Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6128

Search results for: measurement accuracy

4898 Measuring Satisfaction with Life Construct Among Public and Private University Students During COVID-19 Pandemic in Sabah, Malaysia

Authors: Mohd Dahlan Abdul Malek, Muhamad Idris, Adi Fahrudin, Ida Shafinaz Mohamed Kamil, Husmiati Yusuf, Edeymend Reny Japil, Wan Anor Wan Sulaiman, Lailawati Madlan, Alfred Chan, Nurfarhana Adillah Aftar, Mahirah Masdin

Abstract:

This research intended to develop a valid and reliable instrument of the Satisfaction with Life Scale (SWLS) to measure satisfaction with life (SWL) constructs among public and private university students in Sabah, Malaysia, through the exploratory factor analysis (EFA) procedure. The pilot study obtained a sample of 108 students from public and private education institutions in Sabah, Malaysia, through an online survey using a self-administered questionnaire. The researchers performed the EFA procedure on SWL construct using IBM SPSS 25. The Bartletts' Test of Sphericity is highly significant (Sig. = .000). Furthermore, the sampling adequacy by Kaiser-Meyer-Olkin (KMO = 0.839) is excellent. Using the extraction method of Principal Component Analysis (PCA) with Varimax Rotation, a component of the SWL construct is extracted with an eigenvalue of 3.101. The variance explained for this component is 62.030%. The construct of SWL has Cronbach's alpha value of .817. The development scale and validation confirmed that the instrument is consistent and stable with both private and public college and university student samples. It adds a remarkable contribution to the measurement of SWLS, mainly in the context of higher education institution students. The EFA outcomes formed a configuration that extracts a component of SWL, which can be measured by the original five items established in this research. This research reveals that the SWL construct is applicable to this study.

Keywords: satisfaction, university students, measurement, scale development

Procedia PDF Downloads 92
4897 Quality of Life and Self-Assessed Health of Methadone – Maintained Opiate Addicts

Authors: Brajevic-gizdic Igna, Vuletic Gorka

Abstract:

Introduction: Research in opiate addiction is increasingly indicating the importance of substitution therapy in opiate addicts. Opiate addiction is a chronic relapsing disease that includes craving as a criterion. Craving has been considered a predictor of a relapse, which is defined as a strong desire with an excessive need to take a substance. The study aimed to measure the intensity of craving using the VAS (visual analog scale) in opioid addicts taking the Opioid Substitution Therapy (OST). Method: The total sample compromised of 30 participants in outpatient treatment. Two groups of opiate addicts were considered: Methadone-maintenance and buprenorphine-maintenance addicts. The participants completed the survey questionnaire during the outpatient treatment. Results: The results indicated high levels of cravings in patients during the treatment on OST, which is considered an important destabilization factor in abstinence. Thus, the use of methadone/buprenorphine dose should be considered. Conclusion: These findings provided an objective measurement of methadone /buprenorphine dosage and therapy options. The underdoes of OST can put patients at high risk of relapse, resulting in high levels of craving. Thus, when determining the therapeutic dose of OST, it is crucial to consider patients´ craving. This would achieve stabilization more quickly and avoid relapse in abstinence. Subjective physician assessment and patient’s statement are the main criteria to determine OST dosage. Future studies should use larger sample sizes and focus on the importance of intensity craving measurement on OST to objectify methadone /buprenorphine dosage.

