Search results for: advanced PVR
1070 Influence of Surface Preparation Effects on the Electrochemical Behavior of 2098-T351 Al–Cu–Li Alloy
Authors: Rejane Maria P. da Silva, Mariana X. Milagre, João Victor de S. Araujo, Leandro A. de Oliveira, Renato A. Antunes, Isolda Costa
Abstract:
The Al-Cu-Li alloys are advanced materials for aerospace application because of their interesting mechanical properties and low density when compared with conventional Al-alloys. However, Al-Cu-Li alloys are susceptible to localized corrosion. The near-surface deformed layer (NSDL) induced by the rolling process during the production of the alloy and its removal by polishing can influence on the corrosion susceptibility of these alloys. In this work, the influence of surface preparation effects on the electrochemical activity of AA2098-T351 (Al–Cu–Li alloy) was investigated using a correlation between surface chemistry, microstructure, and electrochemical activity. Two conditions were investigated, polished and as-received surfaces of the alloy. The morphology of the two types of surfaces was investigated using confocal laser scanning microscopy (CLSM) and optical microscopy. The surface chemistry was analyzed by X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Global electrochemical techniques (potentiodynamic polarization and EIS technique) and a local electrochemical technique (Localized Electrochemical Impedance Spectroscopy-LEIS) were used to examine the electrochemical activity of the surfaces. The results obtained in this study showed that in the as-received surface, the near-surface deformed layer (NSDL), which is composed of Mg-rich bands, influenced the electrochemical behavior of the alloy. The results showed higher electrochemical activity to the polished surface condition compared to the as-received one.Keywords: Al-Cu-Li alloys, surface preparation effects, electrochemical techniques, localized corrosion
Procedia PDF Downloads 1591069 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement
Authors: Chao Xu
Abstract:
Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis
Procedia PDF Downloads 3541068 Monocytic Paraoxonase 2 (PON 2) Lactonase Activity Is Related to Myocardial Infarction
Authors: Mukund Ramchandra Mogarekar, Pankaj Kumar, Shraddha V. More
Abstract:
Background: Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Apo B, and lipoprotein(a) was found as atherogenic factors while high-density lipoprotein cholesterol (HDL-C) was anti-atherogenic. Methods and Results: The study group consists of 40 MI subjects as cases and 40 healthy as controls. Monocytic PON 2 Lactonase (LACT) activity was measured by using Dihydrocoumarine (DHC) as substrate. Phenotyping was done by method of Mogarekar MR et al, serum AOPP by modified method of Witko-Sarsat V et al and Apo B by Turbidimetric immunoassay. PON 2 LACT activities were significantly lower (p< 0.05) and AOPPs & Apo B were higher in MI subjects (p> 0.05). Trimodal distribution of QQ, QR & RR phenotypes of study population showed no significant difference among cases and controls (p> 0.05). Univariate binary logistic regression analysis showed independent association of TC, HDL, LDL, AOPP, Apo B, and PON 2 LACT activity with MI and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI. Conclusions- Decrease in PON 2 LACT activity in MI subjects than in controls suggests increased oxidative stress in MI which is reflected by significantly increased AOPP and Apo B. PON 1 polymorphism of QQ, QR and RR showed no significant difference in protection against MI. Univariate and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI.Keywords: advanced oxidation protein products, apolipoprotein-B, myocardial infarction, paraoxonase 2 lactonase
Procedia PDF Downloads 2391067 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.Keywords: bridge, construction, drones, infrastructure, information
Procedia PDF Downloads 1241066 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China
Abstract:
Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation
Procedia PDF Downloads 251065 Processing Studies and Challenges Faced in Development of High-Pressure Titanium Alloy Cryogenic Gas Bottles
Authors: Bhanu Pant, Sanjay H. Upadhyay
Abstract:
Frequently, the upper stage of high-performance launch vehicles utilizes cryogenic tank-submerged pressurization gas bottles with high volume-to-weight efficiency to achieve a direct gain in the satellite payload. Titanium alloys, owing to their high specific strength coupled with excellent compatibility with various fluids, are the materials of choice for these applications. Amongst the Titanium alloys, there are two alloys suitable for cryogenic applications, namely Ti6Al4V-ELI and Ti5Al2.5Sn-ELI. The two-phase alpha-beta alloy Ti6Al4V-ELI is usable up to LOX temperature of 90K, while the single-phase alpha alloy Ti5Al2.5Sn-ELI can be used down to LHe temperature of 4 K. The high-pressure gas bottles submerged in the LH2 (20K) can store more amount of gas in as compared to those submerged in LOX (90K) bottles the same volume. Thus, the use of these alpha alloy gas bottles stored at 20K gives a distinct advantage with respect to the need for a lesser number of gas bottles to store the same amount of high-pressure gas, which in turn leads to a one-to-one advantage in the payload in the satellite. The cost advantage to the tune of 15000$/ kg of weight is saved in the upper stages, and, thereby, the satellite payload gain is expected by this change. However, the processing of alpha Ti5Al2.5Sn-ELI alloy gas bottles poses challenges due to the lower forgeability of the alloy and mode of qualification for the critical severe application environment. The present paper describes the processing and challenges/ solutions during the development of these advanced gas bottles for LH2 (20K) applications.Keywords: titanium alloys, cryogenic gas bottles, alpha titanium alloy, alpha-beta titanium alloy
