Search results for: maintenance costs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3538

Search results for: maintenance costs

2278 Maritime Transportation and Environmental Pollution: Emerging Trends and Challenges

Authors: Emil Mathew

Abstract:

Liberalisation policies adopted by a large number of countries, implementation of technological innovations with development in communication networks and continuous reduction in transport costs contributed towards the growth of international transportation of goods over the last 50 to 60 years. The present paper examines the environmental externalities of maritime transportation, that is, externalities associated with the movement of cargoes, as distinct from those emanate from production and consumption of goods. Though shipping is less polluting compared to other modes of transportation, considering the huge volume of goods transported and future growth prospects, it is important to examine environmental externalities of maritime transportation. It focuses on varied types of environmental externalities of maritime transportation and suggests that appropriate policies may be adopted by international agencies to address this issue without adversely affecting the course of international trade and also its possibility to get diverted to alternate modes of transportation.

Keywords: externalities of globalisation, maritime environment, maritime externality, transportation externality

Procedia PDF Downloads 291
2277 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 78
2276 Identification and Characterization of Small Peptides Encoded by Small Open Reading Frames using Mass Spectrometry and Bioinformatics

Authors: Su Mon Saw, Joe Rothnagel

Abstract:

Short open reading frames (sORFs) located in 5’UTR of mRNAs are known as uORFs. Characterization of uORF-encoded peptides (uPEPs) i.e., a subset of short open reading frame encoded peptides (sPEPs) and their translation regulation lead to understanding of causes of genetic disease, proteome complexity and development of treatments. Existence of uORFs within cellular proteome could be detected by LC-MS/MS. The ability of uORF to be translated into uPEP and achievement of uPEP identification will allow uPEP’s characterization, structures, functions, subcellular localization, evolutionary maintenance (conservation in human and other species) and abundance in cells. It is hypothesized that a subset of sORFs are translatable and that their encoded sPEPs are functional and are endogenously expressed contributing to the eukaryotic cellular proteome complexity. This project aimed to investigate whether sORFs encode functional peptides. Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics were thus employed. Due to probable low abundance of sPEPs and small in sizes, the need for efficient peptide enrichment strategies for enriching small proteins and depleting the sub-proteome of large and abundant proteins is crucial for identifying sPEPs. Low molecular weight proteins were extracted using SDS-PAGE from Human Embryonic Kidney (HEK293) cells and Strong Cation Exchange Chromatography (SCX) from secreted HEK293 cells. Extracted proteins were digested by trypsin to peptides, which were detected by LC-MS/MS. The MS/MS data obtained was searched against Swiss-Prot using MASCOT version 2.4 to filter out known proteins, and all unmatched spectra were re-searched against human RefSeq database. ProteinPilot v5.0.1 was used to identify sPEPs by searching against human RefSeq, Vanderperre and Human Alternative Open Reading Frame (HaltORF) databases. Potential sPEPs were analyzed by bioinformatics. Since SDS PAGE electrophoresis could not separate proteins <20kDa, this could not identify sPEPs. All MASCOT-identified peptide fragments were parts of main open reading frame (mORF) by ORF Finder search and blastp search. No sPEP was detected and existence of sPEPs could not be identified in this study. 13 translated sORFs in HEK293 cells by mass spectrometry in previous studies were characterized by bioinformatics. Identified sPEPs from previous studies were <100 amino acids and <15 kDa. Bioinformatics results showed that sORFs are translated to sPEPs and contribute to proteome complexity. uPEP translated from uORF of SLC35A4 was strongly conserved in human and mouse while uPEP translated from uORF of MKKS was strongly conserved in human and Rhesus monkey. Cross-species conserved uORFs in association with protein translation strongly suggest evolutionary maintenance of coding sequence and indicate probable functional expression of peptides encoded within these uORFs. Translation of sORFs was confirmed by mass spectrometry and sPEPs were characterized with bioinformatics.

Keywords: bioinformatics, HEK293 cells, liquid chromatography-mass spectrometry, ProteinPilot, Strong Cation Exchange Chromatography, SDS-PAGE, sPEPs

Procedia PDF Downloads 191
2275 Mathematical Modeling and Algorithms for the Capacitated Facility Location and Allocation Problem with Emission Restriction

Authors: Sagar Hedaoo, Fazle Baki, Ahmed Azab

Abstract:

In supply chain management, network design for scalable manufacturing facilities is an emerging field of research. Facility location allocation assigns facilities to customers to optimize the overall cost of the supply chain. To further optimize the costs, capacities of these facilities can be changed in accordance with customer demands. A mathematical model is formulated to fully express the problem at hand and to solve small-to-mid range instances. A dedicated constraint has been developed to restrict emissions in line with the Kyoto protocol. This problem is NP-Hard; hence, a simulated annealing metaheuristic has been developed to solve larger instances. A case study on the USA-Canada cross border crossing is used.

