Search results for: product optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6774

Search results for: product optimization

5544 Optimization of Hepatitis B Surface Antigen Purifications to Improving the Production of Hepatitis B Vaccines on Pichia pastoris

Authors: Rizky Kusuma Cahyani

Abstract:

Hepatitis B is a liver inflammatory disease caused by hepatitis B virus (HBV). This infection can be prevented by vaccination which contains HBV surface protein (sHBsAg). However, vaccine supply is limited. Several attempts have been conducted to produce local sHBsAg. However, the purity degree and protein yield are still inadequate. Therefore optimization of HBsAg purification steps is required to obtain high yield with better purification fold. In this study, optimization of purification was done in 2 steps, precipitation using variation of NaCl concentration (0,3 M; 0,5 M; 0,7 M) and PEG (3%, 5%, 7%); ion exchange chromatography (IEC) using NaCl 300-500 mM elution buffer concentration.To determine HBsAg protein, bicinchoninic acid assay (BCA) and enzyme-linked immunosorbent assay (ELISA) was used in this study. Visualization of HBsAg protein was done by SDS-PAGE analysis. Based on quantitative analysis, optimal condition at precipitation step was given 0,3 M NaCl and PEG 3%, while in ion exchange chromatography step, the optimum condition when protein eluted with NaCl 500 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicates that the presence of protein HBsAg with a molecular weight of 25 kDa (monomer) and 50 kDa (dimer). The optimum condition for purification of sHBsAg produced in Pichia pastoris gave a yield of 47% and purification fold 17x so that it would increase the production of hepatitis B vaccine to be more optimal.

Keywords: hepatitis B virus, HBsAg, hepatitis B surface antigen, Pichia pastoris, purification

Procedia PDF Downloads 152
5543 Chemical Oxygen Demand Fractionation of Primary Wastewater Effluent for Process Optimization and Modelling

Authors: Thandeka Y. S. Jwara, Paul Musonge

Abstract:

Traditionally, the complexity associated with implementing and controlling biological nutrient removal (BNR) in wastewater works (WWW) has been primarily in terms of balancing competing requirements for nitrogen and phosphorus removal, particularly with respect to the use of influent chemical oxygen demand (COD) as a carbon source for the microorganisms. Successful BNR optimization and modelling using WEST (Worldwide Engine for Simulation and Training) depend largely on the accurate fractionation of the influent COD. The different COD fractions have differing effects on the BNR process, and therefore, the influent characteristics need to be well understood. This study presents the fractionation results of primary wastewater effluent COD at one of South Africa’s wastewater works treating 65ML/day of mixed industrial and domestic effluent. The method used for COD fractionation was the oxygen uptake rate/respirometry method. The breakdown of the results of the analysis is as follows: 70.5% biodegradable COD (bCOD) and 29.5% of non-biodegradable COD (iCOD) in terms of the total COD. Further fractionation led to a readily biodegradable soluble fraction (SS) of 75%, a slowly degradable particulate fraction (XS) of 24%, a particulate non-biodegradable fraction (XI) of 50.8% and a non-biodegradable soluble fraction (SI) of 49.2%. The fractionation results demonstrate that the primary effluent has good COD characteristics, as shown by the high level of the bCOD fraction with Ss being higher than Xs. This means that the microorganisms have sufficient substrate for the BNR process and that these components can now serve as inputs to the WEST Model for the plant under study.

Keywords: chemical oxygen demand, COD fractionation, wastewater modelling, wastewater optimization

Procedia PDF Downloads 143
5542 Optimization of Lubricant Distribution with Alternative Coordinates and Number of Warehouses Considering Truck Capacity and Time Windows

Authors: Taufik Rizkiandi, Teuku Yuri M. Zagloel, Andri Dwi Setiawan

Abstract:

Distribution and growth in the transportation and warehousing business sector decreased by 15,04%. There was a decrease in Gross Domestic Product (GDP) contribution level from rank 7 of 4,41% in 2019 to 3,81% in rank 8 in 2020. A decline in the transportation and warehousing business sector contributes to GDP, resulting in oil and gas companies implementing an efficient supply chain strategy to ensure the availability of goods, especially lubricants. Fluctuating demand for lubricants and warehouse service time limits are essential things that are taken into account in determining an efficient route. Add depots points as a solution so that demand for lubricants is fulfilled (not stock out). However, adding a depot will increase operating costs and storage costs. Therefore, it is necessary to optimize the addition of depots using the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). This research case study was conducted at an oil and gas company that produces lubricants from 2019 to 2021. The study results obtained the optimal route and the addition of a depot with a minimum additional cost. The total cost remains efficient with the addition of a depot when compared to one depot from Jakarta.

Keywords: CVRPTW, optimal route, depot, tabu search algorithm

Procedia PDF Downloads 136
5541 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand

Authors: Leila Jafari, Viliam Makis

Abstract:

In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.

Keywords: condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand

Procedia PDF Downloads 465
5540 Optimization of Multistage Extractor for the Butanol Separation from Aqueous Solution Using Ionic Liquids

Authors: Dharamashi Rabari, Anand Patel

Abstract:

n-Butanol can be regarded as a potential biofuel. Being resistive to corrosion and having high calorific value, butanol is a very attractive energy source as opposed to ethanol. By fermentation process called ABE (acetone, butanol, ethanol), bio-butanol can be produced. ABE carried out mostly by bacteria Clostridium acetobutylicum. The major drawback of the process is the butanol concentration higher than 10 g/L, delays the growth of microbes resulting in a low yield. It indicates the simultaneous separation of butanol from the fermentation broth. Two hydrophobic Ionic Liquids (ILs) 1-butyl-1-methylpiperidinium bis (trifluoromethylsulfonyl)imide [bmPIP][Tf₂N] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [hmim][Tf₂N] were chosen. The binary interaction parameters for both ternary systems i.e. [bmPIP][Tf₂N] + water + n-butanol and [hmim][Tf₂N] + water +n-butanol were taken from the literature that was generated by NRTL model. Particle swarm optimization (PSO) with the isothermal sum rate (ISR) method was used to optimize the cost of liquid-liquid extractor. For [hmim][Tf₂N] + water +n-butanol system, PSO shows 84% success rate with the number of stages equal to eight and solvent flow rate equal to 461 kmol/hr. The number of stages was three with 269.95 kmol/hr solvent flow rate for [bmPIP][Tf₂N] + water + n-butanol system. Moreover, both ILs were very efficient as the loss of ILs in raffinate phase was negligible.

Keywords: particle swarm optimization, isothermal sum rate method, success rate, extraction

Procedia PDF Downloads 125
5539 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
5538 Sensitivity Analysis Optimization of a Horizontal Axis Wind Turbine from Its Aerodynamic Profiles

Authors: Kevin Molina, Daniel Ortega, Manuel Martinez, Andres Gonzalez-Estrada, William Pinto

Abstract:

Due to the increasing environmental impact, the wind energy is getting strong. This research studied the relationship between the power produced by a horizontal axis wind turbine (HAWT) and the aerodynamic profiles used for its construction. The analysis is studied using the Computational Fluid Dynamic (CFD), presenting the parallel between the energy generated by a turbine designed with selected profiles and another one optimized. For the study, a selection process was carried out from profile NACA 6 digits recommended by the National Renewable Energy Laboratory (NREL) for the construction of this type of turbines. The selection was taken into account different characteristics of the wind (speed and density) and the profiles (aerodynamic coefficients Cl and Cd to different Reynolds and incidence angles). From the selected profiles, was carried out a sensitivity analysis optimization process between its geometry and the aerodynamic forces that are induced on it. The 3D model of the turbines was realized using the Blade Element Momentum method (BEM) and both profiles. The flow fields on the turbines were simulated, obtaining the forces induced on the blade, the torques produced and an increase of 3% in power due to the optimized profiles. Therefore, the results show that the sensitivity analysis optimization process can assist to increment the wind turbine power.

Keywords: blade element momentum, blade, fluid structure interaction, horizontal axis wind turbine, profile design

Procedia PDF Downloads 260
5537 Optimization of Pressure in Deep Drawing Process

Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi

Abstract:

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.

Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling

Procedia PDF Downloads 450
5536 Dynamic Cellular Remanufacturing System (DCRS) Design

Authors: Tariq Aljuneidi, Akif Asil Bulgak

Abstract:

Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.

Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability

Procedia PDF Downloads 379
5535 A Collective Approach to Optimisation of Renewing Warranty Policy

Authors: Ming Luo

Abstract:

In this real world, a manufacturer may produce more than one product. The products produced by the same manufacturer may share the same type of parts, similar design, and be produced in the same factory, i.e. some common causes. From the perspective of warranty management, the frequencies of those products’ warranty claims may have statistical dependence caused by the common causes. Warranty policy optimisation in the existing research, majorly, has not considered such dependence, which may increase bias in decision making. In the market, renewing warranty policies are provided to some unrepairable products and consumer electronic products. This paper optimises the renewing warranty policy collectively in a multi-product scenario with a consideration of the dependence among the warranty claims of the products produced by the same manufacturer. The existence of the optimal solution is proved. Numerical examples are used to validate the applicability of the proposed methods.

Keywords: mean-risk framework, modern portfolio theory, renewing warranty policy, warranty policy optimisation

Procedia PDF Downloads 299
5534 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains

Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh

Abstract:

The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.

Keywords: machine vision, fuzzy logic, rice, quality

Procedia PDF Downloads 420
5533 Establishment of Diagnostic Reference Levels for Computed Tomography Examination at the University of Ghana Medical Centre

Authors: Shirazu Issahaku, Isaac Kwesi Acquah, Simon Mensah Amoh, George Nunoo

Abstract:

Introduction: Diagnostic Reference Levels are important indicators for monitoring and optimizing protocol and procedure in medical imaging between facilities and equipment. This helps to evaluate whether, in routine clinical conditions, the median value obtained for a representative group of patients within an agreed range from a specified procedure is unusually high or low for that procedure. This study aimed to propose Diagnostic Reference Levels for Computed Tomography examination of the most common routine examination of the head, chest and abdominal pelvis regions at the University of Ghana Medical Centre. Methods: The Diagnostic Reference Levels were determined based on the investigation of the most common routine examinations, including head Computed Tomography examination with and without contrast, abdominopelvic Computed Tomography examination with and without contrast, and chest Computed Tomography examination without contrast. The study was based on two dose indicators: the volumetric Computed Tomography Dose Index and Dose-Length Product. Results: The estimated median distribution for head Computed Tomography with contrast for volumetric-Computed Tomography dose index and Dose-Length Product were 38.33 mGy and 829.35 mGy.cm, while without contrast, were 38.90 mGy and 860.90 mGy.cm respectively. For an abdominopelvic Computed Tomography examination with contrast, the estimated volumetric-Computed Tomography dose index and Dose-Length Product values were 40.19 mGy and 2096.60 mGy.cm. In the absence of contrast, the calculated values were 14.65 mGy and 800.40 mGy.cm, respectively. Additionally, for chest Computed Tomography examination, the estimated values were 12.75 mGy and 423.95 mGy.cm for volumetric-Computed Tomography dose index and Dose-Length Product, respectively. These median values represent the proposed diagnostic reference values of the head, chest, and abdominal pelvis regions. Conclusions: The proposed Diagnostic Reference Level is comparable to the recommended International Atomic Energy Agency and International Commission Radiation Protection Publication 135 and other regional published data by the European Commission and Regional National Diagnostic Reference Level in Africa. These reference levels will serve as benchmarks to guide clinicians in optimizing radiation dose levels while ensuring accurate diagnostic image quality at the facility.