Procedia PDF Downloads 571064 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria
Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi
Abstract:
Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies
Procedia PDF Downloads 691063 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites
Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh
Abstract:
The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength
Procedia PDF Downloads 611062 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black
Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega
Abstract:
Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light
Procedia PDF Downloads 1701061 Luminescence Dating of Ancient Agricultural Terraced Landscapes: Prospects for Heritage Protection
Authors: Lisa Snape, Andreas Lang, Tony Brown, Dan Fallu, Ben Pears
Abstract:
Agricultural terraced landscapes are widespread in mountainous areas in a variety of climatic zones around the World. The most famous are those found associated with the famous Inca site of Machu Pichu in the Andes, the arid lands in upland areas of Yemen, and the abundant rice terraces covering the hilltops in tropical areas such as Thailand, Vietnam, and China and also Bali. Terraces were designed using advanced engineered techniques, requiring specialist knowledge of bedrock geology, soil cultivation and maintenance, and ecosystem management to grow a variety of crops in specific environmental conditions. These enigmatic landscapes were often overlooked in the past but have now received widespread attention to further understand their age, origins, and evolution as the landscapes and environment changed over time. By understanding the age and chronologies of agricultural terrace technology, we can enhance our understanding of these unique features considered widely as important ecosystem services in the present day. We present distinct luminescence dating evidence from a variety of terraced systems found in different European environmental settings, such as the UK, Italy and Belgium, as part of the wider ERC-funded TerrACE Project. Our research aims to better understand their history and advocate for their protection and effective management as important cultural, heritage and environmental assets, creating new avenues for future scientific research.Keywords: terraces, agriculture, luminescence dating, heritage protection
Procedia PDF Downloads 541060 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 451059 Religion and Suicide: Exploration of the Relationship Between Religiosity and Suicidal Ideation among Young Adults
Authors: Sandra D. Prewitt
Abstract:
Introduction—The purpose of the extant study was to explore the relationship between religiosity and suicidal ideation. Through this exploration, further knowledge was sought relevant to gaining a better understanding regarding the higher suicide rate continuing to be experienced by young adults. Endeavoring to discover why the suicide rate continues to increase for the subject population, depression and anxiety emerged as major contributory risk factors. Although religiosity has been shown to be related to the reduced risk of suicidal behavior, the curative value of religion relevant to suicide prevention and treatment has not been sufficiently recognized. Considering the enormity of the current suicide problem, pursuits relevant to discovering effective tools enabling impactful prevention and treatment strategies remain essential to reducing suicide deaths. Methodology—The subject study was conducted utilizing a systematic literature review (SLR) which required the researcher to perform searches of appropriate databases, toward the goal of acquiring advanced knowledge based upon existing studies relevant to the subject matter under consideration. Major Findings—Depression and anxiety have been identified as two potential pathways leading to increased suicidal behavior. On the contrary, religiosity emerged as an important protective factor associated with less depression and therefore, fewer instances of suicidal thoughts. The protective nature of religion has been shown to extend to young adults without regard to the presence of identified potential suicidal behavior pathways.Keywords: anxiety, depression, religion, suicide
Procedia PDF Downloads 2191058 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit
Authors: James Killian, Sarah Cox
Abstract:
The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.Keywords: FOS, SRF, LEM, comparison
Procedia PDF Downloads 3081057 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 1171056 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System
Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi
Abstract:
In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building
Procedia PDF Downloads 1421055 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems
Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj
Abstract:
An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide
Procedia PDF Downloads 2111054 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology
Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan
Abstract:
The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology
Procedia PDF Downloads 3481053 MXene-Based Self-Sensing of Damage in Fiber Composites
Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi
Abstract:
Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.Keywords: damage sensing, fiber composites, MXene, self-sensing
Procedia PDF Downloads 1211052 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility
Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon
Abstract:
Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.Keywords: hybrid choice model, airline, business travelers, domestic flights
Procedia PDF Downloads 131051 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 591050 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes
Authors: Nahashon Mwirigi
Abstract:
The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling
Procedia PDF Downloads 91049 Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia
Authors: Hailekiros Tadesse Tekle, Yemane Tsehaye, Fetien Abay
Abstract:
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation.Keywords: barley, clustering, genetic advance, heritability, usefulness, variability, yield
Procedia PDF Downloads 881048 Effect of Pre Harvest Application of Amino Acids on Fruit Development of Sub-Tropical Peach
Authors: Manjot Kaur, Harminder Singh, S. K. Jawandha
Abstract:
The present investigations were carried out at Fruit Research Farm, Department of Fruit Science, Punjab Agricultural University, Ludhiana during the years 2016 and 2017, with the aim of assessing the effect of amino acids on fruit development, shoot growth and yield of peach. The six-year-old peach trees of cv. Florida Prince were sprayed with 0.25 % and 0.50 % concentrations of amino acids (Peptone P1 023), 7 and 14 days after full bloom and the sprays were repeated after 15 and 30 days. Experimental findings showed that all the amino acid treatments increased fruit growth, shoot growth, fruit retention and yield and decreased fruit drop as compared to control during both the years. Maximum fruit retention (89.29 %) and minimum fruit drop (10.71 %) was observed in T8 (2 sprays @ 0.50%). Highest mean shoot growth (113.89 cm) was recorded in T12 (3 sprays @ 0.50%) while the minimum was in control plants (88.23 cm). Fruit yield was also found to be maximum (53.92 kg/tree) under double spray treatment T8 (2 sprays @ 0.50%) of amino acids and minimum in plants sprayed with triple spray of amino acids. Fruit maturity was advanced by 3-4 days by double spray treatments of amino acids as compared to control. In brief, the application of double spray of amino acids @ 0.50% (applied 14 days after full bloom and 15 days later), was found to be best to improve the fruit growth, fruit retention and yield of Florida Prince peach under Punjab conditions.Keywords: amino acids, fruit growth, maturity, peach, shoot growth
Procedia PDF Downloads 1851047 Renoprotective Effect of Alcoholic Extract of Bacopa monnieri via Inhibition of Advanced Glycation End Products and Oxidative Stress in Stz-Nicotinamide Induced Diabetic Nephropathy
Authors: Lalit Kishore, Randhir Singh
Abstract:
Diabetic nephropathy (DN) is the major cause of morbidity among diabetic patients. In this study, the effect of Bacopa monnieri Linn. (Brahmi, BM), was studied in a Streptozotocin (STZ)-induced experimental rat model of DN. Diabetic nephropathy was induced in Male Wistar rats (body weight- 300± 10 gms) by single intra-peritoneal injection of STZ (45mg/kg, i.p.) after 15 min of Nicotinamide (230 mg/kg) administration. Different doses of alcoholic extract i.e. 100, 200 and 400 mg/kg was given for 45 days by oral gavage after induction of DN. Blood glucose level, serum insulin, glycosylated haemoglobin, renal parameters (serum urea, uric acid, creatinine and BUN) and lipid profile (total cholesterol, triglycerides, HDL, LDL and VLDL levels) were measured. Concentration of thiobarbituric acid reactive species (TBARS) and levels of antioxidant enzymes of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the kidney, liver and pancreas. At the end of treatment period the alcoholic extract of BM reduced the elevated level of blood glucose, serum insulin, renal parameters, lipid levels, TBARS, AGE’s in kidney and significantly increased body weight, HDL and antioxidant enzymes in dose dependent manner as compared to diabetic control animals. These results suggested the BM possesses significant renoprotective activity.Keywords: AGE's, lipid profile, oxidative stress, renal parameters
Procedia PDF Downloads 3231046 Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water
Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam
Abstract:
In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria
Procedia PDF Downloads 2481045 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications
Authors: Mallikarjunachari Gangapuram
Abstract:
The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.Keywords: hematite, hydrogel, nanoindentation, nano-DMA
Procedia PDF Downloads 1921044 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity
Procedia PDF Downloads 441043 Bio Composites for Substituting Synthetic Packaging Materials
Authors: Menonjyoti Kalita, Pradip Baishya
Abstract:
In recent times, the world has been facing serious environmental concerns and issues, such as sustainability and cost, due to the overproduction of synthetic materials and their participation in degrading the environment by means of industrial waste and non-biodegradable characteristics. As such, biocomposites come in handy to ease such troubles. Bio-based composites are promising materials for future applications for substituting synthetic packaging materials. The challenge of making packaging materials lighter, safer and cheaper leads to investigating advanced materials with desired properties. Also, awareness of environmental issues forces researchers and manufacturers to spend effort on composite and bio-composite materials fields. This paper explores and tests some nature-friendly materials has been done which can replace low-density plastics. The materials selected included sugarcane bagasse, areca palm, and bamboo leaves. Sugarcane bagasse bamboo leaves and areca palm sheath are the primary material or natural fibre for testing. These products were processed, and the tensile strength of the processed parts was tested in Micro UTM; it was found that areca palm can be used as a good building material in replacement to polypropylene and even could be used in the production of furniture with the help of epoxy resin. And for bamboo leaves, it was found that bamboo and cotton, when blended in a 50:50 ratio, it has great tensile strength. For areca, it was found that areca fibres can be a good substitute for polypropylene, which can be used in building construction as binding material and also other products.Keywords: biodegradable characteristics, bio-composites, areca palm sheath, polypropylene, micro UTM
Procedia PDF Downloads 911042 An Overview of Paclitaxel as an Anti-Cancer Agent in Avoiding Malignant Metastatic Cancer Therapy
Authors: Nasrin Hosseinzad, Ramin Ghasemi Shayan
Abstract:
Chemotherapy is the most common procedure in the treatment of advanced cancers but is justsoberlyoperativeand toxic. Nevertheless, the efficiency of chemotherapy is restrictedowing to multiple drug resistance(MDR). Lately, plentiful preclinical experiments have revealedthatPaclitaxel-Curcumin could be an ultimateapproach to converse MDR and synergistically increase their efficiency. The connotationsamongst B-cell-lymphoma2(BCL-2) and multi-drug-resistance-associated-P-glycoprotein(MDR1) consequence of patients forecast the efficiency of paclitaxel-built chemoradiotherapy. There are evidences of the efficacy of paclitaxel in the treatment of surface-transmission of bladder-cell-carcinoma by manipulating bio-adhesive microspheres accomplishedthroughout measured release of drug at urine epithelium. In Genetically-Modified method, muco-adhesive oily constructionoftricaprylin, Tween 80, and paclitaxel group showed slighter toxicity than control in therapeutic dose. Postoperative chemotherapy-Paclitaxel might be more advantageous for survival than adjuvant chemo-radio-therapy, and coulddiminish postoperative complications in cervical cancer patients underwent a radical hysterectomy.HA-Se-PTX(Hyaluronic acid, Selenium, Paclitaxel) nanoparticles could observablyconstrain the proliferation, transmission, and invasion of metastatic cells and apoptosis. Furthermore, they exhibitedvast in vivo anti-tumor effect. Additionally, HA-Se-PTX displayedminor toxicity on mice-chef-organs. Briefly, HA-Se-PTX mightprogress into a respectednano-scale agentinrespiratory cancers. To sum up, Paclitaxel is considered a profitable anti-cancer drug in the treatment and anti-progress symptoms in malignant cancers.Keywords: cancer, paclitaxel, chemotherapy, tumor
Procedia PDF Downloads 1321041 The Effect of Self and Peer Assessment Activities in Second Language Writing: A Washback Effect Study on the Writing Growth during the Revision Phase in the Writing Process: Learners’ Perspective
Authors: Musbah Abdussayed
Abstract:
The washback effect refers to the influence of assessment on teaching and learning, and this washback effect can either be positive or negative. This study implemented, sequentially, self-assessment (SA) and peer assessment (PA) and examined the washback effect of self and peer assessment (SPA) activities on the writing growth during the revision phase in the writing process. Twenty advanced Arabic as a second language learners from a private school in the USA participated in the study. The participants composed and then revised a short Arabic story as a part of a midterm grade. Qualitative data was collected, analyzed, and synthesized from ten interviews with the learners and from the twenty learners’ post-reflective journals. The findings indicate positive washback effects on the learners’ writing growth. The PA activity enhanced descriptions and meaning, promoted creativity, and improved textual coherence, whereas the SA activity led to detecting editing issues. Furthermore, both SPA activities had washback effects in common, including helping the learners meet the writing genre conventions and developing metacognitive awareness. However, the findings also demonstrate negative washback effects on the learners’ attitudes during the revision phase in the writing process, including bias toward self-evaluation during the SA activity and reluctance to rate peers’ writing performance during the PA activity. The findings suggest that self-and peer assessment activities are essential teaching and learning tools that can be utilized sequentially to help learners tackle multiple writing areas during the revision phase in the writing process.Keywords: self assessment, peer assessment, washback effect, second language writing, writing process
Procedia PDF Downloads 68