Keywords: emission, mixed integer linear programming, metaheuristic, simulated annealing

Procedia PDF Downloads 313
2274 Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters

Authors: Avan Al-Saffar, Eun-Jin Kim

Abstract:

Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.

Keywords: dynamical systems, fisher information, probability density function (pdf), sustainability

Procedia PDF Downloads 433
2273 Degradation Model for UK Railway Drainage System

Authors: Yiqi Wu, Simon Tait, Andrew Nichols

Abstract:

Management of UK railway drainage assets is challenging due to the large amounts of historical assets with long asset life cycles. A major concern for asset managers is to maintain the required performance economically and efficiently while complying with the relevant regulation and legislation. As the majority of the drainage assets are buried underground and are often difficult or costly to examine, it is important for asset managers to understand and model the degradation process in order to foresee the upcoming reduction in asset performance and conduct proactive maintenance accordingly. In this research, a Markov chain approach is used to model the deterioration process of rail drainage assets. The study is based on historical condition scores and characteristics of drainage assets across the whole railway network in England, Scotland, and Wales. The model is used to examine the effect of various characteristics on the probabilities of degradation, for example, the regional difference in probabilities of degradation, and how material and shape can influence the deterioration process for chambers, channels, and pipes.

Keywords: deterioration, degradation, markov models, probability, railway drainage

Procedia PDF Downloads 230
2272 Vendor Selection and Supply Quotas Determination by Using Revised Weighting Method and Multi-Objective Programming Methods

Authors: Tunjo Perič, Marin Fatović

Abstract:

In this paper a new methodology for vendor selection and supply quotas determination (VSSQD) is proposed. The problem of VSSQD is solved by the model that combines revised weighting method for determining the objective function coefficients, and a multiple objective linear programming (MOLP) method based on the cooperative game theory for VSSQD. The criteria used for VSSQD are: (1) purchase costs and (2) product quality supplied by individual vendors. The proposed methodology is tested on the example of flour purchase for a bakery with two decision makers.

Keywords: cooperative game theory, multiple objective linear programming, revised weighting method, vendor selection

Procedia PDF Downloads 361
2271 Mechanical Simulation with Electrical and Dimensional Tests for AISHa Containment Chamber

Authors: F. Noto, G. Costa, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

At Istituto Nazionale di Fisica Nucleare – Laboratorio Nazionale del Sud (INFN-LNS), a broad experience in the design, construction and commissioning of ECR and microwave ion sources is available. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations, which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadron therapy facility using heavy ions. In this paper, we analyzed the dimensional test and electrical test about an innovative solution for the containment chamber that allows us to solve our isolation and structural problems.

Keywords: FEM analysis, electron cyclotron resonance ion source, dielectrical measurement, hadron therapy

Procedia PDF Downloads 294
2270 Use of Corporate Social Responsibility in Environmental Protection: Modern Mechanisms of Environmental Self-Regulation

Authors: Jakub Stelina, Janina Ciechanowicz-McLean

Abstract:

Fifty years of existence and development of international environmental law brought a deep disappointment with efficiency and effectiveness of traditional command and control mechanisms of environmental regulation. Agenda 21 agreed during the first Earth Summit in Rio de Janeiro 1992 was one of the first international documents, which explicitly underlined the importance of public participation in environmental protection. This participation includes also the initiatives undertaken by business corporations in the form of private environmental standards setting. Twenty years later during the Rio 20+ Earth Summit the private sector obligations undertaken during the negotiations have proven to be at least as important as the ones undertaken by the governments. The private sector has taken the leading role in environmental standard setting. Among the research methods used in the article two are crucial in the analysis. The comparative analysis of law is the instrument used in the article to analyse the practice of states and private business companies in the field of sustainable development. The article uses economic analysis of law to estimate the costs and benefits of Corporate Social Responsibility Projects in the field of environmental protection. The study is based on the four premises. First is the role of social dialogue, which is crucial for both Corporate Social Responsibility and modern environmental protection regulation. The Aarhus Convention creates a procedural environmental human right to participate in administrative procedures of law setting and environmental decisions making. The public participation in environmental impact assessment is nowadays a universal standard. Second argument is about the role of precaution as a principle of modern environmental regulation. This principle can be observed both in governmental regulatory undertakings and also private initiatives within the Corporate Social Responsibility environmental projects. Even in the jurisdictions which are relatively reluctant to use the principle of preventive action in environmental regulation, the companies often use this standard in their own private business standard setting initiatives. This is often due to the fact that soft law standards are used as the basis for private Corporate Social Responsibility regulatory initiatives. Third premise is about the role of ecological education in environmental protection. Many soft law instruments underline the importance of environmental education. Governments use environmental education only to the limited extent due to the costs of such projects and problems with effects assessment. Corporate Social Responsibility uses various means of ecological education as the basis of their actions in the field of environmental protection. Last but not least Sustainable development is a goal of both legal protection of the environment, and economic instruments of companies development. Modern environmental protection law uses to the increasing extent the Corporate Social Responsibility. This may be the consequence of the limits of hard law regulation. Corporate Social Responsibility is nowadays not only adapting to soft law regulation of environmental protection but also creates such standards by itself, showing new direction for development of international environmental law. Corporate Social Responsibility in environmental protection can be good investment in future development of the company.

Keywords: corporate social responsibility, environmental CSR, environmental justice, stakeholders dialogue

Procedia PDF Downloads 303
2269 The Impact of Artificial Intelligence on Construction Engineering

Authors: Mina Fawzy Ishak Gad Elsaid

Abstract:

There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.

Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management

Procedia PDF Downloads 49
2268 The Impact of Artificial Intelligence on Construction Engineering

Authors: Haneen Joseph Habib Yeldoka

Abstract:

There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.

Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management

Procedia PDF Downloads 48
2267 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production

Procedia PDF Downloads 241
2266 Development of Pasta Production by Using of Hard and Soft Domestic Sorts of Wheat

Authors: A.N. Zhilkaidarov, G.K. Iskakova, V.Y. Chernyh

Abstract:

High-qualified and not-expensive products of daily usage have a big demand on food products’ market. Moreover, it is about independent and irreplaceable product as pasta. Pasta is a product, which represents itself the conserved dough from wheat flour made through special milling process. A wide assortment of the product and its pleasant taste properties allow to use pasta products in very different combinations with other food products. Pasta industry of Kazakhstan has large perspectives of development. There are many premises for it, which includes first an importance of pasta as a social product. Due to for its nutritional and energetically value pasta is the part of must have food. Besides that, the pasta production in Kazakhstan has traditional bases, and nowadays the market of this product develops rapidly as in quantity as well as in quality aspects. Moreover, one of the advantages of this branch is an economical aspect – pasta is the product of secondary processing, and therefore price for sailing is much higher as its own costs.

Keywords: pasta, new wheat sorts, domesic sorts of wheat, macaronic flour

Procedia PDF Downloads 530
2265 Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast

Authors: Sawsan Eissa, Omnia Kabbany

Abstract:

The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance.

Keywords: hydrodynamics, morphology, Togo, Delft3D, SWAN, XBeach, coastal erosion, detached breakwaters

Procedia PDF Downloads 73
2264 Training Hearing Parents in SmiLE Therapy Supports the Maintenance and Generalisation of Deaf Children's Social Communication Skills

Authors: Martina Curtin, Rosalind Herman

Abstract:

Background: Deaf children can experience difficulties with understanding how social interaction works, particularly when communicating with unfamiliar hearing people. Deaf children often struggle with integrating into a mainstream, hearing environments. These negative experiences can lead to social isolation, depression and other mental health difficulties later in life. smiLE Therapy (Schamroth, 2015) is a video-based social communication intervention that aims to teach deaf children skills to confidently communicate with unfamiliar hearing people. Although two previous studies have reported improvements in communication skills immediately post intervention, evidence for maintenance of gains or generalisation of skills (i.e., the transfer of newly learnt skills to untrained situations) has not to date been demonstrated. Parental involvement has been shown to support deaf children’s therapy outcomes. Therefore, this study added parent training to the therapy children received to investigate the benefits to generalisation of children’s skills. Parents were also invited to present their perspective on the training they received. Aims: (1) To assess pupils’ progress from pre- to post-intervention in trained and untrained tasks, (2) to investigate if training parents improved their (a) understanding of their child’s needs and (b) their skills in supporting their child appropriately in smiLE Therapy tasks, (3) to assess if parent training had an impact on the pupil’s ability to (a) maintain their skills in trained tasks post-therapy, and (b) generalise their skills in untrained, community tasks. Methods: This was a mixed-methods, repeated measures study. 31 deaf pupils (aged between 7 and 14) received an hour of smiLE Therapy per week, for 6 weeks. Communication skills were assessed pre-, post- and 3-months post-intervention using the Communication Skills Checklist. Parents were then invited to attend two training sessions and asked to bring a video of their child communicating in a shop or café. These videos were used to assess whether, after parent training, the child was able to generalise their skills to a new situation. Finally, parents attended a focus group to discuss the effectiveness of the therapy, particularly the wider impact, i.e., more child participation within the hearing community. Results: All children significantly improved their scores following smiLE therapy and maintained these skills to high level. Children generalised a high percentage of their newly learnt skills to an untrained situation. Parents reported improved understanding of their child’s needs, their child’s potential and in how to support them in real-life situations. Parents observed that their children were more confident and independent when carrying out communication tasks with unfamiliar hearing people. Parents realised they needed to ‘let go’ and embrace their child’s independence and provide more opportunities for them to participate in their community. Conclusions: This study adds to the evidence base on smiLE Therapy; it is an effective intervention that develops deaf children’s ability to interact competently with unfamiliar, hearing, communication partners. It also provides preliminary evidence of the benefits of parent training in helping children to generalise their skills to other situations. These findings will be of value to therapists wishing to develop deaf children’s communication skills beyond the therapy setting.

Keywords: deaf children, generalisation, parent involvement, social communication

Procedia PDF Downloads 145
2263 Architectural Knowledge Systems Related to Use of Terracotta in Bengal

Authors: Nandini Mukhopadhyay

Abstract:

The prominence of terracotta as a building material in Bengal is well justified by its geographical location. The architectural knowledge system associated with terracotta can be comprehended in the typology of the built structures as they act as texts to interpret the knowledge. The history of Bengal has witnessed the influence of several rulers in developing the architectural vocabulary of the region. This metamorphosis of the architectural knowledge systems in the region includes the Bhakti movement, the Islamic influence, and the British rule, which led to the evolution of the use of terracotta from decorative elements to structural elements in the present-day context. This paper intends to develop an understanding of terracotta as a building material, its use in a built structure, the common problems associated with terracotta construction, and the techniques of maintenance, repair, and conservation. This paper also explores the size, shape, and geometry of the material and its varied use in temples, mosques in the region. It also takes into note that the use of terracotta was concentrated majorly to religious structures and not in the settlements of the common people. And the architectural style of temples and mosques of Bengal is hugely influenced by the houses of the common.

Keywords: terracotta, material, knowledge system, conservation

Procedia PDF Downloads 152
2262 Artificial Intelligence for Safety Related Aviation Incident and Accident Investigation Scenarios

Authors: Bernabeo R. Alberto

Abstract:

With the tremendous improvements in the processing power of computers, the possibilities of artificial intelligence will increasingly be used in aviation and make autonomous flights, preventive maintenance, ATM (Air Traffic Management) optimization, pilots, cabin crew, ground staff, and airport staff training possible in a cost-saving, less time-consuming and less polluting way. Through the use of artificial intelligence, we foresee an interviewing scenario where the interviewee will interact with the artificial intelligence tool to contextualize the character and the necessary information in a way that aligns reasonably with the character and the scenario. We are creating simulated scenarios connected with either an aviation incident or accident to enhance also the training of future accident/incident investigators integrating artificial intelligence and augmented reality tools. The project's goal is to improve the learning and teaching scenario through academic and professional expertise in aviation and in the artificial intelligence field. Thus, we intend to contribute to the needed high innovation capacity, skills, and training development and management of artificial intelligence, supported by appropriate regulations and attention to ethical problems.

Keywords: artificial intelligence, aviation accident, aviation incident, risk, safety

Procedia PDF Downloads 27
2261 Managing Configuration Management in Different Types of Organizations

Authors: Dilek Bilgiç

Abstract:

Configuration Management (CM) is a discipline assuring the consistency between product information the reality all along the product lifecycle. Although the extensive benefits of this discipline, such as the direct impact on increasing return on investment, reducing lifecycle costs, are realized by most organizations. It is worth evaluating that CM functions might be successfully implemented in some organized anarchies. This paper investigates how to manage ambiguity in CM processes as an opportunity within an environment that has different types of complexities and choice arenas. It is not explained how to establish a configuration management organization in a company; more specifically, it is analyzed how to apply configuration management processes when different types of streams exist. From planning to audit, all the CM functions may provide different organization learning opportunities when those applied with the right leadership methods.