Keywords: diagnostic reference levels, computed tomography dose index, computed tomography, radiation exposure, dose-length product, radiation protection

Procedia PDF Downloads 59
5532 The Impact of Total Quality Management Practices on Innovation: An Empirical Study

Authors: Oumayma Tajouri

Abstract:

The relationship between total quality management (TQM) practices and innovation is conflictual. Some scholars suggest that TQM has an effect on incremental improvement and would not lead to innovation and creativity. The purpose of this paper is to analyse the association between TQM and different types of innovation. Our goal is to examine to what extent the implementation of TQM practices is indeed supporting innovation in the Tunisian ISO 9001 certified industries. Using a self-administered survey to sample ISO9001 certified industry companies, this study examines five hypotheses and tests the relation between TQM practices and innovation. The principal finding of this study is that TQM has significant and positive effects on innovation in the Tunisian context. The results support that TQM has an influence on incremental, radical, and administrative innovation.

Keywords: total quality management, incremental innovation product and/service, radical innovation product/service, incremental innovation process, radical innovation process, administrative innovation

Procedia PDF Downloads 159
5531 Generating Product Description with Generative Pre-Trained Transformer 2

Authors: Minh-Thuan Nguyen, Phuong-Thai Nguyen, Van-Vinh Nguyen, Quang-Minh Nguyen

Abstract:

Research on automatically generating descriptions for e-commerce products is gaining increasing attention in recent years. However, the generated descriptions of their systems are often less informative and attractive because of lacking training datasets or the limitation of these approaches, which often use templates or statistical methods. In this paper, we explore a method to generate production descriptions by using the GPT-2 model. In addition, we apply text paraphrasing and task-adaptive pretraining techniques to improve the qualify of descriptions generated from the GPT-2 model. Experiment results show that our models outperform the baseline model through automatic evaluation and human evaluation. Especially, our methods achieve a promising result not only on the seen test set but also in the unseen test set.

Keywords: GPT-2, product description, transformer, task-adaptive, language model, pretraining

Procedia PDF Downloads 198
5530 Catalytic Deoxygenation of Propionic Acid in the Vapour Phase

Authors: Hossein Bayahia, Mohammed Saad Motlaq Al-Gahmdi

Abstract:

The gas-phase deoxygenation of propionic acid was investigated in the presence of Co-Mo catalysts in N2 or H2 flow at 200-400 °C. In the presence of N2 the main product was 3-pentanone with other deoxygenates and some light gases: ethane and ethene. Using H2 flow, the catalyst was active for decarboxylation and decarbonylation of acid and the yields of ethane and ethene. The decarboxylation and decarbonylation reactions increased with increasing temperature. Cobalt-molybdenum supported on alumina showed better performance than bulk catalyst, especially at 400 °C in the presence of N2 for the ketonisation of propionic acid to form 3-pentanone as the main product. Bulk and supported catalysts were characterized by surface area porosity (BET), thermogravimetric analysis (TGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of pyridine adsorption.

Keywords: deoxygenation, propionic acid, gas-phase, catalyst

Procedia PDF Downloads 287
5529 Revalidation and Hormonization of Existing IFCC Standardized Hepatic, Cardiac, and Thyroid Function Tests by Precison Optimization and External Quality Assurance Programs

Authors: Junaid Mahmood Alam

Abstract:

Revalidating and harmonizing clinical chemistry analytical principles and optimizing methods through quality control programs and assessments is the preeminent means to attain optimal outcome within the clinical laboratory services. Present study reports revalidation of our existing IFCC regularized analytical methods, particularly hepatic and thyroid function tests, by optimization of precision analyses and processing through external and internal quality assessments and regression determination. Parametric components of hepatic (Bilirubin ALT, γGT, ALP), cardiac (LDH, AST, Trop I) and thyroid/pituitary (T3, T4, TSH, FT3, FT4) function tests were used to validate analytical techniques on automated chemistry and immunological analyzers namely Hitachi 912, Cobas 6000 e601, Cobas c501, Cobas e411 with UV kinetic, colorimetric dry chemistry principles and Electro-Chemiluminescence immunoassay (ECLi) techniques. Process of validation and revalidation was completed with evaluating and assessing the precision analyzed Preci-control data of various instruments plotting against each other with regression analyses R2. Results showed that: Revalidation and optimization of respective parameters that were accredited through CAP, CLSI and NEQAPP assessments depicted 99.0% to 99.8% optimization, in addition to the methodology and instruments used for analyses. Regression R2 analysis of BilT was 0.996, whereas that of ALT, ALP, γGT, LDH, AST, Trop I, T3, T4, TSH, FT3, and FT4 exhibited R2 0.998, 0.997, 0.993, 0.967, 0.970, 0.980, 0.976, 0.996, 0.997, 0.997, and R2 0.990, respectively. This confirmed marked harmonization of analytical methods and instrumentations thus revalidating optimized precision standardization as per IFCC recommended guidelines. It is concluded that practices of revalidating and harmonizing the existing or any new services should be followed by all clinical laboratories, especially those associated with tertiary care hospital. This is will ensure deliverance of standardized, proficiency tested, optimized services for prompt and better patient care that will guarantee maximum patients’ confidence.

