotel and Resort in Samut Songkram Province
Authors: Phatthanan Chaiyabut
Abstract:
This research paper investigates whether the development of environmentally friendly practices by luxury hotel resorts can be used as a strategy for gaining competitive advantage through differentiation, and suggests ways to do it. The focus is on luxury hotel resorts in Samut Songkram Province, Thailand. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Findings indicate that environmentally friendly development of hotel resorts in Samut Songkram Province has a very limited use as a corporate strategy. Only two luxury hotel resorts had it incorporated in their strategy, it is not much used in marketing indicating environmental issues are not seen as important. This was confirmed through the interviews with the managers that it is not seen as important issue to promote.Keywords: competitive advantage, competitive strategy, Samut Songkram Province, hotel and resort
Procedia PDF Downloads 2783478 Numerical Solving Method for Specific Dynamic Performance of Unstable Flight Dynamics with PD Attitude Control
Authors: M. W. Sun, Y. Zhang, L. M. Zhang, Z. H. Wang, Z. Q. Chen
Abstract:
In the realm of flight control, the Proportional- Derivative (PD) control is still widely used for the attitude control in practice, particularly for the pitch control, and the attitude dynamics using PD controller should be investigated deeply. According to the empirical knowledge about the unstable flight dynamics, the control parameter combination conditions to generate sole or finite number of closed-loop oscillations, which is a quite smooth response and is more preferred by practitioners, are presented in analytical or numerical manners. To analyze the effects of the combination conditions of the control parameters, the roots of several polynomials are sought to obtain feasible solutions. These conditions can also be plotted in a 2-D plane which makes the conditions be more explicit by using multiple interval operations. Finally, numerical examples are used to validate the proposed methods and some comparisons are also performed.Keywords: attitude control, dynamic performance, numerical solving method, interval, unstable flight dynamics
Procedia PDF Downloads 5813477 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 3933476 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 1913475 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm
Authors: Shafqat Ullah Khan, Ammar Nasir
Abstract:
Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays
Procedia PDF Downloads 803474 An Unusual Occurrence: Typhoid Retinitis with Kyrieleis' Vasculitis
Authors: Aditya Sethi, Vaibhav Sethi, Shenouda Girgis
Abstract:
We present a case of a 31-year-old female who presented with a three week history of left eye blurry vision following a fever. She was diagnosed with Typhoid fever, confirmed by a positive Widal test report. On examination, her best corrected visual acuity in the right eye was 20/20 and in the left eye was 20/60. Fundus examination of the right eye showed a focal area of retinitis with retinal haemorrhages along the superior arcade within the macula. There was also focal area of retinitis with superficial retinal haemorrhages along the superior arcade vessels. There was also presence of multiple yellowish white exudates within the adjacent retinal artery arranged in a beaded pattern, suggestive of Kyrieleis' vasculitis. Optical Coherence Tomography (OCT) of the left eye demonstrated cystoid macula edema with serous foveal detachment.Keywords: typhoid retinitis, Kyrieleis’ vasculitis, immune-mediated retinitis, post-fever retinitis, typhoid retinopathy, retinitis
Procedia PDF Downloads 1783473 The EFL Mental Lexicon: Connectivity and the Acquisition of Lexical Knowledge Depth
Authors: Khalid Soussi
Abstract:
The study at hand has attempted to describe the acquisition of three EFL lexical knowledge aspects - meaning, synonymy and collocation – across three academic levels: Baccalaureate, second year and fourth year university levels in Morocco. The research also compares the development of the three lexical knowledge aspects between knowledge (reception) and use (production) and attempts to trace their order of acquisition. This has led to the use of three main data collection tasks: translation, acceptability judgment and multiple choices. The study has revealed the following findings. First, L1 and EFL mental lexicons are connected at the lexical knowledge depth. Second, such connection is active whether in language reception or use. Third, the connectivity between L1 and EFL mental lexicons tends to relatively decrease as the academic level of the learners increases. Finally, the research has revealed a significant 'order' of acquisition between the three lexical aspects, though not a very strong one.Keywords: vocabulary acquisition, EFL lexical knowledge, mental lexicon, vocabulary knowledge depth
Procedia PDF Downloads 2833472 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1583471 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition
Authors: Ramesh Chandra Majhi
