Search results for: conditional proportional reversed hazard rate model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24063

Search results for: conditional proportional reversed hazard rate model

22803 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves

Authors: Jui-Ching Chou

Abstract:

Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.

Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model

Procedia PDF Downloads 174
22802 Efficacy and Safety of Uventa Metallic Stent for Malignant and Benign Ureteral Obstruction

Authors: Deok Hyun Han

Abstract:

Objective: To explore outcomes of UventaTM metallic ureteral stent between malignant and benign ureteral obstruction. Methods: We reviewed the medical records of 90 consecutive patients who underwent Uventa stent placement for benign or malignant ureteral obstruction from December 2009 to June 2013. We evaluated the clinical outcomes, complications, and reasons and results for unexpected stent removals. Results: The median follow-up was 10.7 (0.9 – 41) months. From a total of 125 ureter units, there were 24 units with benign obstructions and 101 units with malignant obstructions. Initial technical successes were achieved in all patients. The overall success rate was 70.8% with benign obstructions and 84.2% with malignant obstructions. The major reasons for treatment failure were stent migration (12.5%) in benign and tumor progression (11.9%) in malignant obstructions. The overall complication rate was similar between benign and malignant obstructions (58.3% and 42.6%), but severe complications, which are Clavien grade 3 or more, occurred in 41.7% of benign and 6.9% of malignant obstructions. The most common complications were stent migration (25.0%) in benign obstructions and persistent pain (14.9%) in malignant obstructions. The stent removal was done in 16 units; nine units that were removed by endoscopy and seven units were by open surgery. Conclusions: In malignant ureteral obstructions, the Uventa stent showed favorable outcomes with high success rate and acceptable complication rate. However, in benign ureteral obstructions, overall success rate and complication rate were less favorable. Malignant ureteral obstruction seems to be appropriate indication of Uventa stent placement. However, in chronic diffuse benign ureteral obstructions the decision of placement of Uventa stent has to be careful.

Keywords: cause, complication, ureteral obstruction, metal stent

Procedia PDF Downloads 203
22801 Spatial Distribution of Natural Radionuclides in Soil, Sediment and Waters in Oil Producing Areas in Niger Delta Region of Nigeria

Authors: G. O. Avwiri, E. O. Agbalagba, C. P. Ononugbo

Abstract:

Activity concentrations of natural radionuclides (226Ra, 232Th and 40K) in the soil, sediment and water of oil producing communities in Delta and Rivers States were determined using γ-ray spectrometry. The mean soil/sediment activity concentration of 226Ra, 232Th and 40K in onshore west in Delta state is 40.2±5.1Bqkg-1, 29.9±4.2Bqkg-1 and 361.5±20.0Bqkg-1 respectively, the corresponding values obtained in onshore east1 of Rivers state is 20.9±2.8Bqkg-1, 19.4±2.5Bqkg-1and 260.0±14.1Bqkg-1 respectively. While the mean activity concentration of 226Ra, 232Th and 40K in onshore east2 of Rivers state is 29.3±3.5Bqkg-1, 21.6±2.6Bqkg-1 and 262.1±14.6Bqkg-1 respectively. These values obtained show enhanced NORMs but are well within the world range. All the radiation hazard indices examined in soil have mean values lower than their maximum permissible limits. In drinking water, the obtained average values of226Ra, 228Ra and 40K is 8.4±0.9, 7.3±0.7 and 29.9±2.2Bql-1 respectively for well water, 4.5±0.6, 5.1±0.4 and 20.9±2.0Bql-1 respectively for borehole water and 11.3±1.2, 8.5±0.7 and 32.4±3.7Bql-1 respectively for river water in onshore west. For onshore east1, average activity concentration of 226Ra, 228Ra and 40K is 8.3±1.0, 8.6±1.1 and 39.6±3.3Bql-1 respectively for well water, 3.8±0.8, 4.9±0.6 and 35.7±4.1Bql-1 respectively for borehole water and 5.5±0.8, 5.4±0.7 and 36.9±3.8Bql-1 respectively for river water. While in onshore east2 average value of 226Ra, 228Ra and 40K is 10.1±1.1, 8.3±1.0 and 50.0±3.9Bql-1 respectively for well water, 4.7±0.9, 4.0±0.4 and 28.8±3.0Bql-1 respectively for borehole water and 7.7±0.9, 6.1±0.8 and 27.1±2.9Bql-1 respectively for river water and the average activity concentrations in the produced water226Ra, 228Ra and 40K is 5.182.14Bql-1, 6.042.48Bql-1 and 48.7813.67Bql-1 respectively. These values obtained are well above world average values of 1.0, 0.1 and 10Bql-1 for 226Ra, 228Ra and 40K respectively, those of the control site values and most reported values around the world. Though the hazard indices (Raeq, Hex, Hin) examined in water is still within the tolerable level, the committed effective dose estimated are above ICPR 0.1 mSvy-1 permissible limits. The overall results show that soil and sediment in the area are safe radiologically, but the result indicates some level of water pollution in the studied area.

