Search results for: anti-oxidant metabolism
290 Transcriptomic Analysis of Fragrant Rice Reveals the Involvement of Post-transcriptional Regulation in Response to Zn Foliar Application
Authors: Muhammad Imran, Sarfraz Shafiq, Xiangru Tang
Abstract:
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcripts variability and proteome diversity in plants. Fragrant rice (Oryza sativa L.) has a high economic and nutritional value, and the application of micronutrients regulate 2-acetyl-1-pyrroline (2-AP) production, which is responsible for aroma in fragrant rice. However, no systematic investigation of AS events in response to micronutrients (Zn) has been performed in fragrant rice. Furthermore, the post-transcriptional regulation of genes involved in 2-AP biosynthesis is also not known. In this study, a comprehensive analysis of AS events under two gradients of Zn treatment in two different fragrant rice cultivars (Meixiangzhan-2 and Xiangyaxiangzhan) was performed. A total of 386 and 598 significant AS events were found in Meixiangzhan-2 treated with low and high doses of Zn, respectively. In Xiangyaxiangzhan, a total of 449 and 598 significant AS events were found in low and high doses of Zn, respectively. Go analysis indicated that these genes were highly enriched in physiological processes, metabolism, and cellular process in both cultivars. However, genotype and dose-dependent AS events were also detected in both cultivars. By comparing differential AS (DAS) events with differentially expressed genes (DEGs), we found a weak overlap among DAS and DEGs in both fragrant rice cultivars, indicating that only a few genes are post-transcriptionally regulated in response to Zn treatment. We further report that Zn differentially regulates the expression of 2-AP biosynthesis-related genes in both cultivars, and Zn treatment altered the editing frequency of SNPs in the genes involved in 2-AP biosynthesis. Finally, we showed that epigenetic modifications associated with active gene transcription are generally enriched over 2-AP biosynthesis-related genes. Taken together, our results provide evidence of the post-transcriptional gene regulation in fragrant rice in response to Zn treatment and highlight that the 2-AP biosynthesis pathway may also be post-transcriptionally regulated through epigenetic modifications. These findings will serve as a cornerstone for further investigation to understand the molecular mechanisms of 2-AP biosynthesis in fragrant rice.Keywords: fragrant rice, 2-acetyl-1-pyrroline, gene expression, zinc, alternative splicing, SNPs
Procedia PDF Downloads 111289 The Effect of Extracts of 12 Local Medicinal Plants Against Uropathogenic Escherichia Coli
Authors: Hafida Merzouk
Abstract:
Urinary tract infections are among the most serious public health issues in all age groups. Thus, the empirical therapy should based on local levels of resistance, as indicated in several studies from different countries, to effectively avoid the emergence of multidrug-resistant bacterial strains and recurrent infections. Numerous effective antibiotic treatments are available, but wouldbe ineffective for treating recurrent cystitis caused by a urinary tract infection, as well as the emergence of drug resistance. That iswhy the aim of this study was to highlight the antibacterial and the antioxidant activity of 11 medicinal plants used traditionally in Algeria against E. coli, the most responsible urinary tract infections. First, the extraction of total polyphenols with aqueous acetone showed variable yields. The highest yield was obtained by Asplenium trichomanes with 27%, followed by Petroselinum crispum and Ciannamomum cassia with an equal yield of 21%. Artemisia herba-alba gave the lowest yield (9%). The extracts of different plants showed variable contents of phenolic compounds. Reducing power and DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity revealed that most of the extracts studied had significant activity. The anti-free radical activity was very high in the extract of A splenium adiantum-nigrum compared with the other extracts studied, but Petroselinum crispum and Parietaria officinalis had the lowest reducing activity; Antibacterial activity was determined on E. coli strainsusing the diffusion, MICs (Minimum Inhibitory Concentrations) and MBCs (Minimum Bactericidal concentrations) methods. The strains tested were sensitive to most extracts studied, except Asplenium adiantum-nigrum extract, for which both strains showed resistance.Keywords: E. coli, medicinal plants, phenolic compounds, urinary infections
Procedia PDF Downloads 64288 Azaridachta indica (Neem) Seed Oil Effect in Experimental Arthritis: Biochemical Parameters Assessment
Authors: Sasan Khademnematolahi, Kevine Kamga Silihe, Katarína Pružinská, Martina Chrastina, Elisabeth Louise Ndjengue Mindang, František Dráfi, Katarína Bauerová
Abstract:
Background: In ethnomedicine, plant parts and compounds are traditionally utilized to treat many disorders. Azadirachta indica, known as Neem, has been traditionally used in medicinal practices. Due to the presence of bioactive substances such as nimbolide, azadirachtin, and gedunin, Neem offers a variety of medicinal properties, including anti-inflammatory and antioxidant properties. Through its effect on pathological inflammatory processes, supplementation with it could alleviate the symptoms of rheumatoid arthritis (RA). Methods: This research aimed to assess Neem seed oil's impact on rats with adjuvant arthritis. Three doses in monotherapy and two in combination with methotrexate (MTX) have been studied, and their effect was compared. Neem p.o. doses of 100, 200, and 300 mg/kg and MTX p.o. doses of 0.3 mg/kg were examined. After clinical parameters assessment, biochemical analysis was performed in plasma. Results: During the acute phase of the experimental arthritis (Day21), levels of MMP-9, MCP-1, and cytokines IL-1beta and IL-17A were measured. The positive results of inflammatory mediators evaluation in plasma encourage additional analysis also in related tissues to prove if Neem seed oil can be used as an adjuvant therapy for RA. Conclusion: In this study, the combination therapy of Neem with MTX was the most effective of all therapies investigated. Acknowledgement: SAIA PROJECT of Kevine Kamga Silihe, Slovakia-Cameroon 2023: “The effect of Crocus sativus L (Saffron), Azadirachta indica (Neem) and their main bioactives compounds in combinatory treatment with methotrexate on experimental arthritis”, VEGA 2/0079/24, VEGA 2/0136/20, VEGA 2/0126/23 and VEGA 2/0091/23.Keywords: adjuvant, Neem, methotrexate, arthritis
Procedia PDF Downloads 44287 The Understanding of Biochemical and Molecular Analysis of Diabetic Rats Treated with Andrographis paniculata and Erythrina indica Methanol Extract
Authors: Chakrapani Pullagummi, Arun Jyothi Bheemagani, B. Chandra Sekhar Singh, Prem Kumar, A. Roja Rani
Abstract:
Diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion and its action. The objective of present study was alloxan induced diabetes in S.D (Sprague Dawley) rats, treated with leaf extract of Andrographis paniculata and bark extract of Erythrina indica. Plant extract treated rats were analyzed biochemically and molecularly. on normal and diabetic rats. The changes in MDA (lipid peroxidation) and glucose (by GOD method) levels in blood of both normal and diabetic rat were analyzed. Diabetes induced rats were treated with methanolic extracts of Andrographis paniculata leaf and Erythrina indica bark which are of medicinal importance. Later after inducing diabetes the rats were treated with medicinal plant extracts, Andrographis paniculata leaf and Erythrina indica bark which are well known for their anti diabetic and antioxidative property in order to control the glucose and MDA levels. The blood plasma of diabetic and normal rats was analyzed for the levels of MDA (lipid peroxidation) and glucose levels. Results of this study suggested that the Andrographis paniculata leaf and Erythrina indica can be used as a potential natural antidiabetic agent for treating and postponing the appearance of complications that arise due to Diabetes. Molecular study deals with the analysis of binding mechanism of 2 selected natural compounds from Andrographis and Erythrina extracts against the novel target for type T2D namely PPAR-γ compared with Rosiglitazone (standard compound). The results revealed that most of the selected herbal lead compounds were effective targets against the receptors. These compounds showed favorable interactions with the amino acid residues thereby substantiating their proven efficacy as anti-diabetic compounds.Keywords: andrographis paniculata, erythrina indica, alloxan, lipid peroxidation, blood glucose level, PPAR-γ
Procedia PDF Downloads 476286 Paramecuim as a Model for the Evaluation of Toxicity (Growth, Total Proteins, Respiratory and GSH Bio Marker Changes) Observed after Treatment with Essential Oils Isolated from Artemisia herba-alba Plant of Algeria
Authors: Bouchiha Hanene, Rouabhi Rachid, Bouchama Khaled, Djebar Berrebbah Houraya, Djebar Mohamed Reda
Abstract:
Recently, some natural products such as essentials oils (EOs) have been used in the fields as alternative to synthetic compounds, to minimize the negative impacts to the environment. This fact has led to questions about the possible impact of EOs on ecosystems. Currently in toxicology, the use of alternative models can help to understand the mechanisms of toxic action, at different levels of organization of ecosystems. Algae, protozoa and bacteria form the base of the food chain and protozoan cells are used as bioindicators often of pollution in environment. Unicellular organisms offer the possibility of direct study of independent cells with specific characteristics of individual cells and whole organisms at the same time. This unicellular facilitates the study of physiological processes, and effects of pollutants at the cellular level, which makes it widely used to assess the toxic effects of various xenobiotics. This study aimed to verify the effects of EOs of one famous plant used tremendously in our folk medicine, namely Artemisia herba alba in causing acute toxicity (24 hours) and chronic (15 days) toxicity for model cellular (Paramecium sp). To this end, cellular’s of paramecium were exposed to various concentrations (Three doses were chosen) of EOs extracted from plant (Artemisia herba alba). In the first experiment, the cellular s cultures were exposed for 48 hours to different concentrations to determine the median lethal concentration (DL50). We followed the evolution of physiological parameters (growth), biochemical (total proteins, respiratory metabolism), as well as the variations of a bio marker the GSH. Our results highlighted a light inhibition of the growth of the protozoa as well as a disturbance of the contents of total proteins and a reduction in the reduced rate of glutathione. The polarographic study revealed a stimulation of the consumption of O2 and this at the treated cells.Keywords: essential oils, protozoa, bio indicators, toxicity, Growth, bio marker, proteins, polarographic
Procedia PDF Downloads 346285 Alpha Lipoic Acid: An Antioxidant for Infertility
Authors: Chiara Di Tucci, Giulia Galati, Giulia Mattei, Valentina Bonanni, Oriana Capri, Renzo D'Amelio, Ludovico Muzii, Pierluigi Benedetti Panici
Abstract:
Objective: Infertility is an increasingly frequent health condition, which may depend on female or male factors. Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, affects the reproductive lifespan of men and women. In this review, we examine if alpha lipoic acid (ALA), among the oral supplements currently in use, has an evidence-based beneficial role in the context of female and male infertility. Methods: We performed a search from English literature using the PubMed database with the following keywords: 'female infertility', 'male infertility', 'semen', 'sperm', 'sub-fertile man', 'alpha-lipoic acid', ' alpha lipoic acid', 'lipoid acid', 'endometriosis', 'chronic pelvic pain', 'follicular fluid' and 'oocytes'. We included clinical trials, multicentric studies, and reviews. The total number of references found after automatically and manually excluding duplicates was 180. After the primary and secondary screening, 28 articles were selected. Results: The available literature demonstrates the positive effects of ALA in multiple processes, from oocyte maturation (0.87 ± 0.9% of oocyte in MII vs 0.81 ± 3.9%; p < .05) to fertilization, embryo development (57.7% vs 75.7% grade 1 embryo; p < .05) and reproductive outcomes. Its regular administration both in sub-fertile women and men has been shown to reduce pelvic pain in endometriosis (p < .05), regularize menstrual flow and metabolic disorders (p < .01), and improve sperm quality (p < .001). Conclusions: ALA represents a promising new molecule in the field of couple infertility. More clinical studies are needed in order to enhance its use in clinical practice.Keywords: alpha lipoic acid, endometriosis, infertility, male factor, polycystic ovary syndrome
Procedia PDF Downloads 86284 Exploring Simple Sequence Repeats within Conserved microRNA Precursors Identified from Tea Expressed Sequence Tag (EST) Database
Authors: Anjan Hazra, Nirjhar Dasgupta, Chandan Sengupta, Sauren Das
Abstract:
Tea (Camellia sinensis) has received substantial attention from the scientific world time to time, not only for its commercial importance, but also for its demand to the health-conscious people across the world for its extensive use as potential sources of antioxidant supplement. These health-benefit traits primarily rely on some regulatory networks of different metabolic pathways. Development of microsatellite markers from the conserved genomic regions is being worthwhile for studying the genetic diversity of closely related species or self-pollinated species. Although several SSR markers have been reported, in tea the trait-specific Simple Sequence Repeats (SSRs) are yet to be identified, which can be used for marker assisted breeding technique. MicroRNAs are endogenous, noncoding, short RNAs directly involved in regulating gene expressions at the post-transcriptional level. It has been found that diversity in miRNA gene interferes the formation of its characteristic hair pin structure and the subsequent function. In the present study, the precursors of small regulatory RNAs (microRNAs) has been fished out from tea Expressed Sequence Tag (EST) database. Furthermore, the simple sequence repeat motifs within the putative miRNA precursor genes are also identified in order to experimentally validate their existence and function. It is already known that genic-SSR markers are very adept and breeder-friendly source for genetic diversity analysis. So, the potential outcome of this in-silico study would provide some novel clues in understanding the miRNA-triggered polymorphic genic expression controlling specific metabolic pathways, accountable for tea quality.Keywords: micro RNA, simple sequence repeats, tea quality, trait specific marker