Keywords: abstinence, addicts, methadone, OST, quality of life

Procedia PDF Downloads 92
4896 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 101
4895 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 96
4894 The Students' Mathematical Competency and Attitude towards Mathematics Using the Trachtenberg Speed Math System

Authors: Marlone D. Severo

Abstract:

A pre- and post-test quasi-experimental design was used to test the intervention of Trachtenberg Speed Math on the mathematical competency of sixty (60) matched-paired students with a poor performing grade in Mathematics from one of the biggest public national high school at the South of Metro Manila. Both control and experimental group were administered with the Attitude Towards Mathematics Inventory (ATMI) before the pretest were given and both group showed high dislike for Mathematics. Pretest showed a 53 percent accuracy for the control group and 51 percent for the experimental group using a 15-item long multiplication test without any aid of a computing device. The experimental group were taught how to use the Trachtenberg number-keys and techniques in multiplication between October 2014 to March 2015. Post-test showed an improvement in the experimental group with 96 percent accuracy for the control group and a dismal 57 percent for the control group in long-multiplication. Post-test ATMI were administered. The control group showed a great dislike towards Mathematics, while the experimental group showed a positive attitude towards the subject.

Keywords: attitude towards mathematics, mathematical competency, number-keys, trachtenberg speed math

Procedia PDF Downloads 369
4893 Weibull Cumulative Distribution Function Analysis with Life Expectancy Endurance Test Result of Power Window Switch

Authors: Miky Lee, K. Kim, D. Lim, D. Cho

Abstract:

This paper presents the planning, rationale for test specification derivation, sampling requirements, test facilities, and result analysis used to conduct lifetime expectancy endurance tests on power window switches (PWS) considering thermally induced mechanical stress under diurnal cyclic temperatures during normal operation (power cycling). The detail process of analysis and test results on the selected PWS set were discussed in this paper. A statistical approach to ‘life time expectancy’ was given to the measurement standards dealing with PWS lifetime determination through endurance tests. The approach choice, within the framework of the task, was explained. The present task was dedicated to voltage drop measurement to derive lifetime expectancy while others mostly consider contact or surface resistance. The measurements to perform and the main instruments to measure were fully described accordingly. The failure data from tests were analyzed to conclude lifetime expectancy through statistical method using Weibull cumulative distribution function. The first goal of this task is to develop realistic worst case lifetime endurance test specification because existing large number of switch test standards cannot induce degradation mechanism which makes the switches less reliable. 2nd goal is to assess quantitative reliability status of PWS currently manufactured based on test specification newly developed thru this project. The last and most important goal is to satisfy customer’ requirement regarding product reliability.

Keywords: power window switch, endurance test, Weibull function, reliability, degradation mechanism

Procedia PDF Downloads 236
4892 First Formaldehyde Retrieval Using the Raw Data Obtained from Pandora in Seoul: Investigation of the Temporal Characteristics and Comparison with Ozone Monitoring Instrument Measurement

Authors: H. Lee, J. Park

Abstract:

In this present study, for the first time, we retrieved the Formaldehyde (HCHO) Vertical Column Density (HCHOVCD) using Pandora instruments in Seoul, a megacity in northeast Asia, for the period between 2012 and 2014 and investigated the temporal characteristics of HCHOVCD. HCHO Slant Column Density (HCHOSCD) was obtained using the Differential Optical Absorption Spectroscopy (DOAS) method. HCHOSCD was converted to HCHOVCD using geometric Air Mass Factor (AMFG) as Pandora is the direct-sun measurement. The HCHOVCDs is low at 12:00 Local Time (LT) and is high in the morning (10:00 LT) and late afternoon (16:00 LT) except for winter. The maximum (minimum) values of Pandora HCHOVCD are 2.68×1016 (1.63×10¹⁶), 3.19×10¹⁶ (2.23×10¹⁶), 2.00×10¹⁶ (1.26×10¹⁶), and 1.63×10¹⁶ (0.82×10¹⁶) molecules cm⁻² in spring, summer, autumn, and winter, respectively. In terms of seasonal variations, HCHOVCD was high in summer and low in winter which implies that photo-oxidation plays an important role in HCHO production in Seoul. In comparison with the Ozone Monitoring Instrument (OMI) measurements, the HCHOVCDs from the OMI are lower than those from Pandora. The correlation coefficient (R) between monthly HCHOVCDs values from Pandora and OMI is 0.61, with slop of 0.35. Furthermore, to understand HCHO mixing ratio within Planetary Boundary Layer (PBL) in Seoul, we converted Pandora HCHOVCDs to HCHO mixing ratio in the PBL using several meteorological input data from the Atmospheric InfraRed Sounder (AIRS). Seasonal HCHO mixing ratio in PBL converted from Pandora (OMI) HCHOVCDs are estimated to be 6.57 (5.17), 7.08 (6.68), 7.60 (4.70), and 5.00 (4.76) ppbv in spring, summer, autumn, and winter, respectively.