Keywords: radioactivity, soil, sediment and water, Niger Delta, gamma detector

Procedia PDF Downloads 283
22800 Geomorphology of Leyte, Philippines: Seismic Response and Remote Sensing Analysis and Its Implication to Landslide Hazard Assessment

Authors: Arturo S. Daag, Ira Karrel D. L. San Jose, Mike Gabriel G. Pedrosa, Ken Adrian C. Villarias, Rayfred P. Ingeniero, Cyrah Gale H. Rocamora, Margarita P. Dizon, Roland Joseph B. De Leon, Teresito C. Bacolcol

Abstract:

The province of Leyte consists of various geomorphological landforms: These are: a) landforms of tectonic origin transect large part of the volcanic centers in upper Ormoc area; b) landforms of volcanic origin, several inactive volcanic centers located in Upper Ormoc are transected by Philippine Fault; c) landforms of volcano-denudational and denudational slopes dominates the area where most of the earthquake-induced landslide occurred; and d) Colluvium and alluvial deposits dominate the foot slope of Ormoc and Jaro-Pastrana plain. Earthquake ground acceleration and geotechnical properties of various landforms are crucial for landslide studies. To generate the landslide critical acceleration model of sliding block, various data were considered, these are: geotechnical data (i.e., soil and rock strength parameters), slope, topographic wetness index (TWI), landslide inventory, soil map, geologic maps for the calculation of the factor of safety. Horizontal-to-vertical spectral ratio (HVSR) surveying methods, refraction microtremor (ReMi), and three-component microtremor (3CMT) were conducted to measure site period and surface wave velocity as well as to create a soil thickness model. Critical acceleration model of various geomorphological unit using Remote Sensing, field geotechnical, geophysical, and geospatial data collected from the areas affected by the 06 July 2017 M6.5 Leyte earthquake. Spatial analysis of earthquake-induced landslide from the 06 July 2017, were then performed to assess the relationship between the calculated critical acceleration and peak ground acceleration. The observed trends proved helpful in establishing the role of critical acceleration as a determining factor in the distribution of co-seismic landslides.

Keywords: earthquake-induced landslide, remote sensing, geomorphology, seismic response

Procedia PDF Downloads 133
22799 Dependence of the Photoelectric Exponent on the Source Spectrum of the CT

Authors: Rezvan Ravanfar Haghighi, V. C. Vani, Suresh Perumal, Sabyasachi Chatterjee, Pratik Kumar

Abstract:

X-ray attenuation coefficient [µ(E)] of any substance, for energy (E), is a sum of the contributions from the Compton scattering [ μCom(E)] and photoelectric effect [µPh(E)]. In terms of the, electron density (ρe) and the effective atomic number (Zeff) we have µCom(E) is proportional to [(ρe)fKN(E)] while µPh(E) is proportional to [(ρeZeffx)/Ey] with fKN(E) being the Klein-Nishina formula, with x and y being the exponents for photoelectric effect. By taking the sample's HU at two different excitation voltages (V=V1, V2) of the CT machine, we can solve for X=ρe, Y=ρeZeffx from these two independent equations, as is attempted in DECT inversion. Since µCom(E) and µPh(E) are both energy dependent, the coefficients of inversion are also dependent on (a) the source spectrum S(E,V) and (b) the detector efficiency D(E) of the CT machine. In the present paper we tabulate these coefficients of inversion for different practical manifestations of S(E,V) and D(E). The HU(V) values from the CT follow: <µ(V)>=<µw(V)>[1+HU(V)/1000] where the subscript 'w' refers to water and the averaging process <….> accounts for the source spectrum S(E,V) and the detector efficiency D(E). Linearity of μ(E) with respect to X and Y implies that (a) <µ(V)> is a linear combination of X and Y and (b) for inversion, X and Y can be written as linear combinations of two independent observations <µ(V1)>, <µ(V2)> with V1≠V2. These coefficients of inversion would naturally depend upon S(E, V) and D(E). We numerically investigate this dependence for some practical cases, by taking V = 100 , 140 kVp, as are used for cardiological investigations. The S(E,V) are generated by using the Boone-Seibert source spectrum, being superposed on aluminium filters of different thickness lAl with 7mm≤lAl≤12mm and the D(E) is considered to be that of a typical Si[Li] solid state and GdOS scintilator detector. In the values of X and Y, found by using the calculated inversion coefficients, errors are below 2% for data with solutions of glycerol, sucrose and glucose. For low Zeff materials like propionic acid, Zeffx is overestimated by 20% with X being within1%. For high Zeffx materials like KOH the value of Zeffx is underestimated by 22% while the error in X is + 15%. These imply that the source may have additional filtering than the aluminium filter specified by the manufacturer. Also it is found that the difference in the values of the inversion coefficients for the two types of detectors is negligible. The type of the detector does not affect on the DECT inversion algorithm to find the unknown chemical characteristic of the scanned materials. The effect of the source should be considered as an important factor to calculate the coefficients of inversion.