Procedia PDF Downloads 311283 Re-Differentiation Effect of Sesquiterpene Farnesol on De-Differentiated Rabbit Chondrocytes
Authors: Chun Hsien Wu, Guan Xuan Wu, Hsia Ying Cheng, Shyh Ming Kuo
Abstract:
Articular cartilage is composed of chondrocytes and extracellular matrix, such as collagen fibers, glycosaminoglycans, etc., which play an important role in lubricating and cushion joint activities. The phenotypic expression and metabolic activity of chondrocytes are extremely important in maintaining the functions of articular cartilage. In in vitro passaged culture of chondrocytes, chondrocytes gradually lose their original cell phenotype and morphology, which is called dedifferentiation. After continuous passaged culture of chondrocytes or induction by inflammatory factor IL-1, chondrocytes changed their phenotype and morphology. Also, the extracellular matrix type II collagen and GAG secretion were significantly reduced, while type I and X collagen were synthesized. Farnesol is an anti-inflammatory and antioxidant sesquiterpene compound that has the specific property of promoting collagen production. The purpose of this study was to investigate whether farnesol could restore the original type II collagen synthesis and, furthermore, the mechanisms of farnesol on the synthesis of type II collagen from the de-differentiated chondrocytes. The obtained results showed that the de-differentiated chondrocytes significantly restored to secret type II collagen and GAG (2.5-folds increases), and the secretion of collagen I and X and PGE2 synthesis were also significantly reduced after being treated with farnesol, indicating that farnesol had a restoration/re-differentiation effect on de-differentiated chondrocytes. The de-differentiated chondrocytes exhibited decreased expression of PPAR-γ and upregulated TGF-β expression to increase the MMP-13 expression. Higher expression of MMP-13 caused chondrocytes to secret type X collagen. On the contrary, increasing the expression of PPAR-γ would benefit the production of type II collagen. As shown, the PPAR-γ expression increased, and MMP-13 expression decreased after being treated with farnesol, indicating a possible signal pathway of farnesol to restore the production of type II collagen. However, more detailed mechanisms still need to evaluate.Keywords: chondrocytes, de-differentiation, farnesol, re-differentiation
Procedia PDF Downloads 125282 Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation
Authors: Grace McCambridge, Alanna Keady, Madhur Agrawal, Dequina Nicholas Alvarado, Barbara Nikolajczyk, Leena Panneerseelan-Bharath
Abstract:
Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline.Keywords: autophagy, mitochondrial turnover, ROS, glycolysis
Procedia PDF Downloads 164281 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters
Authors: Sergejs Kolesovs, Pavels Semjonovs
Abstract:
Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants
Procedia PDF Downloads 93280 The Effect of Costus igneus Extract on Learning and Memory in Normal and Diabetic Rats
Authors: Shalini Adiga, Shashikant Chetty, Jisha, Shobha Kamath
Abstract:
Background: Moderate impairment of learning and memory has been observed in both type 1 and 2 diabetes mellitus in humans and experimental animals. A Change in glucose utilization and oxidative stress that occur in diabetes are considered the main reasons for cognitive dysfunction. Objective: Costus igneus (CI) which is known to possess hypoglycemic activity was evaluated in this study for its effect on learning and memory in normal and diabetic rats. Methods: Wistar rats were divided into control, CI-alcoholic extract treated normal (250 and 500mg/kg), diabetic control and CI-treated diabetic groups. CI treatment was continued for 4 weeks. For induction of diabetes, a single dose of streptozotocin was injected (30 mg/kg i.p). Entrance latency and time spent in the dark room during acquisition and at 24 and 48h after an aversive shock in a passive avoidance model was used as an index of learning and memory. Glutathione and malondialdehyde levels in brain and blood glucose were measured. Data was analysed using ANOVA. Results: During the three trials in exploration test, the diabetic control rats exhibited no significant change in entrance latency or in the total time spent in the dark compartment. During retention testing, the entrance latency of the diabetic treated groups was two times less at 24h and three times less at 48h after aversive stimulus as compared to diabetic rats. The normal drug-treated rats showed similar behaviour as the saline control. Treatment with CI significantly reduced the raised blood sugar and MDA levels of diabetic rats. Conclusion: Costus igneus prevented the cognitive dysfunction in diabetic rats which can be attributed to its antioxidant and antihyperglycemic activities.Keywords: Costus igneous, diabetes, learning and memory, cognitive dysfunction
Procedia PDF Downloads 349279 Improvement of Cardiometabolic after 8 Weeks of Weight Loss Intervention
Authors: Boris Bajer, Andrea Havranova, Miroslav Vlcek, Richard Imrich, Adela Penesova
Abstract:
Lifestyle interventions can prevent the deterioration of impaired glucose tolerance to manifest type 2 diabetes, and also prevent cardiovascular diseases, as it showed many studies (the Finnish Diabetes Prevention Study, Diabetes Prevention Program (DPP), . the China Da Qing Diabetes Prevention Study, etc.) Therefore the aim of our study was to compare the effect of intensified lifestyle intervention on cardiometabolic parameters. Methods: It is an ongoing randomized interventional clinical study (NCT02325804) focused on the reduction of body weight/fat. Intervention: hypocaloric diet (30% restriction of calories) and physical activity 150 minutes/week. Before and after 8 weeks of intervention all patients underwent complete medical examination (measurement of physical fitness, resting metabolic rate (RMR), body composition analysis, oral glucose tolerance test, parameters of lipid metabolism, and other cardiometabolic risk factors. Results: So far 39 patients finished the intervention. The average reduction of body weight was 6,8 + 4,9 kg (0-15 kg; p=0,0006), accompanied with significant reduction of body fat percentage (p ≤ 0,0001), amount of fat mass (p=0,03), waist circumference (p=0.02). Amount of lean mass and RMR remained unchanged. Heart rate (p=0,02), systolic and diastolic blood pressure was reduced (p=0,01 p=0,02 resp.) as well as insulin sensitivity was improved. Lipid parameters also changed - cholesterol, LDL decreased (p=0,05, p=0,04 resp.), while triglycerides showed tendency to decrease (p=0,055). Liver function improved, alanine aminotrasnferase (ALT) were reduced (p=0,01). Physical fitness significantly improved (as measure VO2 max (p=0,02). Conclusion: Results of our study are in line with previous results about the beneficial effect of intensive lifestyle changes on the reduction of cardiometabolic risk factors and improvement of liver function. Supported by grants APVV 15-0228; VEGA 2/0161/16Keywords: obesity, weight loss, diet lipids, blood pressure, liver enzymes