Keywords: formaldehyde, OMI, Pandora, remote sensing

Procedia PDF Downloads 150
4891 Detecting and Thwarting Interest Flooding Attack in Information Centric Network

Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S

Abstract:

Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.

Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy

Procedia PDF Downloads 208
4890 A Two-Week and Six-Month Stability of Cancer Health Literacy Classification Using the CHLT-6

Authors: Levent Dumenci, Laura A. Siminoff

Abstract:

Health literacy has been shown to predict a variety of health outcomes. Reliable identification of persons with limited cancer health literacy (LCHL) has been proved questionable with existing instruments using an arbitrary cut point along a continuum. The CHLT-6, however, uses a latent mixture modeling approach to identify persons with LCHL. The purpose of this study was to estimate two-week and six-month stability of identifying persons with LCHL using the CHLT-6 with a discrete latent variable approach as the underlying measurement structure. Using a test-retest design, the CHLT-6 was administered to cancer patients with two-week (N=98) and six-month (N=51) intervals. The two-week and six-month latent test-retest agreements were 89% and 88%, respectively. The chance-corrected latent agreements estimated from Dumenci’s latent kappa were 0.62 (95% CI: 0.41 – 0.82) and .47 (95% CI: 0.14 – 0.80) for the two-week and six-month intervals, respectively. High levels of latent test-retest agreement between limited and adequate categories of cancer health literacy construct, coupled with moderate to good levels of change-corrected latent agreements indicated that the CHLT-6 classification of limited versus adequate cancer health literacy is relatively stable over time. In conclusion, the measurement structure underlying the instrument allows for estimating classification errors circumventing limitations due to arbitrary approaches adopted by all other instruments. The CHLT-6 can be used to identify persons with LCHL in oncology clinics and intervention studies to accurately estimate treatment effectiveness.

Keywords: limited cancer health literacy, the CHLT-6, discrete latent variable modeling, latent agreement

Procedia PDF Downloads 179
4889 Measuring Systems Interoperability: A Focal Point for Standardized Assessment of Regional Disaster Resilience

Authors: Joel Thomas, Alexa Squirini

Abstract:

The key argument of this research is that every element of systems interoperability is an enabler of regional disaster resilience, and arguably should become a focal point for standardized measurement of communities’ ability to work together. Few resilience research efforts have focused on the development and application of solutions that measurably improve communities’ ability to work together at a regional level, yet a majority of the most devastating and disruptive disasters are those that have had a regional impact. The key findings of the research include a unique theoretical, mathematical, and operational approach to tangibly and defensibly measure and assess systems interoperability required to support crisis information management activities performed by governments, the private sector, and humanitarian organizations. A most effective way for communities to measurably improve regional disaster resilience is through deliberately executed disaster preparedness activities. Developing interoperable crisis information management capabilities is a crosscutting preparedness activity that greatly affects a community’s readiness and ability to work together in times of crisis. Thus, improving communities’ human and technical posture to work together in advance of a crisis, with the ultimate goal of enabling information sharing to support coordination and the careful management of available resources, is a primary means by which communities may improve regional disaster resilience. This model describes how systems interoperability can be qualitatively and quantitatively assessed when characterized as five forms of capital: governance; standard operating procedures; technology; training and exercises; and usage. The unique measurement framework presented defines the relationships between systems interoperability, information sharing and safeguarding, operational coordination, community preparedness and regional disaster resilience, and offers a means by which to implement real-world solutions and measure progress over the course of a multi-year program. The model is being developed and piloted in partnership with the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S&T) and the North Atlantic Treaty Organization (NATO) Advanced Regional Civil Emergency Coordination Pilot (ARCECP) with twenty-three organizations in Bosnia and Herzegovina, Croatia, Macedonia, and Montenegro. The intended effect of the model implementation is to enable communities to answer two key questions: 'Have we measurably improved crisis information management capabilities as a result of this effort?' and, 'As a result, are we more resilient?'