Keywords: configuration management, leadership, organizational analysis, organized anarchy, cm process, organizational learning, organizational maturity, configuration status accounting, leading innovation, change management

Procedia PDF Downloads 215
2260 Ranking the Elements of Relationship Market Orientation Banks (Case Study: Saderat Bank of Iran)

Authors: Sahar Jami, Iman Valizadeh

Abstract:

Today banks not only should seek for new customers but also should consider previous maintenance and retention and establish a stable relationship with them. In this term, relationship-manner marketing seeks to make, maintain, and promote the relationship between customers and other stakeholders in benefits to fulfill all involved parties. This fact is possible just by interactive transaction and promises fulfillment. According to the importance of relationship-manner marketing in banks, making context to make relationship-manner marketing has high importance. Therefore, the present study aims at exploring intention condition to relationship-manner marketing in Iran Province Iran Limited bank, and also prioritizing its variables using hierarchical analysis (AHP). There is questionnaire designed in this research to paired comparison of relationship-manner marketing elements. After distributing this questionnaire among statistical society members who are 20 of Iran Limited bank experts, data analysis has been done by Expert Choice software.

Keywords: relationship marketing, relationship market orientation, Saderat Bank of Iran, hierarchical analysis

Procedia PDF Downloads 423
2259 Tower Crane Selection and Positioning on Construction Sites

Authors: Dirk Briskorn, Michael Dienstknecht

Abstract:

Cranes are a key element in construction projects as they are the primary lifting equipment and among the most expensive construction equipment. Thus, selecting cranes and locating them on-site is an important factor for a project's profitability. We focus on a site with supply and demand areas that have to be connected by tower cranes. There are several types of tower cranes differing in certain specifications such as costs or operating radius. The objective is to select cranes and determine their locations such that each demand area is connected to its supply area at minimum cost. We detail the problem setting and show how to obtain a discrete set of candidate locations for each crane type without losing optimality. This discretization allows us to reduce our problem to the classic set cover problem. Despite its NP-hardness, we achieve good results employing a standard solver and a greedy heuristic, respectively.

Keywords: positioning, selection, standard solver, tower cranes

Procedia PDF Downloads 377
2258 Preparation vADL.net: A Software Architecture Tool with Support to All of Architectural Concepts Title

Authors: Adel Smeda, Badr Najep

Abstract:

Software architecture is a method of describing the architecture of a software system at a high level of abstraction. It represents a common abstraction of a system that stakeholders can use as a basis for mutual understanding, negotiation, consensus, and communication. It also manifests the earliest design decisions about a system, and these early bindings carry weight far out of proportion to their individual gravity with respect to the system's remaining development, its deployment, and its maintenance life, therefore it is the earliest point at which design decisions governing the system to be built can be analyzed. In this paper, we present a tool to model the architecture of software systems. It represents the first method by which system defects can be detected, and provide a clear representation of a system’s components and interactions at a high level of abstraction. It can be distinguished from other tools by its support to all software architecture elements. The tool is built using VB.net 2010. We used this tool to describe two well know systems, i.e. Capitalize and Client/Server, and the descriptions we obtained support all architectural elements of the two systems.

Keywords: software architecture, architecture description languages, modeling

Procedia PDF Downloads 469
2257 Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques

Authors: M. S. Annie Christi

Abstract:

Transportation Problem (TP) is based on supply and demand of commodities transported from one source to the different destinations. Usual methods for finding solution of TPs are North-West Corner Rule, Least Cost Method Vogel’s Approximation Method etc. The transportation costs tend to vary at each time. We can use fuzzy numbers which would give solution according to this situation. In this study the Best Candidate Method (BCM) is applied. For ranking Centroid Ranking Technique (CRT) and Robust Ranking Technique have been adopted to transform the fuzzy TP and the above methods are applied to EDWARDS Vacuum Company, Crawley, in West Sussex in the United Kingdom. A Comparative study is also given. We see that the transportation cost can be minimized by the application of CRT under BCM.