Procedia PDF Downloads 166278 Synthetic Coumarin Derivatives and Their Anticancer Properties
Authors: Kabange Kasumbwe, Viresh Mohanlall, Bharti Odhav, Venu Narayanaswamy
Abstract:
Coumarins are naturally occurring plant metabolites known for their pharmacological properties such as anticoagulant, antimicrobial, anticancer, antioxidant, anti-inflammatory and antiviral properties. The pharmacological and biochemical properties and curative applications of coumarins depend on the substitution around the coumarin core structure. In the present study, seven halogenated coumarins CMRN1-CMRN7 were synthesized and evaluated for their anticancer activity. The cytotoxicity potential of the test compounds was evaluated against UACC62 (Melanoma), MCF-7 (Breast cancer) and PBM (Peripheral Blood Mononuclear) cell lines using MTT assay keeping doxorubicin as standard drug. The apoptotic potential of the coumarin compounds was evaluated against UACC62 (Melanoma) cell by assessing their morphological changes, membrane change, mitochondria membrane potential; pro-apoptotic changes were investigated using the AnnexinV-PI staining, JC-1, caspase-3 enzyme kits respectively on flow cytometer. The synthetic coumarin has strongly suppressed the cell proliferation of UACC-62 (Melanoma) and MCF-7 (Breast) Cancer cells, the higher toxicity of these compounds against UACC-62 (Melanoma) and MCF-7 (Breast) were CMRN3, CMRN4, CMRN5, CMRN6. However, compounds CMRN1, CMRN2, and CMRN7 had no significant inhibitory effect. Furthermore the active compounds CMRN3, CMRN4, CMRN5, CMRN6 exerted antiproliferative effects through apoptosis induction against UACC-62 (Melanoma), suggesting their potential could be considered as attractive lead molecules in the future for the development of potential anticancer agents since one of the important criteria in the development of therapeutic drugs for cancer treatment is to have high selectivity and less or no side-effects on normal cells and these compounds had no inhibitory effect against the PBMC cells.Keywords: coumarin, MTT, apoptosis, cytotoxicity
Procedia PDF Downloads 238277 Preliminary Assessment for Protective Effect of Rhodiola rosea in Chemically Induced Ulcerative Colitis
Authors: Santram Lodhi, Alok Pal Jain, Awesh K. Yadav, Gopal Rai
Abstract:
Rhodiola rosea L. (Crassulaceae) is commonly known as golden root or rose root. It is a perennial herbaceous plant and most investigated species of the genus Rhodiola. Rhodiola rosea contains flavonoids, terpenoids, phenylpropanoid glycosides and phenylethanol derivatives in the roots of the plant. The objective of present study was to investigate the protective effect of hydroalcoholic extract from Rhodiola rosea roots in DSS induced colitis in mice. The ulcerative colitis was induced by DSS (3%, w/v) in mice and estimated weight loss and stool consistency. Various parameters including Colon length, spleen weights and ulcer index were also measured. The histological observations were observed by H&E staining. Effect of hydroalcoholic extract on various antioxidant parameter of rat colon such as tissue myeloperoxidase (MPO), reduced GSH, SOD concentrations and lipid peroxidation were determined. Pro-inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and nitric oxide (NO) were determined by ELISA. In DSS induced group, mice body weight decreased gradually as compared to the control group. Redness and edema were observed in the colons intensely and scores representing inflammation in this group. The extract treated showed with tissue levels of TNF-α, IL-6 and MPO activity were significantly (p<0.05) increased. The mice treated with higher doses of hydroalcoholic extract (300 mg/kg) significantly reduced the activity compared with standard drug sulfasalazine (100 mg/kg. B.wt). Conclusion: Results of this study were suggested that the efficacy of hydroalcoholic extract, especially at the higher dose, was similar to that of standard drug, which concerned its potential application as a natural medicine for the treatment of ulcerative colitis.Keywords: phenylpropanoid, Rhodiola rosea, sulfasalazin, ulcerative colitis
Procedia PDF Downloads 244276 Stabilization of y-Sterilized Food, Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers
Authors: Sameh A. S. Thabit Alariqi
Abstract:
Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation for the plastic packaging materials such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer (EPDM) have been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organo-phosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of -sterilization. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.Keywords: ethylene-propylene-diene terpolymer, synergistic mixtures, gamma sterilization, gamma stabilization
Procedia PDF Downloads 440275 Assessment of Acute Oral Toxicity Studies and Anti Diabetic Activity of Herbal Mediated Nanomedicine
Authors: Shanker Kalakotla, Krishna Mohan Gottumukkala
Abstract:
Diabetes is a metabolic disorder characterized by hyperglycemia, carbohydrates, altered lipids and proteins metabolism. In recent research nanotechnology is a blazing field for the researchers; latterly there has been prodigious excitement in the nanomedicine and nano pharmacological area for the study of silver nanoparticles synthesis using natural products. Biological methods have been used to synthesize silver nanoparticles in presence of medicinally active antidiabetic plants, and this intention made us assess the biologically synthesized silver nanoparticles from the seed extract of Psoralea corylfolia using 1 mM silver nitrate solution. The synthesized herbal mediated silver nanoparticles (HMSNP’s) then subjected to various characterization techniques such as XRD, SEM, EDX, TEM, DLS, UV and FT-IR respectively. In current study, the silver nanoparticles tested for in-vitro anti-diabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Herbal mediated silver nanoparticles were successfully obtained from bioreduction of silver nitrate using Psoralea corylifolia plant extract. Silver nanoparticles have been appropriately characterized and confirmed using different types of equipment viz., UV-vis spectroscopy, XRD, FTIR, DLS, SEM and EDX analysis. From the behavioral observations of the study, the female albino mice did not show sedation, respiratory arrest, and convulsions. Test compounds did not cause any mortality at the dose level tested (i.e., 2000 mg/kg body weight) doses till the end of 14 days of observation and were considered safe. It may be concluded that LD50 of the HMSNPs was 2000mg/kg body weight. Since LD50 of the HMSNPs was 2000mg/kg body weight, so the preferred dose range for HMSNPs falls between the levels of 200 and 400 mg/kg. Further In-vivo pharmacological models and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting the currently synthesized silver nanoparticles as a therapeutic target in treating chronic ailments.Keywords: herbal mediated silver nanoparticles, HMSNPs, toxicity of silver nanoparticles, PTP1B in-vitro anti-diabetic assay female albino mice, 425 OECD guidelines