Keywords: disaster, interoperability, measurement, resilience

Procedia PDF Downloads 143
4888 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks

Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem

Abstract:

The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.

Keywords: classification, gated recurrent unit, recurrent neural network, transportation

Procedia PDF Downloads 138
4887 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 125
4886 Radiation Protection Assessment of the Emission of a d-t Neutron Generator: Simulations with MCNP Code and Experimental Measurements in Different Operating Conditions

Authors: G. M. Contessa, L. Lepore, G. Gandolfo, C. Poggi, N. Cherubini, R. Remetti, S. Sandri

Abstract:

Practical guidelines are provided in this work for the safe use of a portable d-t Thermo Scientific MP-320 neutron generator producing pulsed 14.1 MeV neutron beams. The neutron generator’s emission was tested experimentally and reproduced by MCNPX Monte Carlo code. Simulations were particularly accurate, even generator’s internal components were reproduced on the basis of ad-hoc collected X-ray radiographic images. Measurement campaigns were conducted under different standard experimental conditions using an LB 6411 neutron detector properly calibrated at three different energies, and comparing simulated and experimental data. In order to estimate the dose to the operator vs. the operating conditions and the energy spectrum, the most appropriate value of the conversion factor between neutron fluence and ambient dose equivalent has been identified, taking into account both direct and scattered components. The results of the simulations show that, in real situations, when there is no information about the neutron spectrum at the point where the dose has to be evaluated, it is possible - and in any case conservative - to convert the measured value of the count rate by means of the conversion factor corresponding to 14 MeV energy. This outcome has a general value when using this type of generator, enabling a more accurate design of experimental activities in different setups. The increasingly widespread use of this type of device for industrial and medical applications makes the results of this work of interest in different situations, especially as a support for the definition of appropriate radiation protection procedures and, in general, for risk analysis.

Keywords: instrumentation and monitoring, management of radiological safety, measurement of individual dose, radiation protection of workers

Procedia PDF Downloads 133
4885 Manipulator Development for Telediagnostics

Authors: Adam Kurnicki, Bartłomiej Stanczyk, Bartosz Kania

Abstract:

This paper presents development of the light-weight manipulator with series elastic actuation for medical telediagnostics (USG examination). General structure of realized impedance control algorithm was shown. It was described how to perform force measurements based mainly on elasticity of manipulator links.

Keywords: telediagnostics, elastic manipulator, impedance control, force measurement

Procedia PDF Downloads 477
4884 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
4883 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Turkiye

Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa

Abstract:

Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Cracks and breaks on the pipes cause damage to people and the environment due to reasons such as explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has more damage in the regions followed. It has been determined that the earthquakes in Turkey caused permanent damage to the pipelines. This project was designed and realized because it was determined that there were cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, A new SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The newly developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and sustainability.