Abstract:
Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.Keywords: optimization, passenger car unit, saturation flow, signalized intersection
Procedia PDF Downloads 3273470 Variable-Fidelity Surrogate Modelling with Kriging
Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans
Abstract:
Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients
Procedia PDF Downloads 5583469 A New Approach for Improving Accuracy of Multi Label Stream Data
Authors: Kunal Shah, Swati Patel
Abstract:
Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer
Procedia PDF Downloads 5843468 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network
Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello
Abstract:
Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.Keywords: Internet of Things, LoRa, LoRaWAN, smart cities
Procedia PDF Downloads 1483467 The Association between Malaysian Culture and Ornaments
Authors: Swee Guat Yeoh, Yung Ling Tseng
Abstract:
Malaysia is comprised of three major ethnic groups: The Malay, Chinese and Indian as well as a small number of indigenous peoples. With the influences of the multiple races, Malaysia is a multi-cultural country. In the era of globalization, culture has become an important soft power for a race or a country. At the same time, it provides endless inspirational source of ideas for creative business. Although jewelries are decorative objects, they function and exist as the emblems of power, wealth and contract in certain cultural systems. In the meantime, they also record the lifestyle and ideology of everyday life. Therefore, in a creative cultural industry, jewelry with cultural aspects and cultural contents are deemed to be highly important. With the three major ethnic groups in Malaysia as objects, this research aims to find out the relationships between the cultures and decorations of the three major ethnic groups in the aspects of customs, religions and lifestyles.Keywords: ethnicity, multi-cultural, jewelry, craft technique
Procedia PDF Downloads 4633466 Industrial Wastewater Treatment Improvements Using Limestone
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent.Keywords: adsorption, filtration, synthetic wastewater, TDS removal, COD removal
Procedia PDF Downloads 4483465 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays
Authors: Sabri Arik
Abstract:
In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis
Procedia PDF Downloads 5283464 Factors Associated with Suicidal Ideation among Undergraduate College Students
Authors: Samantha Vennice G. Sarcia
Abstract:
A person dies every 40 seconds throughout the world due to suicide-related behaviors. Suicidal ideation is a strong precursor to suicide completion. It is one of the major health challenges faced by the world today thus, it is highly substantial. The present study investigated the influence of personality traits and socio-demographic characteristics in predicting suicidal ideation. Using the Suicide Behaviors Questionnaire-Revised and the Big Five Inventory, the degree of suicidal ideation and the associated personality traits were identified. Out of 194 students from the allied health courses, the findings suggest that the college students are at-risk and have passive thoughts about suicide. Using multiple regression analysis, there was an identified significant relationship among the factors associated with suicidal ideation, particularly the number of persons in the household, living arrangement, attendance in church activities, agreeableness, conscientiousness, and neuroticism. Findings can help in the development of campus-based suicide prevention programs.Keywords: depression, personality traits, suicidal ideation, suicide
Procedia PDF Downloads 2253463 Implant Guided Surgery and Immediate Loading
Authors: Omid Tavakol, Mahnaz Gholami
Abstract:
Introduction : In this oral presentation the main goal is discussing immediate loading in dental implants , from treatment planning and surgical guide designing to delivery , follow up and occlusal consideration . Methods and materials : first of all systematic reviews about immediate loading will be considered . besides , a comparison will be made between immediate loading and conventional loading in terms of success rate and complications . After that different methods , prosthetic options and materials best used in immediate loading will be explained. Particularly multi unit abutments and their mechanism of function will be explained .Digital impressions and designing the temporaries is the next topic we are to explicate .Next issue is the differences between single unit , multiple unit and full arch implantation in immediate loading .Following we are going to describe methods for tissue engineering and papilla formation after extraction . Last slides are about a full mouth rehabilitation via immediate loading technique from surgical designing to follow up .At the end we would talk about potential complications , how to prevent from occurrence and what to do if we face up with .Keywords: guided surgery, digital implantology, immediate loading, digital dentistry
Procedia PDF Downloads 44