Procedia PDF Downloads 273274 Cellular RNA-Binding Domains with Distant Homology in Viral Proteomes
Authors: German Hernandez-Alonso, Antonio Lazcano, Arturo Becerra
Abstract:
Until today, viruses remain controversial and poorly understood; about their origin, this problem represents an enigma and one of the great challenges for the contemporary biology. Three main theories have tried to explain the origin of viruses: regressive evolution, escaped host gene, and pre-cellular origin. Under the perspective of the escaped host gene theory, it can be assumed a cellular origin of viral components, like protein RNA-binding domains. These universal distributed RNA-binding domains are related to the RNA metabolism processes, including transcription, processing, and modification of transcripts, translation, RNA degradation and its regulation. In the case of viruses, these domains are present in important viral proteins like helicases, nucleases, polymerases, capsid proteins or regulation factors. Therefore, they are implicated in the replicative cycle and parasitic processes of viruses. That is why it is possible to think that those domains present low levels of divergence due to selective pressures. For these reasons, the main goal for this project is to create a catalogue of the RNA-binding domains found in all the available viral proteomes, using bioinformatics tools in order to analyze its evolutionary process, and thus shed light on the general virus evolution. ProDom database was used to obtain larger than six thousand RNA-binding domain families that belong to the three cellular domains of life and some viral groups. From the sequences of these families, protein profiles were created using HMMER 3.1 tools in order to find distant homologous within greater than four thousand viral proteomes available in GenBank. Once accomplished the analysis, almost three thousand hits were obtained in the viral proteomes. The homologous sequences were found in proteomes of the principal Baltimore viral groups, showing interesting distribution patterns that can contribute to understand the evolution of viruses and their host-virus interactions. Presence of cellular RNA-binding domains within virus proteomes seem to be explained by closed interactions between viruses and their hosts. Recruitment of these domains is advantageous for the viral fitness, allowing viruses to be adapted to the host cellular environment.Keywords: bioinformatics tools, distant homology, RNA-binding domains, viral evolution
Procedia PDF Downloads 387273 Free Radical Scavenging Activity and Total Phenolic Assessment of Drug Repurposed Medicinal Plant Metabolites: Promising Tools against Post COVID-19 Syndromes and Non-Communicable Diseases in Botswana
Authors: D. Motlhanka, M. Mine, T. Bagaketse, T. Ngakane
Abstract:
There is a plethora of evidence from numerous sources that highlights the triumph of naturally derived medicinal plant metabolites with antioxidant capability for repurposed therapeutics. As post-COVID-19 syndromes and non-communicable diseases are on the rise, there is an urgent need to come up with new therapeutic strategies to address the problem. Non-communicable diseases and Post COVID-19 syndromes are classified as socio-economic diseases and are ranked high among threats to health security due to the economic burden they pose to any government budget commitment. Research has shown a strong link between accumulation of free radicals and oxidative stress critical for pathogenesis of non-communicable diseases and COVID-19 syndromes. Botswana has embarked on a robust programme derived from ethno-pharmacognosy and drug repurposing to address these threats to health security. In the current approach, a number of medicinally active plant-derived polyphenolics are repurposed and combined into new medicinal tools to target diabetes, Hypertension, Prostate Cancer and oxidative stress induced Post COVID 19 syndromes such as “brain fog”. All four formulants demonstrated Free Radical scavenging capacities above 95% at 200µg/ml using the diphenylpicryalhydrazyl free radical scavenging assay and the total phenolic contents between 6899-15000GAE(g/L) using the folin-ciocalteau assay respectively. These repurposed medicinal tools offer new hope and potential in the fight against emerging health threats driven by hyper-inflammation and free radical-induced oxidative stress.Keywords: drug repurposed plant polyphenolics, free radical damage, non-communicable diseases, post COVID 19 syndromes
Procedia PDF Downloads 127272 Curcumin Reduces the Expression of Main Fibrogenic Genes and Phosphorylation of Smad3C Signaling Pathway in TGFB-Activated Human HSCs. A New Remedy for Liver Fibrosis
Authors: Elham Shakerian, Reza Afarin
Abstract:
The hepatic disease causes approximately 2 million deaths/year worldwide. Liver fibrosis is the last stage of numerous chronic liver diseases, and until now there is no definite cure or drug for it. Activation of hepatic stellate cells (HSCs) is the main reason for fibrosis. Transforming growth factor (TGF-β), as a main profibrogenic cytokine, if increased in these cells, leads to liver fibrosis through smad3 signaling pathways and increasing the expressions of Collagen type I and III, and actin-alpha smooth muscle (αSMA) genes. Curcumin (CUR) is a polyphenolic compound and an active ingredient derived from the rhizome of the turmeric plant that exerts effective antioxidant, anti-inflammatory, and antimicrobial activity. It has been shown that daily consumption of curcumin may have a protective effect on the liver against oxidative stress associated with alcohol consumption. In this study, we investigate the role of Curcumin in decreasing HSC activation and treating liver fibrosis. First, the human HSCs were treated with 2 ng/ml of (TGF-β) for 24 hours to become activated, then with Silibinin for 24 hours. Total RNAs were extracted, reversely transcribed into cDNA, Quantitative Real-time PCR, and western blot were performed. The mRNA expression levels of Collagen type I and III, αSMA genes, and the level of smad3 phosphorylation in TGF-β activated human HSCs treated with Curcumin were significantly reduced compared to human HSCs untreated with Curcumin. Curcumin is effective in reducing the expression of fibrogenic genes in the activated human HSCs treated with TGFB through downregulation of the TGF-β/smad3 signaling pathway. Therefore, Curcumin possesses significant antifibrotic properties in hepatic fibrosisKeywords: hepatic fibrosis, human HSCs, curcumin, fibrogenic genes