Keywords: earthquake, natural gas pipes, oil pipes, strain measurement, stress measurement, landslide

Procedia PDF Downloads 72
4882 Recognizing an Individual, Their Topic of Conversation and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that inter-subject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: person recognition, topic recognition, culture recognition, 3D body movement signals, variability compensation

Procedia PDF Downloads 543
4881 A Methodology for the Identification of Technological Gaps and the Measurement of the Level of Technological Acceptance in the Rural Sector in Colombia

Authors: Anyi Katherine Garzon Robles, Luis Carlos Gomez Florez

Abstract:

Since the advent of the Internet, the use of Information Technologies (IT) has increased exponentially. The field of informatics and telecommunications has put on the table countless possibilities for the development of different socio-economic activities, promoting a change of social paradigm and the emergence of the so-called information and knowledge society. For more than a decade, the Colombian government has been working on the incorporation of IT into the public sector through an e-government strategy. However, to date, many technological gaps has not yet been identified in the country to our knowledge, especially in rural areas and far from large cities, where factors such as low investment and the expansion of the armed conflict have led to economic and technological stagnation. This paper presents the research results obtained from the execution of a research project, which was approach from a qualitative approach and a methodological design of a participatory action research type. This design consists of nine fundamental stages divided into four work cycles. For which different strategies for data collection and analysis were established. From which, a methodology was obtained for the identification of technological gaps and the measurement of the level of technological acceptance in the rural sector, based on the TAM (Technology Acceptance Model) model, as a previous activity to the development of IT solutions framed in the e-government strategy in Colombia. The result of this research work represents a contribution from academia for the improvement of the country's technological development and a guide for the proper planning of IT solutions aimed at promoting a close relationship between government and citizens.

Keywords: E-government, knowledge society, level of technological acceptance, technological gaps, technology acceptance model

Procedia PDF Downloads 239
4880 Clinical Validation of C-PDR Methodology for Accurate Non-Invasive Detection of Helicobacter pylori Infection

Authors: Suman Som, Abhijit Maity, Sunil B. Daschakraborty, Sujit Chaudhuri, Manik Pradhan

Abstract:

Background: Helicobacter pylori is a common and important human pathogen and the primary cause of peptic ulcer disease and gastric cancer. Currently H. pylori infection is detected by both invasive and non-invasive way but the diagnostic accuracy is not up to the mark. Aim: To set up an optimal diagnostic cut-off value of 13C-Urea Breath Test to detect H. pylori infection and evaluate a novel c-PDR methodology to overcome of inconclusive grey zone. Materials and Methods: All 83 subjects first underwent upper-gastrointestinal endoscopy followed by rapid urease test and histopathology and depending on these results; we classified 49 subjects as H. pylori positive and 34 negative. After an overnight, fast patients are taken 4 gm of citric acid in 200 ml water solution and 10 minute after ingestion of the test meal, a baseline exhaled breath sample was collected. Thereafter an oral dose of 75 mg 13C-Urea dissolved in 50 ml water was given and breath samples were collected upto 90 minute for 15 minute intervals and analysed by laser based high precisional cavity enhanced spectroscopy. Results: We studied the excretion kinetics of 13C isotope enrichment (expressed as δDOB13C ‰) of exhaled breath samples and found maximum enrichment around 30 minute of H. pylori positive patients, it is due to the acid mediated stimulated urease enzyme activity and maximum acidification happened within 30 minute but no such significant isotopic enrichment observed for H. pylori negative individuals. Using Receiver Operating Characteristic (ROC) curve an optimal diagnostic cut-off value, δDOB13C ‰ = 3.14 was determined at 30 minute exhibiting 89.16% accuracy. Now to overcome grey zone problem we explore percentage dose of 13C recovered per hour, i.e. 13C-PDR (%/hr) and cumulative percentage dose of 13C recovered, i.e. c-PDR (%) in exhaled breath samples for the present 13C-UBT. We further explored the diagnostic accuracy of 13C-UBT by constructing ROC curve using c-PDR (%) values and an optimal cut-off value was estimated to be c-PDR = 1.47 (%) at 60 minute, exhibiting 100 % diagnostic sensitivity , 100 % specificity and 100 % accuracy of 13C-UBT for detection of H. pylori infection. We also elucidate the gastric emptying process of present 13C-UBT for H. pylori positive patients. The maximal emptying rate found at 36 minute and half empting time of present 13C-UBT was found at 45 minute. Conclusions: The present study exhibiting the importance of c-PDR methodology to overcome of grey zone problem in 13C-UBT for accurate determination of infection without any risk of diagnostic errors and making it sufficiently robust and novel method for an accurate and fast non-invasive diagnosis of H. pylori infection for large scale screening purposes.