Keywords: best candidate method, centroid ranking technique, fuzzy transportation problem, robust ranking technique, transportation problem

Procedia PDF Downloads 298
2256 Effects on Inflammatory Biomarkers and Respiratory Mechanics in Laparoscopic Bariatric Surgery: Desflurane vs. Total Intravenous Anaesthesia with Propofol

Authors: L. Kashyap, S. Jha, D. Shende, V. K. Mohan, P. Khanna, A. Aravindan, S. Kashyap, L. Singh, S. Aggarwal

Abstract:

Obesity is associated with a chronic inflammatory state. During surgery, there is an interplay between anaesthetic and surgical stress vis-a-vis the already present complex immune state. Moreover, the postoperative period is dictated by inflammation, which is crucial for wound healing and regeneration. An excess of inflammatory response might hamper recovery besides increasing the risk for infection and complications. There is definite evidence of the immunosuppressive role of inhaled anaesthetic agents. This immune modulation may be brought into effect directly by influencing the innate and adaptive immunity cells. The effects of propofol on immune mechanisms in has been widely elucidated because of its popularity. It reduces superoxide generation, elastase release, and chemotaxis. However, there is no unequivocal proof of one’s superiority over the other. Hence, an anaesthetic regimen with lesser inflammatory potential and specific to the obese patient is needed. OBESITA trial protocol (2019) by Sousa and co-workers in progress aims to test the hypothesis that anaesthesia with sevoflurane results in a weaker proinflammatory response compared to propofol, as evidenced by lower IL-6 and other biomarkers and an increased macrophage differentiation into M2 phenotype in adipose tissue. IL-6 was used as the objective parameter to evaluate inflammation as it is regulated by both surgery and anesthesia. It is the most sensitive marker of the inflammatory response to tissue damage since it is released within minutes by blood leukocytes. We hypothesized that maintenance of anaesthesia with propofol would lead to less inflammation than that with desflurane. Aims: The effect of two anaesthetic techniques, total intravenous anaesthesia (TIVA) with propofol and desflurane, on surgical stress response was evaluated. The primary objective was to compare serum interleukin-6 (IL-6) levels before and after surgery. Methods: In this prospective single-blinded randomized controlled trial undertaken, 30 obese patients (BMI>30 kg/m2) undergoing laparoscopic bariatric surgery under general anaesthesia were recruited. Patients were randomized to receive desflurane or TIVA using a target-controlled infusion for maintenance of anaesthesia. As a marker of inflammation, pre-and post-surgery IL-6 levels were compared. Results: After surgery, IL-6 levels increased significantly in both groups. The rise in IL-6 was less with TIVA than with desflurane; however, it did not reach significance. IL-6 rise post-surgery correlated positively with the complexity of procedure and duration of surgery and anaesthesia, rather than anaesthetic technique. Both groups did not differ in terms of intra-operative hemodynamic and respiratory variables, time to awakening, postoperative pulmonary complications, and duration of hospital stay. The incidence of nausea was significantly higher with desflurane than with TIVA. Conclusion: Inflammatory response did not differ as a function of anaesthetic technique when propofol and desflurane were compared. Also, patient and surgical variables dictated post-operative inflammation more than the anaesthetic factors. Further, larger sample size is needed to confirm or refute these findings.

Keywords: bariatric, biomarkers, inflammation, laparoscopy

Procedia PDF Downloads 126
2255 Integration of Constraints Related to Composite Materials in the Design of Industrial Products

Authors: A. Boumedine, K. Benfriha, S. Lecheb

Abstract:

Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it’s resistance, it’s cost, it’s resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software.

Keywords: additive manufacturing, composite materials, design, 3D printer, turbine

Procedia PDF Downloads 137
2254 Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability

Authors: Ahmed Cherif Megri, HossamEldin ElSherif

Abstract:

In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant.

Keywords: shape optimization, header, power plant, inconel alloy, CFD, structural optimization

Procedia PDF Downloads 76
2253 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding

Authors: Amir E. Amirzadeh, Richard K. Strand

Abstract:

Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.

Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making

Procedia PDF Downloads 74
2252 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber

Authors: Humayun R. H. Kabir

Abstract:

A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.

Keywords: dome, strengthening program, carbon fiber, load test

Procedia PDF Downloads 259
2251 Quality and Quantity in the Strategic Network of Higher Education Institutions

Authors: Juha Kettunen

Abstract:

This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Keywords: balanced scorecard, higher education, social networking, strategic planning

Procedia PDF Downloads 353
2250 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.

Keywords: crack size, fatigue crack propagation, magnesium alloys, probability distribution, specimen thickness

Procedia PDF Downloads 502
2249 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 134