Procedia PDF Downloads 122271 A Review on Future of Plant Based Medicine in Treatment of Urolithiatic Disorder
Authors: Gopal Lamichhane, Biswash Sapkota, Grinsun Sharma, Mahendra Adhikari
Abstract:
Urolithiasis is a condition in which insoluble or less soluble salts like oxalate, phosphate etc. precipitate in urinary tract and causes obstruction in ureter resulting renal colic or sometimes haematuria. It is the third most common disorder of urinary tract affecting nearly 2% of world’s population. Poor urinary drainage, microbial infection, oxalate and calcium containing diet, calciferol, hyperparathyroidism, cysteine in urine, gout, dysfunction of intestine, drought environment, lifestyle, exercise, stress etc. are risk factors for urolithiasis. Wide ranges of treatments are available in allopathic system of medicine but reoccurrence is unpreventable even with the surgical removal of stone or lithotripsy. So, people prefer alternative medicinal systems such as Unani, homeopathic, ayurvedic etc. systems of medicine due to their fewer side effects over allopathic counterpart. Different plants based ethnomedicines are being well established by their continuous effective use in human since long time in treatment of urinary problem. Many studies have scientifically proved those ethnomedicines for antiurolithiatic effect in animal and in vitro model. Plant-based remedies were found to be therapeutically effective for both prevention as well as cure of calcium oxalate urolithiasis. Plants were known to show these effects through a combination of many effects such as antioxidant, diuretic, hypocalciuric, urine alkalinizing effect in them. Berberine, triterpenoids, lupeol are the phytochemicals established for antiurolithiatic effect. Hence, plant-based medicine can be the effective herbal alternative as well as means of discovery of novel drug molecule for curing urolithiatic disorder and should be focused on further research to discover their value in coming future.Keywords: urolithiasis, herbal medicine, ethnomedicine, kidney stone, calcium oxalate
Procedia PDF Downloads 274270 Reversal of Testicular Damage and Subfertility by Resveratrol
Authors: Samy S. Eleawa, Mahmoud A. Alkhateeb, Fahaid H. Alhashem, Ismaeel bin-Jaliah, Hussein F. Sakr, Hesham M. Elrefaey, Abbas O. Elkarib, Mohammad A. Haidara, Abdullah S. Shatoor, Mohammad A. Khalil
Abstract:
This effect of Resveratrol (RES) against CdCl2- induced toxicity in the rat testes was investigated. Seven experimental groups of adult male rats were formulated as follows: A) Controls + NS, B) Control+ vehicle (saline solution of hydroxypropyl cyclodextrin), C) RES treated, D) CdCl2 +NS, E) CdCl2+ vehicle, F) RES followed by CdCl2 and M) CdCl2 followed by RES. At the end of the protocol, serum levels of FSH, LH, and testosterone were measured in all groups. Testicular levels of TBARS and Super Oxide Dismutase (SOD) activity were also measured. Epidydidimal semen analysis was performed and testicular expression of Bcl-2, p53 and Bax were assessed by RT-PCR. Also, histopathological changes of testes were examined microscopically and described. Pre and Post administration of RES in cadmium chloride-intoxicated rats improved semen parameters including count, motility, daily sperm production and morphology, increased serum concentrations of gonadotropins and testosterone, decreased testicular lipid peroxidation and increased SOD activity. Not only RES attenuated cadmium chloride induced testicular histopathology but was also able to protect against the onset of cadmium chloride testicular toxicity. Cadmium chloride downregulated the anti-apoptotic gene Bcl2 and upregulated the expression of both pro-apoptotic genes p53 and Bax. Resveratrol protected from and partially reversed cadmium chloride testicular via upregulation of Bcl2 and down regulation of p53 and Bax gene expression. Antioxidant activity of RES protects against cadmium chloride testicular toxicity and partially reverses its effect via upregulation of BCl2 and downregulation of p53 and Bax expression. These findings have far reaching implications on subfertility and impotency frequently seen in hypertensive as well as metabolic syndrome patients.Keywords: resveratrol, cadmium, infertility, sperm, testis, metabolic syndrome
Procedia PDF Downloads 535269 The Impact of Co-Administration of Phosphodiesterase-5 Inhibitor and Sodium Selenite on Ischemia/Reperfusion Injury in a Rat Ovary Model: Biochemical and Histopathologic Evaluation
Authors: Waleed Aly Sayed Ahmed, Eman Kishk, Tahani Shams
Abstract:
Aim: To study the effects of co-administration of phosphodiesterase-5 inhibitor (PDE-5) and sodium selenite against the damage induced by ovarian ischemia-reperfusion in rats. Materials and Methods: A total of forty-two sexually mature, virgin, female rats were divided randomly into six groups of seven each: sham group (C), ischemia group (I), ischemia/reperfusion group (I/R), ischemia/reperfusion plus 1.4mg/kg sildenafil (I/R+S) group, ischemia/reperfusion plus 0.2mg/kg selenium (I/R+Se) group and ischemia/reperfusion plus combination of sildenafil and selenium (I/R+S+Se) group. In ischemia group (I), rats were exposed to ischemia for 3 hours (h). In ischemia/reperfusion group (I/R), rats were exposed to ischemia for 3 h followed by 6 h of reperfusion. Treated groups received 1.4mg/kg sildenafil or 0.2 mg/kg selenium or both 30 min before reperfusion. Both ovaries were surgically removed carefully. One ovary was examined for histopathological changes and the other was subject to biochemical analysis including malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx). Results: Assessment of ovarian tissue damage using a scoring system showed marked vascular congestion, interstitial edema, leukocyte infiltration, hemorrhage, and follicular degeneration in ischemia and ischemia/reperfusion groups. Tissue damage score for I, IR and all treated groups were significantly higher than those of the sham group (p<0.001), while tissue damage score decreased significantly in I/R+S and I/R+Se groups compared to I/R group (p<0.05), and notably, the difference was highly significant in I/R+S+Se group (p<0.001). There was significant increase in MDA levels and reduction in activities of CAT and GPx in I/R group compared to the sham group (p < 0.05). In I/R+S and I/R+Se groups, MDA was significantly decreased compared to the I/R group (p<0.05) and the difference was highly significant with co-administration of sildenafil and selenium (p<0.001). CAT and GPx were higher in all treated groups compared to I/R group (p<0.05). Conclusion: The co-administration of sildenafil citrate and selenium are highly protective against damage induced by ovarian ischemia/reperfusion in rats.Keywords: phosphodiesterase-5 inhibitor, sildenafil, antioxidant, selenium, ovarian ischemia
Procedia PDF Downloads 311268 Proprotein Convertase Subtilisin/Kexin Type 9 Enhances Arterial Medial Calcification in a Uremic Rat Model of Chronic Kidney Disease