Keywords: 13C-Urea breath test, c-PDR methodology, grey zone, Helicobacter pylori

Procedia PDF Downloads 302
4879 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed.

Abstract:

High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: ginger, 6-gingerol, HPLC, 6-shogaol

Procedia PDF Downloads 445
4878 Preliminary Studies on the Potentials of Bambara nut (Voandzeia substerranea) and Pigeon pea (Cajanus cajan) as Imitation Milk

Authors: Onuoha Gideon

Abstract:

The preliminary studies on the potentials of Bambara nut and pigeon pea as imitation milk were investigated. Bambara nut and Pigeon pea milk were produced from two separate unit operations; Bambara nut seed was cooked, dehulled, milled and strained to milk (BCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (BTM). Pigeon pea seed was cooked, dehulled, milled and strained to milk (PCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (PTM). The result of the proximate analysis on the milk samples on wet basis showed that the protein content ranged from 28.56 – 26.77, the crude fibre ranged from 6.28 – 1.85, the ash content ranged from 5.22 – 1.17, the fat content ranged from 2.71 – 1.12, the moisture content ranged from 95.93 – 93.83, the carbohydrate content ranged from 67.62 – 58.83. The functional analysis on the milk samples showed that emulsification capacity ranged from 43.21 – 38.66, emulsion stability ranged from 34.10 – 25.00, the specific gravity ranged from 997.50 – 945.00, the foaming capacity ranged from 3,500 to 2,250, the measurement of viscosity ranged from 0.017 – 0.007, the pH range from 5.55 – 5.25, the measurement of dispersibility range from 11.00 – 7.00, the total soluble solid ranged from 4.00 to 1.75, the total titratable acidity ranged from 0.314 – 0.328. The sensory evaluation report showed that in terms of flavor, sample BCM and PCM value were significantly different from sample BTM and PTM. In terms of colour, sample BCM showed a significant difference from samples BTM, PCM and PTM. In term of texture, sample BCM was significantly different from samples BTM, PCM and PTM. The general acceptability shows that sample BCM was significantly different from other the samples and was the most accepted. The microbial analysis indicated that the microbial load increases with time. Bacterial count ranged from 1.3 x 105 – 1.20 x 106 to 1.6 x 105 – 1.06 x 106, fungal count ranged from 4.0 x 105 – 8.0 x 105 to 4.0 x 105 – 7.0 x 105. The studies showed that BCM was the most preferred.

Keywords: imitation milk, Bambara nut, Pigeon pea, proximate composition

Procedia PDF Downloads 345
4877 Modeling Route Selection Using Real-Time Information and GPS Data

Authors: William Albeiro Alvarez, Gloria Patricia Jaramillo, Ivan Reinaldo Sarmiento

Abstract:

Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities.

Keywords: behavior choice model, human factors, hybrid model, real time data

Procedia PDF Downloads 155
4876 Shariah Guideline on Value-Based Intermediation Implementation in the Light of Maqasid Shariah Analysis

Authors: Muhammad Izzam Bin Mohd Khazar, Ruqayyah Binti Mohamad Ali, Nurul Atiqah Binti Yusri

Abstract:

Value-based intermediation (VBI) has been introduced by Bank Negara Malaysia (BNM) as the next strategic direction and growth driver for Islamic banking institutions. The aim of VBI is to deliver the intended outcome of Shariah through practices, conducts, and offerings that generate positive and sustainable impact to the economy, community and environment which is aligned to Maqasid Shariah in preserving the common interest of society by preventing harm and maximizing benefit. Hence, upon its implementation, VBI will experiment the current Shariah compliance treatment and revolutionise new policies and systems that can meritoriously entrench and convey the objectives of Shariah. However, discussion revolving VBI in the light of Maqasid analysis is still scarce hence further research needs to be undertaken. The idea of implementation of VBI vision into quantifiable Maqasid Shariah measurement is yet to be explored due to the nature of Maqasid that is variable. The contemporary scholars also have different views on the implementation of VBI. This paper aims to discuss on the importance of Maqasid Shariah in the current Islamic finance transactions by providing Shariah index measurement in the application of VBI. This study also intends to explore basic Shariah guidelines and parameters based on the objectives of Shariah; preservation of the five pillars (religion, life, progeny, intellect and wealth) with further elaboration on preservation of wealth under five headings: rawaj (circulation and marketability); wuduh (transparency); hifz (preservation); thabat (durability and tranquillity); and ‘adl (equity and justice). In alignment with these headings, Islamic finance can be innovated for VBI implementation, particularly in Maybank Islamic being a significant leader in the IFI market.

Keywords: Islamic Financial Institutions, Maqasid Index, Maqasid Shariah, sustainability, value-based intermediation

Procedia PDF Downloads 168
4875 Corneal Confocal Microscopy As a Surrogate Marker of Neuronal Pathology In Schizophrenia

Authors: Peter W. Woodruff, Georgios Ponirakis, Reem Ibrahim, Amani Ahmed, Hoda Gad, Ioannis N. Petropoulos, Adnan Khan, Ahmed Elsotouhy, Surjith Vattoth, Mahmoud K. M. Alshawwaf, Mohamed Adil Shah Khoodoruth, Marwan Ramadan, Anjushri Bhagat, James Currie, Ziyad Mahfoud, Hanadi Al Hamad, Ahmed Own, Peter Haddad, Majid Alabdulla, Rayaz A. Malik

Abstract:

Introduction:- We aimed to test the hypothesis that, using corneal confocal microscopy (a non-invasive method for assessing corneal nerve fibre integrity), patients with schizophrenia would show neuronal abnormalities compared with healthy participants. Schizophrenia is a neurodevelopmental and progressive neurodegenerative disease, for which there are no validated biomarkers. Corneal confocal microscopy (CCM) is a non-invasive ophthalmic imaging biomarker that can be used to detect neuronal abnormalities in neuropsychiatric syndromes. Methods:- Patients with schizophrenia (DSM-V criteria) without other causes of peripheral neuropathy and healthy controls underwent CCM, vibration perception threshold (VPT) and sudomotor function testing. The diagnostic accuracy of CCM in distinguishing patients from controls was assessed using the area under the curve (AUC) of the Receiver Operating Characterstics (ROC) curve. Findings:- Participants with schizophrenia (n=17) and controls (n=38) with comparable age (35.7±8.5 vs 35.6±12.2, P=0.96) were recruited. Patients with schizophrenia had significantly higher body weight (93.9±25.5 vs 77.1±10.1, P=0.02), lower Low Density Lipoproteins (2.6±1.0 vs 3.4±0.7, P=0.02), but comparable systolic and diastolic blood pressure, HbA1c, total cholesterol, triglycerides and High Density Lipoproteins were comparable with control participants. Patients with schizophrenia had significantly lower corneal nerve fiber density (CNFD, fibers/mm2) (23.5±7.8 vs 35.6±6.5, p<0.0001), branch density (CNBD, branches/mm2) (34.4±26.9 vs 98.1±30.6, p<0.0001), and fiber length (CNFL, mm/mm2) (14.3±4.7 vs 24.2±3.9, p<0.0001) but no difference in VPT (6.1±3.1 vs 4.5±2.8, p=0.12) and electrochemical skin conductance (61.0±24.0 vs 68.9±12.3, p=0.23) compared with controls. The diagnostic accuracy of CNFD, CNBD and CNFL to distinguish patients with schizophrenia from healthy controls were, according to the AUC, (95% CI): 87.0% (76.8-98.2), 93.2% (84.2-102.3), 93.2% (84.4-102.1), respectively. Conclusion:- In conclusion, CCM can be used to help identify neuronal changes and has a high diagnostic accuracy to distinguish subjects with schizophrenia from healthy controls.