Keywords: attenuation coefficient, computed tomography, photoelectric effect, source spectrum

Procedia PDF Downloads 402
22798 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 50
22797 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.

Keywords: runoff, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 378
22796 Tax Evasion with Mobility between the Regular and Irregular Sectors

Authors: Xavier Ruiz Del Portal

Abstract:

This paper incorporates mobility between the legal and black economies into a model of tax evasion with endogenous labor supply in which underreporting is possible in one sector but impossible in the other. We have found that the results of the effects along the extensive margin (number of evaders) become more robust and conclusive than those along the intensive margin (hours of illegal work) usually considered by the literature. In particular, it is shown that the following policies reduce the number of evaders: (a) larger and more progressive evasion penalties; (b) higher detection probabilities; (c) an increase in the legal sector wage rate; (d) a decrease in the moonlighting wage rate; (e) higher costs for creating opportunities to evade; (f) lower opportunities to evade, and (g) greater psychological costs of tax evasion. When tax concealment and illegal work also are taken into account, the effects do not vary significantly under the assumptions in Cowell (1985), except for the fact that policies (a) and (b) only hold as regards low- and middle-income groups and policies (e) and (f) as regards high-income groups.

Keywords: income taxation, tax evasion, extensive margin responses, the penalty system

Procedia PDF Downloads 156
22795 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the model as previously done in simulation for squat exercise. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from the motion capture of an exerciser during a seated row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the actively controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: control, counterweight, isolation, vibration.

Procedia PDF Downloads 142
22794 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation, variation of cyclic loading effect on fatigue crack growth is studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), the effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e with a single overload, overload band etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

Keywords: fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, al-alloys

Procedia PDF Downloads 364
22793 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 101
22792 On the Impact of Oil Price Fluctuations on Stock Markets: A Multivariate Long-Memory GARCH Framework

Authors: Manel Youssef, Lotfi Belkacem

Abstract:

This paper employs multivariate long memory GARCH models to simultaneously estimate mean and conditional variance spillover effects between oil prices and different financial markets. Since different financial assets are traded based on these market sector returns, it’s important for financial market participants to understand the volatility transmission mechanism over time and across these series in order to make optimal portfolio allocation decisions. We examine weekly returns from January 1, 2003 to November 30, 2012 and find evidence of significant transmission of shocks and volatilities between oil prices and some of the examined financial markets. The findings support the idea of cross-market hedging and sharing of common information by investors.

Keywords: oil prices, stock indices returns, oil volatility, contagion, DCC-multivariate (FI) GARCH

Procedia PDF Downloads 534
22791 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
22790 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: stock market prediction, social moods, regression model, DJIA

Procedia PDF Downloads 549
22789 Valorization of Sawdust for the Treatment of Purified Water for Irrigation

Authors: Dalila Oulhaci, Mohammed Zahaf

Abstract:

The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.

Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)

Procedia PDF Downloads 86
22788 Drift-Wave Turbulence in a Tokamak Edge Plasma

Authors: S. Belgherras Bekkouche, T. Benouaz, S. M. A. Bekkouche

Abstract:

Tokamak plasma is far from having a stable background. The study of turbulent transport is an important part of the current research and advanced scenarios were devised to minimize it. To do this, we used a three-wave interaction model which allows to investigate the occurrence drift-wave turbulence driven by pressure gradients in the edge plasma of a tokamak. In order to simulate the energy redistribution among different modes, the growth/decay rates for the three waves was added. After a numerical simulation, we can determine certain aspects of the temporal dynamics exhibited by the model. Indeed for a wide range of the wave decay rate, an intermittent transition from periodic behavior to chaos is observed. Then, a control strategy of chaos was introduced with the aim of reducing or eliminating the weak turbulence.

Keywords: wave interaction, plasma drift waves, wave turbulence, tokamak, edge plasma, chaos

Procedia PDF Downloads 554
22787 Experimental Assessment of Artificial Flavors Production

Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi

Abstract:

The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.

Keywords: artificial flavors, esterification, chemical equilibria, isothermal

Procedia PDF Downloads 335
22786 Do Industry Expert Audit Engagement Partners Earn Fee Premiums? Evidence from Labor Usage and the Hourly Charge Rate

Authors: Gil Bae, Seung Uk Choi, Jae Eun Lee, Joon Hwa Rho

Abstract:

Using proprietary engagement partner identity information for the Big 4 audit firms in Korea over the 2001-2011 period, we find that expert engagement partners obtain significantly higher total compensation than do non-expert partners. Importantly, we also find that expert partners increase the number of audit hours compared to their non-expert counterparts. The hourly billing rate, calculated as total fees divided by total audit hours, of expert partners is not higher than that of non-expert partners, indicating that there is no expert partner premium reflected in the hourly rate. This finding suggests that the increase in total audit fees is attributable mainly to the increase in the quantity of audit hours that expert partners work, not from the higher fee per hour. The results are not attributable to auditor selection bias.

Keywords: industry expert partners, expert premiums, audit hours, hourly charge rate

Procedia PDF Downloads 308
22785 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal

Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali

Abstract:

The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.

Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management

Procedia PDF Downloads 81
22784 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.

Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model

Procedia PDF Downloads 43
22783 Increase Daily Production Rate of Methane Through Pasteurization Cow Dung

Authors: Khalid Elbadawi Elshafea, Mahmoud Hassan Onsa

Abstract:

This paper presents the results of the experiments to measure the impact of pasteurization cows dung on important parameter of anaerobic digestion (retention time) and measure the effect in daily production rate of biogas, were used local materials in these experiments, two experiments were carried out in two bio-digesters (1 and 2) (18.0 L), volume of the mixture 16.0-litre and the mass of dry matter in the mixture 4.0 Kg of cow dung. Pasteurization process has been conducted on the mixture into the digester 2, and put two digesters under room temperature. Digester (1) produced 268.5 liter of methane in period of 49 days with daily methane production rate 1.37L/Kg/day, and digester (2) produced 302.7-liter of methane in period of 26 days with daily methane production rate 2.91 L/Kg/day. This study concluded that the use of system pasteurization cows dung speed up hydrolysis in anaerobic process, because heat to certain temperature in certain time lead to speed up chemical reactions (transfer Protein to Amino acids, Carbohydrate to Sugars and Fat to Long chain fatty acids), this lead to reduce the retention time an therefore increase the daily methane production rate with 212%.

Keywords: methane, cow dung, daily production, pasteurization, increase

Procedia PDF Downloads 311
22782 Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity

Authors: Ganiyat Soliu, Glen Bright, Chiemela Onunka

Abstract:

Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario.

Keywords: performance optimization, productivity, queuing theory, robotics

Procedia PDF Downloads 155
22781 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries

Authors: Shafaq Rubab

Abstract:

One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.

Keywords: digital game-based learning, student’s motivation, instructional design model, learning process

Procedia PDF Downloads 433
22780 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
22779 Montelukast Doesn’t Decrease the Risk of Cardiovascular Disease in Asthma Patients in Taiwan

Authors: Sheng Yu Chen, Shi-Heng Wang

Abstract:

Aim: Based on human, animal experiments, and genetic studies, cysteinyl leukotrienes, LTC4, LTD4, and LTE4, are inflammatory substances that are metabolized by 5-lipooxygenase from arachidonic acid, and these substances trigger asthma. In addition, the synthetic pathway of cysteinyl leukotriene is relevant to the increase in cardiovascular diseases such as myocardial ischemia and stroke. Given the situation, we aim to investigate whether cysteinyl leukotrienes receptor antagonist (LTRA), montelukast which cures those who have asthma has potential protective effects on cardiovascular diseases. Method: We conducted a cohort study, and enrolled participants which are newly diagnosed with asthma (ICD-9 CM code 493. X) between 2002 to 2011. The data source is from Taiwan National Health Insurance Research Database Patients with a previous history of myocardial infarction or ischemic stroke were excluded. Among the remaining participants, every montelukast user was matched with two randomly non-users by sex, and age. The incident cardiovascular diseases, including myocardial infarction and ischemic stroke, were regarded as outcomes. We followed the participants until outcomes come first or the end of the following period. To explore the protective effect of montelukast on the risk of cardiovascular disease, we use multivariable Cox regression to estimate the hazard ratio with adjustment for potential confounding factors. Result: There are 55876 newly diagnosed asthma patients who had at least one claim of inpatient admission or at least three claims of outpatient records. We enrolled 5350 montelukast users and 10700 non-users in this cohort study. The following mean (±SD) time of the Montelukast group is 5 (±2.19 )years, and the non-users group is 6.2 5.47 (± 2.641) years. By using multivariable Cox regression, our analysis indicated that the risk of incident cardiovascular diseases between montelukast users (n=43, 0.8%) and non-users (n=111, 1.04%) is approximately equal. [adjusted hazard ratio 0.992; P-value:0.9643] Conclusion: In this population-based study, we found that the use of montelukast is not associated with a decrease in incident MI or IS.

Keywords: asthma, inflammation, montelukast, insurance research database, cardiovascular diseases

Procedia PDF Downloads 83
22778 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance

Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran

Abstract:

Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.

Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering

Procedia PDF Downloads 319
22777 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: deep learning, indoor quality, metabolism, predictive model

Procedia PDF Downloads 259
22776 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique

Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas

Abstract:

Abrasive Water Jet Machining (AWJM) is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application i.e. abrasive size, flow rate, standoff distance, and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate, and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.

Keywords: abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed

Procedia PDF Downloads 306
22775 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31

Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi

Abstract:

As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.

Keywords: magnesium, plasticity, superplastic forming, finite element analysis

Procedia PDF Downloads 157
22774 Canine Neonatal Mortality at the São Paulo State University Veterinary Hospital, Botucatu, São Paulo, Brazil – Preliminary Data

Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, João C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

The neonatal mortality rates in dogs are considered high, varying between 5.7 and 21.2% around the world, and the causes of the deaths are often unknown. Data regarding canine neonatal mortality are scarce in Brazil. This study aims at describing the neonatal mortality rates in dogs, as well as the main causes of death. The study included 152 litters and 669 neonates admitted to the São Paulo State University (UNESP) Veterinary Hospital, Botucatu, São Paulo, Brazil between January 2018 and September 2019. The overall mortality rate was 16.7% (112/669), with 40% (61/152) of the litters presenting at least one case of stillbirth or neonatal mortality. The rate of stillbirths was 7.7% (51/669), while the neonatal mortality rate was 9% (61/669). The early mortality rate (0 to 2 days) was 13.7% (92/669), accounting for 82.1% (92/112) of all deaths. The late mortality rate (3 to 30 days) was 2.7% (18/669), accounting for 16% (18/112) of all deaths. Infection was the causa mortis in 51.8% (58/112) of the newborns, of which 30.3% (34/112) were caused by bacterial sepsis, and 21.4% (24/112) were caused by other bacterial, viral or parasite infections. Other causes of death included congenital malformations (15.2%, 17/112), of which 5.3% (6/112) happened through euthanasia due to malformations incompatible with life; asphyxia/hypoxia by dystocia (9.8%, 11/112); wasting syndrome in debilitated newborns (6.2%, 7/112); aspiration pneumonia (3.6%, 4/112); agalactia (2.7%, 3/112); trauma (1.8%, 2/112); administration of contraceptives to the mother (1.8%, 2/112) and unknown causes (7.1%, 8/112). The neonatal mortality rate was considered high, but they may be even higher in locations without adequate care for the mothers and neonates. Therefore, prenatal examinations and early neonatal care are of utmost importance for the survival of these patients.

Keywords: neonate dogs, puppies, mortality rate, neonatal death

Procedia PDF Downloads 205