Authors: Maria Giovanna Lupo, Marina Camera, Marcello Rattazzi, Nicola Ferri
Abstract:
A complex interplay among chronic kidney disease, lipid metabolism and aortic calcification has been recognized starting from results of many clinical and experimental studies. Here we investigated the influence of kidney function on PCSK9 levels, both in uremic rats and in clinical observation study, and its potential direct action on cultured smooth muscle cells (SMCs) calcification. In a cohort of 594 subjects enrolled in a single centre, observational, cross-sectional and longitudinal study, a negative association between GFR and plasma PCSK9 was found. Atherosclerotic cardiovascular disease (ASCVD), as co-morbidity, further increased PCSK9 plasma levels. Diet-induced uremic condition in rats, induced aortic calcification and increased total cholesterol and PCSK9 levels in plasma, livers and kidneys. Immunohistochemical analysis confirmed PCSK9 expression in aortic SMCs. SMCs overexpressing PCSK9 (SMCsPCSK9), cultured for 7-days in a pro-calcification environment (2.0mM or 2.4mM inorganic phosphate, Pi) showed a significantly higher extracellular calcium (Ca2+) deposition compared to mocked SMCs. Under the same experimental conditions, the addition of exogenous recombinant PCSK9 did not increase the extracellular calcification of SMCs. By flow cytometry analysis we showed that SMCsPCSK9, in response to 2.4mM Pi, released higher number of extracellular vesicles (EVs) positive for three tetraspanin molecules, such as CD63, CD9, and CD81. EVs derived from SMCsPCSK9 tended to be more enriched in calcium and alkaline phosphatase (ALPL), compared to EVs from mocks SMCs. In conclusion, our study reveals a direct role of PCSK9 on vascular calcification induced by higher inorganic phosphate levels associated to CKD condition. This effect appears to be mediated by a positive effect of endogenous PCSK9 on the release of EVs containing Ca2+ and ALP, which facilitate the deposition inorganic calcium phosphate crystals.Keywords: PCSK9, calcification, extracellular vesicles, chronic kidney disease
Procedia PDF Downloads 114267 Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes
Authors: Szu-Chieh Yu, Pei-Chin Chiand, Chih-Yi Lin, Yi-Wen Chien
Abstract:
UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care.Keywords: HaCaT keratinocytes, hydroxysafflor yellow A (HSYA), MMP Ι, oxidative stress
Procedia PDF Downloads 379266 Multi-omics Integrative Analysis with Genome-Scale Metabolic Model Simulation Reveals Reaction Essentiality data in Human Astrocytes Under the Lipotoxic Effect of Palmitic Acid
Authors: Janneth Gonzalez, Andres Pinzon Velasco, Maria Angarita, Nicolas Mendoza
Abstract:
Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatory pathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, there are few studies on the neuro-protective mechanisms of tibolone, especially at the systemic (omic) level. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also use control theory to identify those reactions that control the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a change in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation.We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation in metabolic pathways that increase neurotoxicity and represent potential treatment targets. Finally, this study framework facilitates the understanding of metabolic regulation strategies, andit can be used for in silico exploring the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics, control theory
Procedia PDF Downloads 121265 Anti-Oxidant and Anti-Cancer Activity of Helix aspersa Aqueous Extract
Authors: Ibtissem El Ouar, Cornelia Braicu, Dalila Naimi, Alexendru Irimie, Ioana Berindan-Neagoe
Abstract:
Helix aspersa, 'the garden snail' is a big land snail widely found in the Mediterranean countries, it is one of the most consumed species in the west of Algeria. It is commonly used in zootherapy to purify blood and to treat cardiovascular diseases and liver problems. The aim of our study is to investigate, the antitumor activity of an aqueous extract from Helix aspersa prepared by the traditional method on Hs578T; a triple negative breast cancer cell line. Firstly, the free radical scavenging activity of H. aspersa extract was assessed by measuring its capability for scavenging the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), as well as its ability to reduce ferric ion by the FRAP assay (ferric reducing ability). The cytotoxic effect of H. aspersa extract against Hs578T cells was evaluated by the MTT test (3-(4,5- dimethylthiazl-2-yl)-2,5- diphenyltetrazolium bromide)) while the mode of cell death induced by the extract has been determined by fluorescence microscopy using acredine orange/ethidium bromide (AO/EB) probe. The level of TNFα has also measured in cell medium by ELISA method. The results suggest that H. aspersa extract has an antioxidant activity, especially at high concentrations, it can reduce DPPH radical and ferric ion. The MTT test shows that H. aspersa extract has a great cytotoxic effect against breast cancer cells, the IC50 value correspond of the dilution 1% of the crude extract. Moreover, the AO/EB staining shows that TNFα induced necrosis is the main form of cell death induced by the extract. In conclusion, the present study may open new perspectives in the search for new natural anticancer drugs.Keywords: breast cancer, Helix aspersa, Hs578t cell line, necrosis
Procedia PDF Downloads 422264 Portable, Noninvasive and Wireless Near Infrared Spectroscopy Device to Monitor Skeletal Muscle Metabolism during Exercise
Authors: Adkham Paiziev, Fikrat Kerimov
Abstract:
Near Infrared Spectroscopy (NIRS) is one of the biophotonic techniques which can be used to monitor oxygenation and hemodynamics in a variety of human tissues, including skeletal muscle. In the present work, we are offering tissue oximetry (OxyPrem) to measure hemodynamic parameters of skeletal muscles in rest and exercise. Purpose: - To elaborate the new wireless, portable, noninvasive, wearable NIRS device to measure skeletal muscle oxygenation during exercise. - To test this device on brachioradialis muscle of wrestler volunteers by using combined method of arterial occlusion (AO) and NIRS (AO+NIRS). Methods: Oxyprem NIRS device has been used together with AO test. AO test and Isometric brachioradialis muscle contraction experiments have been performed on one group of wrestler volunteers. ‘Accu- Measure’ caliper (USA) to measure skinfold thickness (SFT) has been used. Results: Elaborated device consists on power supply box, a sensor head and installed ‘Tubis’ software for data acquisition and to compute deoxyhemoglobin ([HHb), oxyhemoglobin ([O2Hb]), tissue oxygenation (StO2) and muscle tissue oxygen consumption (mVO2). Sensor head consists on four light sources with three light emitting diodes with nominal wavelengths of 760 nm, 805 nm, and 870 nm, and two detectors. AO and isometric voluntary forearm muscle contraction (IVFMC) on five healthy male subjects (23,2±0.84 in age, 0.43±0.05cm of SFT ) and four female subjects (22.0±1.0 in age and 0.24±0.04 cm SFT) has been measured. mVO2 for control group has been calculated (-0.65%/sec±0.07) for male and -0.69%/±0.19 for female subjects). Tissue oxygenation index for wrestlers in average about 75% whereas for control group StO2 =63%. Second experiment was connected with quality monitoring muscle activity during IVFMC at 10%,30% and 50% of MVC. It has been shown, that the concentration changes of HbO2 and HHb positively correlated to the contraction intensity. Conclusion: We have presented a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The miniaturized NIRS sensor and the usage of wireless communication make the whole device have a compact-size, thus can be used in muscle monitoring.Keywords: skeletal muscle, oxygenation, instrumentation, near infrared spectroscopy