Keywords:

Procedia PDF Downloads 275
4874 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter

Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM

Procedia PDF Downloads 397
4873 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates. On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: aggregate data, combined-level data, individual patient data, meta-analysis

Procedia PDF Downloads 375
4872 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter

Procedia PDF Downloads 147
4871 Replacement of the Distorted Dentition of the Cone Beam Computed Tomography Scan Models for Orthognathic Surgery Planning

Authors: T. Almutairi, K. Naudi, N. Nairn, X. Ju, B. Eng, J. Whitters, A. Ayoub

Abstract:

Purpose: At present Cone Beam Computed Tomography (CBCT) imaging does not record dental morphology accurately due to the scattering produced by metallic restorations and the reported magnification. The aim of this pilot study is the development and validation of a new method for the replacement of the distorted dentition of CBCT scans with the dental image captured by the digital intraoral camera. Materials and Method: Six dried skulls with orthodontics brackets on the teeth were used in this study. Three intra-oral markers made of dental stone were constructed which were attached to orthodontics brackets. The skulls were CBCT scanned, and occlusal surface was captured using TRIOS® 3D intraoral scanner. Marker based and surface based registrations were performed to fuse the digital intra-oral scan(IOS) into the CBCT models. This produced a new composite digital model of the skull and dentition. The skulls were scanned again using the commercially accurate Laser Faro® arm to produce the 'gold standard' model for the assessment of the accuracy of the developed method. The accuracy of the method was assessed by measuring the distance between the occlusal surfaces of the new composite model and the 'gold standard' 3D model of the skull and teeth. The procedure was repeated a week apart to measure the reproducibility of the method. Results: The results showed no statistically significant difference between the measurements on the first and second occasions. The absolute mean distance between the new composite model and the laser model ranged between 0.11 mm to 0.20 mm. Conclusion: The dentition of the CBCT can be accurately replaced with the dental image captured by the intra-oral scanner to create a composite model. This method will improve the accuracy of orthognathic surgical prediction planning, with the final goal of the fabrication of a physical occlusal wafer without to guide orthognathic surgery and eliminate the need for dental impression.

Keywords: orthognathic surgery, superimposition, models, cone beam computed tomography

Procedia PDF Downloads 198
4870 Numerical Pricing of Financial Options under Irrational Exercise Times and Regime-Switching Models

Authors: Mohammad Saber Rohi, Saghar Heidari

Abstract:

In this paper, we studied the pricing problem of American options under a regime-switching model with the possibility of a non-optimal exercise policy (early or late exercise time) which is called an irrational strategy. For this, we consider a Markovmodulated model for the dynamic of the underlying asset as an alternative model to the classical Balck-Scholes-Merton model (BSM) and an intensity-based model for the irrational strategy, to provide more realistic results for American option prices under the irrational behavior in real financial markets. Applying a partial differential equation (PDE) approach, the pricing problem of American options under regime-switching models can be formulated as coupled PDEs. To solve the resulting systems of PDEs in this model, we apply a finite element method as the numerical solving procedure to the resulting variational inequality. Under some appropriate assumptions, we establish the stability of the method and compare its accuracy to some recent works to illustrate the suitability of the proposed model and the accuracy of the applied numerical method for the pricing problem of American options under the regime-switching model with irrational behaviors.

Keywords: irrational exercise strategy, rationality parameter, regime-switching model, American option, finite element method, variational inequality

Procedia PDF Downloads 73
4869 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 473