Keywords: revalidation, standardized, IFCC, CAP, harmonized

Procedia PDF Downloads 269
5528 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: air pollution, linear programming, mining, optimization, treatment technologies

Procedia PDF Downloads 208
5527 Investigation and Optimization of DNA Isolation Efficiency Using Ferrite-Based Magnetic Nanoparticles

Authors: Tímea Gerzsenyi, Ágnes M. Ilosvai, László Vanyorek, Emma Szőri-Dorogházi

Abstract:

DNA isolation is a crucial step in many molecular biological applications for diagnostic and research purposes. However, traditional extraction requires toxic reagents, and commercially available kits are expensive, this leading to the recently wide-spread method, the magnetic nanoparticle (MNP)-based DNA isolation. Different ferrite containing MNPs were examined and compared in their plasmid DNA isolation efficiency. Among the tested MNPs, one has never been used for the extraction of plasmid molecules, marking a distinct application. pDNA isolation process was optimized for each type of nanoparticle and the best protocol was selected based on different criteria: DNA quantity, quality and integrity. With the best-performing magnetic nanoparticle, which excelled in all aspects, further tests were performed to recover genomic DNA from bacterial cells and a protocol was developed.

Keywords: DNA isolation, nanobiotechnology, magnetic nanoparticles, protocol optimization, pDNA, gDNA

Procedia PDF Downloads 16
5526 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 232
5525 Somatosensory Detection Wristbands Applied Research of Baby

Authors: Chang Ting, Wu Chun Kuan

Abstract:

Wireless sensing technology is increasingly developed, in order to avoid caregiver neglect children in poor physiological condition, so there are more and more products into the wireless sensor-related technologies, in order to reduce the risk of infants. In view of this, the study will focus on Somatosensory detection wristbands Applied Research of Baby, and to explore through observation and literature, to find design criteria which conform baby products, as well as the advantages and disadvantages of existing products. This study will focus on 0-2 years of infant research and product design, to provide 2-3 new design concepts and products to identify weaknesses through the use of the actual product, further provide future baby wristbands design reference.

Keywords: infants, observation, design criteria, wireless sensing

Procedia PDF Downloads 311
5524 Mathematical Modeling and Optimization of Burnishing Parameters for 15NiCr6 Steel

Authors: Tarek Litim, Ouahiba Taamallah

Abstract:

The present paper is an investigation of the effect of burnishing on the surface integrity of a component made of 15NiCr6 steel. This work shows a statistical study based on regression, and Taguchi's design has allowed the development of mathematical models to predict the output responses as a function of the technological parameters studied. The response surface methodology (RSM) showed a simultaneous influence of the burnishing parameters and observe the optimal processing parameters. ANOVA analysis of the results resulted in the validation of the prediction model with a determination coefficient R=90.60% and 92.41% for roughness and hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=10kgf, i=3passes, and f=0.074mm/rev, which favours minimum roughness and maximum hardness. The result was validated by the desirability of D= (0.99 and 0.95) for roughness and hardness, respectively.

Keywords: 15NiCr6 steel, burnishing, surface integrity, Taguchi, RSM, ANOVA

Procedia PDF Downloads 194
5523 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle

Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar

Abstract:

This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.

Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle

Procedia PDF Downloads 400
5522 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis

Authors: Thanida Sritangthong, Suksun Amornraksa

Abstract:

By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.

Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis

Procedia PDF Downloads 319
5521 The Gasification of Fructose in Supercritical Water

Authors: Shyh-Ming Chern, H. Y. Cheng

Abstract:

Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.

Keywords: biomass, fructose, gasification, supercritical water

Procedia PDF Downloads 353
5520 An Approach to Capture, Evaluate and Handle Complexity of Engineering Change Occurrences in New Product Development

Authors: Mohammad Rostami Mehr, Seyed Arya Mir Rashed, Arndt Lueder, Magdalena Missler-Behr

Abstract:

This paper represents the conception that complex problems do not necessarily need a similar complex solution in order to cope with the complexity. Furthermore, a simple solution based on established methods can provide a sufficient way to deal with the complexity. To verify this conception, the presented paper focuses on the field of change management as a part of the new product development process in the automotive sector. In this field, dealing with increasing complexity is essential, while only non-flexible rigid processes that are not designed to handle complexity are available. The basic methodology of this paper can be divided into four main sections: 1) analyzing the complexity of the change management, 2) literature review in order to identify potential solutions and methods, 3) capturing and implementing expertise of experts from the change management field of an automobile manufacturing company and 4) systematical comparison of the identified methods from literature and connecting these with defined requirements of the complexity of the change management in order to develop a solution. As a practical outcome, this paper provides a method to capture the complexity of engineering changes (EC) and includes it within the EC evaluation process, following case-related process guidance to cope with the complexity. Furthermore, this approach supports the conception that dealing with complexity is possible while utilizing rather simple and established methods by combining them into a powerful tool.

Keywords: complexity management, new product development, engineering change management, flexibility

Procedia PDF Downloads 198
5519 Urban Planning Compilation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hyper-Cycle Theory

Authors: Hong Dongchen, Chen Qiuxiao, Wu Shuang

Abstract:

Systematic science reveals the complex nonlinear mechanisms of behaviour in urban system. However, in China, when the current city planners face with the system, most of them are still taking simple linear thinking to consider the open complex giant system. This paper introduces the hyper-cycle theory, which is one of the basis theories of systematic science, based on the analysis of the reasons why the current urban planning failed, and proposals for optimization ideas that urban planning compilation should change, from controlling quantitative to the changes of relationship, from blueprint planning to progressive planning based on the nonlinear characteristics and from management control to dynamically monitor feedback.

Keywords: systematic science, hyper-cycle theory, urban planning, urban management

Procedia PDF Downloads 409
5518 Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects

Authors: Aravind G., Arshinder Kaur, Pushpavanam S.

Abstract:

There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study.

Keywords: life cycle assessment, lithium-ion battery recycling, multi-objective optimization, network design, reverse supply chain

Procedia PDF Downloads 157
5517 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand

Authors: Hamed Saremi

Abstract:

One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.

Keywords: anfis, dematel, brand, cosmetic product, brand value

Procedia PDF Downloads 410
5516 Decision Support System for Optimal Placement of Wind Turbines in Electric Distribution Grid

Authors: Ahmed Ouammi

Abstract:

This paper presents an integrated decision framework to support decision makers in the selection and optimal allocation of wind power plants in the electric grid. The developed approach intends to maximize the benefice related to the project investment during the planning period. The proposed decision model considers the main cost components, meteorological data, environmental impacts, operation and regulation constraints, and territorial information. The decision framework is expressed as a stochastic constrained optimization problem with the aim to identify the suitable locations and related optimal wind turbine technology considering the operational constraints and maximizing the benefice. The developed decision support system is applied to a case study to demonstrate and validate its performance.

Keywords: decision support systems, electric power grid, optimization, wind energy

Procedia PDF Downloads 153
5515 Conceptual Design of a Telecommunications Equipment Container for Humanitarian Logistics

Authors: S. Parisi, Ch. Achillas, D. Aidonis, D. Folinas, N. Moussiopoulos

Abstract:

Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC) has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication center in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.

Keywords: telecommunications container, design, case study, humanitarian logistics

Procedia PDF Downloads 458