Procedia PDF Downloads 275263 Effect of Salvadora Persica Gel on Clinical and Microbiological Parameters of Chronic Periodontitis
Authors: Tahira Hyder, Saima Quraeshi, Zohaib Akram
Abstract:
Salvadora Persica (SP) is known to have anti-inflammatory, antioxidant, anti-coagulant and anti-bacterial properties that may provide therapeutic benefits in the treatment of chronic periodontitis (CP). The current clinical trial was designed to investigate the clinical and anti-microbial effects of SP gel as an adjunct to scaling and root planning (SRP) in subjects with generalized CP. Sixty-six subjects with CP were randomized allocated into two groups: SRP + SP gel (test group) and SRP only (control group). Clinical parameters (periodontal pocket depth, gingival recession, clinical attachment level, bleeding score and plaque score) were recorded at baseline before SRP and at 6 weeks. At baseline and 6 weeks subgingival plaque samples were collected and periodontopathogen Porphyromonas Gingivalis (Pg) quantified using Real-time Polymerase Chain Reaction (RT-PCR). Both therapies reduced the mean periodontal pocket depth (PPD), plaque score (PS) and bleeding score (BOP) and improved the mean clinical attachment level (CAL) between baseline and 6 weeks. In subjects receiving adjunctive SP gel a statistically significant improvement was observed in BOP at follow-up compared to control group (15.01±3.47% and 22.81±6.81% respectively, p=0.001), while there was no statistically significant difference in periodontal pocket depth, gingival recession, clinical attachment level and plaque score between both groups. The test group displayed significantly greater Pg reduction compared to the control group after 6 weeks. The current study establishes that local delivery of SP gel into periodontal pocket in CP stimulated a significant reduction in bacteria Pg level and an improvement in gingival health, as evident from a reduced bleeding score, when used as an adjunct to SRP.Keywords: miswak, scaling and root planing, porphyromonas gingivalis, chronic periodontitis
Procedia PDF Downloads 85262 Antiproliferative and Apoptotic Effects of an Enantiomerically Pure β-Dipeptide Derivative through PI3K/Akt-Dependent and -Independent Pathways in Human Hormone-Refractory Prostate Cancer Cells
Authors: Mei-Ling Chan, Jin-Ming Wu, Konstantin V. Kudryavtsev, Jih-Hwa Guh
Abstract:
Prostate cancer is one of the most common malignant disease in men. KUD983 is an enantiomerically pure β-dipeptide derivative, which may have anti-cancer effects. In the present study, KUD983 exhibits powerful activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells. The IC50 values of KUD983 in PC-3 and DU145 cells are 0.56±0.07M and 0.50±0.04 M respectively. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with the down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The protein expressions of nuclear and total c-Myc protein, which was able to regulate the expression of both cyclin D1 and cyclin E, were significantly suppressed by KUD983. Phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is an important signaling pathway that influences the energy metabolism, cell cycle, proliferation, survival and apoptosis of cells, and is associated with numerous other signaling pathways. The Western Blot data revealed that KUD983 inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly reversed KUD983-induced caspase activation but did not abolish the suppression of mTOR/p70S6K/4E-BP1 signaling cascade indicating the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was collaborated with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Furthermore, KUD983 induced autophagic cell death using confocal microscopic examination, investigating the level of conversion of LC3-I to LC3-II and flow cytometric detection of AVO-positive cells. Taken together, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways mediated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may indicate the mechanism of KUD983 against HRPC.Keywords: β-dipeptide, hormone-refractory prostate cancer, mTOR, PI3K/Akt
Procedia PDF Downloads 282261 Molecular Pathogenesis of NASH through the Dysregulation of Metabolic Organ Network in the NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet
Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi
Abstract:
NASH is an increasingly prevalent chronic liver disease that can progress to hepatocellular carcinoma and now is attracting interest worldwide. The STAM™ model is a clinically-correlated murine NASH model which shows the same pathological progression as NASH patients and has been widely used for pharmacological and basic research. The multiple parallel hits hypothesis suggests abnormalities in adipocytokines, intestinal microflora, and endotoxins are intertwined and could contribute to the development of NASH. In fact, NASH patients often exhibit gut dysbiosis and dysfunction in adipose tissue and metabolism. However, the analysis of the STAM™ model has only focused on the liver. To clarify whether the STAM™ model can also mimic multiple pathways of NASH progression, we analyzed the organ crosstalk interactions between the liver and the gut and the phenotype of adipose tissue in the STAM™ model. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin 2 days after birth and feeding with high-fat diet after 4 weeks of age. The mice were sacrificed at NASH stage. Colon samples were snap-frozen in liquid nitrogen and stored at -80˚C for tight junction-related protein analysis. Adipose tissue was prepared into paraffin blocks for HE staining. Blood adiponectin was analyzed to confirm changes in the adipocytokine profile. Tight junction-related proteins in the intestine showed that expression of ZO-1 decreased with the progression of the disease. Increased expression of endotoxin in the blood and decreased expression of Adiponectin were also observed. HE staining revealed hypertrophy of adipocytes. Decreased expression of ZO-1 in the intestine of STAM™ mice suggests the occurrence of leaky gut, and abnormalities in adipocytokine secretion were also observed. Together with the liver, phenotypes in these organs are highly similar to human NASH patients and might be involved in the pathogenesis of NASH.Keywords: Non-alcoholic steatohepatitis, hepatocellular carcinoma, fibrosis, organ crosstalk, leaky gut
Procedia PDF Downloads 159