Search results for: heavy metal mixture;
3609 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 4423608 Effect of Visnagin on Altered Steroidogenesis and Spermatogenesis, and Testicular Injury Induced by the Heavy Metal Lead
Authors: Saleh N. Maodaa
Abstract:
Background: Lead (Pb) is an environmental pollutant causing serious health problems, including impairment of reproduction. Visnagin (VIS) is a furanochromone with promising antioxidant and anti-inflammatory effects; however, its protective efficacy against Pb toxicity has not been investigated. Objective: This study evaluated the protective effect of VIS on Pb reproductive toxicity, impaired steroidogenesis and spermatogenesis, oxidative stress and inflammation. Methods: Rats received VIS (30 or 60 mg/kg) and 50 mg/kg lead acetate for 3 weeks, and blood and testes samples were collected. Results: Pb intoxication impaired the pituitary-testicular axis (PTA), manifested by the decreased serum levels of gonadotropins and testosterone. Pb decreased sperm count, motility and viability, increased sperm abnormalities, and downregulated the steroidogenesis markers StAR, CYP17A1, 3β-HSD and 17β-HSD in the testis of rats. VIS significantly increased serum gonadotropins and testosterone, alleviated sperm parameters and upregulated steroidogenesis. In addition, VIS decreased pro-inflammatory cytokines, testicular lipid peroxidation and DNA fragmentation, downregulated Bax, and enhanced antioxidants and Bcl-2 Conclusion: These results demonstrate the protective effect of VIS against Pb reproductive toxicity in rats. VIS improved serum gonadotropins and testosterone, enhanced steroidogenesis and spermatogenesis, and attenuated oxidative injury, inflammation and apoptosis. Therefore, VIS is a promising candidate for the protection against Pb-induced reproduction impairment.Keywords: pituitary-gonadal axis, cytokines, DNA damage, apoptosis
Procedia PDF Downloads 983607 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison
Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran
Abstract:
This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.Keywords: heat transfer, nanofluid, single-phase models, two-phase models
Procedia PDF Downloads 4843606 Antibacterial Studies on Cellulolytic Bacteria for Termite Control
Authors: Essam A. Makky, Chan Cai Wen, Muna Jalal, Mashitah M. Yusoff
Abstract:
Termites are considered as important pests that could cause severe wood damage and economic losses in urban, agriculture and forest of Malaysia. The ability of termites to degrade cellulose depends on association of gut cellulolytic microflora or better known as mutual symbionts. With the idea of disrupting the mutual symbiotic association, better pest control practices can be attained. This study is aimed to isolate cellulolytic bacteria from the gut of termites and carry out antibacterial studies for the termite. Confirmation of cellulase activity is done by qualitative and quantitative methods. Impacts of antibiotics and their combinations, as well as heavy metals and disinfectants, are conducted by using disc diffusion method. Effective antibacterial agents are then subjected for termite treatment to study the effectiveness of the agents as termiticides. 24 cellulolytic bacteria are isolated, purified and screened from the gut of termites. All isolates were identified as Gram-negative with either rod or cocci in shape. For antibacterial studies result, isolates were found to be 100% sensitive to 4 antibiotics (rifampicin, tetracycline, gentamycin, and neomycin), 2 heavy metals (cadmium and mercury) and 3 disinfectants (lactic acid, formalin, and hydrogen peroxide). 22 out of 36 antibiotic combinations showed synergistic effect while 15 antibiotic combinations showed an antagonistic effect on isolates. The 2 heavy metals and 3 disinfectants that showed 100% effectiveness, as well as 22 antibiotic combinations, that showed synergistic effect were used for termite control. Among the 27 selected antibacterial agents, 12 of them were found to be effective to kill all the termites within 1 to 6 days. Mercury, lactic acid, formalin and hydrogen peroxide were found to be the most effective termiticides in which all termites were killed within 1 day only. These effective antibacterial agents possess a great potential to be a new application to control the termite pest species in the future.Keywords: antibacterial, cellulase, termicide, termites
Procedia PDF Downloads 4673605 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network
Authors: P. Singh, R. M. Banik
Abstract:
Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network
Procedia PDF Downloads 4293604 Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase
Authors: Anna Zimoch-Korzycka, Dominika Kulig, Andrzej Jarmoluk
Abstract:
The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties.Keywords: cellulase, xylanase, chitosanase, chitosan, chitooligosaccharides
Procedia PDF Downloads 3263603 Optimizing Pavement Construction Procedures in the Southern Desert of Libya
Authors: Khlifa El Atrash, Gabriel Assaf
Abstract:
Libya uses a volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot, arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. However, the quality of some roads was below a satisfactory level. This paper examines the factors that contribute to low quality of road performance in Libya. To evaluate these factors, a questionnaire survey and a laboratory comparative study were performed for a few mixes under-represented of temperature and traffic load. In laboratory, rutting test conducted on two different asphalt mixture, these mixes included, an asphalt concrete mix using local aggregate and asphalt binder B(60/70) at the optimum Marshall asphalt content, another mixes designed using Superpave design procedure with the same materials and performance asphalt binder grade PG (70-10). In the survey, the questionnaire was distributed to 55 engineers and specialists in this field. The interview was conducted to a few others, and the factors that were leading to poor performance of asphalt roads were listed as; 1) Owner Experience and technical staff 2) Asphalt characteristics 3) Updating and development of Asphalt Mix Design methods 4) Lack of data collection by authorization Agency 5) Construction and compaction process 6) Mentoring and controlling mixing procedure. Considering and improving these factors will play an important role to improve the pavement performances, longer service life, and lower maintenance costs. This research summarized some recommendations for making asphalt mixtures used in hot, dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids, and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance.Keywords: volumetric analysis, pavement performances, hot climate, traffic load, pavement temperature, asphalt mixture, environment, design and construction
Procedia PDF Downloads 2703602 Effect of Friction Parameters on the Residual Bagging Behaviors of Denim Fabrics
Authors: M. Gazzah, B. Jaouachi, F. Sakli
Abstract:
This research focuses on the yarn-to-yarn and metal-to-fabric friction effects on the residual bagging behavior expressed by residual bagging height, volume and recovery of some denim fabrics. The results show, that both residual bagging height and residual bagging volume, which is determined using image analysis method, are significantly affected due to the most influential fabric parameter variations, the weft yarns density and the mean frictional coefficients. After the applied number of fatigue cycles, the findings revealed that the weft yarn rigidity contributes on fabric bagging behavior accurately. Among the tested samples, our results show that the elastic fabrics present a high recovery ability to give low bagging height and volume values.Keywords: bagging recovery, denim fabric, metal-to-fabric friction, residual bagging height, yarn-to-yarn friction
Procedia PDF Downloads 5773601 Silicon Surface Treatment Effect on the Structural, Optical, and Optoelectronic Properties for Solar Cell Applications
Authors: Lotfi Hedi Khezami, Mohamed Ben Rabha, N. Sboui, Mounir Gaidi, B. Bessais
Abstract:
Metal-nano particle-assisted Chemical Etching is an extraordinary developed wet etching method of producing uniform semiconductor nano structure (nano wires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and opto electronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and opto electronic properties are presented in this paper.Keywords: stain etching, porous silicon, silicon nanowires, reflectivity, lifetime, solar cells
Procedia PDF Downloads 4483600 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures
Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov
Abstract:
At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells
Procedia PDF Downloads 2123599 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology
Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester
Abstract:
Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production
Procedia PDF Downloads 2403598 Nanoparticle Based Green Inhibitor for Corrosion Protection of Zinc in Acidic Medium
Authors: Neha Parekh, Divya Ladha, Poonam Wadhwani, Nisha Shah
Abstract:
Nano scaled materials have attracted tremendous interest as corrosion inhibitor due to their high surface area on the metal surfaces. It is well known that the zinc oxide nanoparticles have higher reactivity towards aqueous acidic solution. This work presents a new method to incorporate zinc oxide nanoparticles with white sesame seeds extract (nano-green inhibitor) for corrosion protection of zinc in acidic medium. The morphology of the zinc oxide nanoparticles was investigated by TEM and DLS. The corrosion inhibition efficiency of the green inhibitor and nano-green inhibitor was determined by Gravimetric and electrochemical impedance spectroscopy (EIS) methods. Gravimetric measurements suggested that nano-green inhibitor is more effective than green inhibitor. Furthermore, with the increasing temperature, inhibition efficiency increases for both the inhibitors. In addition, it was established the Temkin adsorption isotherm fits well with the experimental data for both the inhibitors. The effect of temperature and Temkin adsorption isotherm revealed Chemisorption mechanism occurring in the system. The activation energy (Ea) and other thermodynamic parameters for inhibition process were calculated. The data of EIS showed that the charge transfer controls the corrosion process. The surface morphology of zinc metal (specimen) in absence and presence of green inhibitor and nano-green inhibitor were performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. The outcomes indicated a formation of a protective layer over zinc metal (specimen).Keywords: corrosion, green inhibitor, nanoparticles, zinc
Procedia PDF Downloads 4543597 The Functional Rehabilitation of Peri-Implant Tissue Defects: A Case Report
Authors: Özgür Öztürk, Cumhur Sipahi, Hande Yeşil
Abstract:
Implant retained restorations commonly consist of a metal-framework veneered with ceramic or composite facings. The increasing and expanding use of indirect resin composites in dentistry is a result of innovations in materials and processing techniques. Of special interest to the implant restorative field is the possibility that composites present significantly lower peak vertical and transverse forces transmitted at the peri-implant level compared to metal-ceramic supra structures in implant-supported restorations. A 43-year-old male patient referred to the department of prosthodontics for an implant retained fixed prosthesis. The clinical and radiographic examination of the patient demonstrated the presence of an implant in the right mandibular first molar tooth region. A considerable amount of marginal bone loss around the implant was detected in radiographic examinations combined with a remarkable peri-implant soft tissue deficiency. To minimize the chewing loads transmitted to the implant-bone interface it was decided to fabricate an indirect composite resin veneered single metal crown over a screw-retained abutment. At the end of the treatment, the functional and aesthetic deficiencies were fully compensated. After a 6 months clinical and radiographic follow-up period the not any additional pathologic invasion was detected in the implant-bone interface and implant retained restoration did not reveal any vehement complication.Keywords: dental implant, fixed partial dentures, indirect composite resin, peri-implant defects
Procedia PDF Downloads 2623596 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media
Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde
Abstract:
Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.Keywords: adsorption, aqueous media, fishbone, kinetic study
Procedia PDF Downloads 1313595 Influence of Different Asymmetric Rolling Processes on Shear Strain
Authors: Alexander Pesin, Denis Pustovoytov, Mikhail Sverdlik
Abstract:
Materials with ultrafine-grained structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include processes of asymmetric rolling (AR). Asymmetric rolling is a very effective way to create ultrafine-grained structures of metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine-grained structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. In this work finite element modeling of asymmetric rolling and metal forming processes in multiroll gauge was performed. Parameters of the processes which allow achieving significant values of shear strain were defined. The results of the study will be useful for the research of the evolution of ultra-fine metal structure in asymmetric rolling.Keywords: asymmetric rolling, equivalent strain, FEM, multiroll gauge, profile, severe plastic deformation, shear strain, sheet
Procedia PDF Downloads 2653594 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions
Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs
Abstract:
Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.Keywords: biological waste, sorption, metal ions, ferrofluid
Procedia PDF Downloads 1413593 Removal of Lead (Pb) by the Microorganism Isolated from the Effluent of Lead Acid Battery Scrap
Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati
Abstract:
The demand for the lead (Pb) in the battery industry has been growing for last twenty years. On an average about 2.35 million tons of lead is used in the battery industry. According to the survey of supply and demand battery industry is using 75% of lead produced every year. Due to the increase in battery scrap, secondary lead production has been increasing in this decade. Europe and USA together account for 75% of the world’s secondary lead production. The effluent from used battery scrap consists of high concentrations of lead. Unauthorized disposal of spent batteries, which contain intolerable concentration of lead, into landfills or municipal water canals causes release of Pb into the environment. Lead is one of the toxic heavy metals that have large damaging effects on the human health. Due to its persistence and toxicity, the presence of Pb in drinking water is considered as a special concern. Accumulation of Pb in the human body for long period of time can result in the malfunctioning of some organs. Many technologies have been developed for the removal of lead using microorganisms. In this paper, effluent was taken from the spent battery scrap and was characterized by inductively coupled plasma atomic emission spectrometer. Microorganisms play an important role in removal of lead from the contaminated sites. So, the bacteria were isolated from the effluent. Optimum conditions for the microbial growth and applied for the lead removal. These bacterial cells were immobilized and used for the removal of Pb from the known concentration of metal solution. Scanning electron microscopic (SEM) studies were shown that the Pb was efficiently adsorbed by the immobilized bacteria. From the results of Atomic Absorption Spectroscopy (AAS), 83.40 percentage of Pb was removed in a batch culture.Keywords: adsorption, effluent, immobilization, lead (Pb)
Procedia PDF Downloads 4563592 Rh(III)-Catalyzed Cross-Coupling Reaction of 8-Methylquinolines with Maleimides
Authors: Sangil Han, In Su Kim
Abstract:
Transition-metal-catalyzed C–H bond activation and its subsequent functionalization has been one of the most attractive topics in organic synthesis because of its remarkable potential for atom economy and environmental sustainability. In this addition, a variety of C(sp2)–H functionalization has been developed under metal catalysis in the past decade. Recently, much attention has been moved towards the C(sp3)–H functionalization events, which continue to be a challenging issue. In this area, directing group assisted sp3 C–H functionalization has been explored by use of amides, carboxylic acids, oximes, N-heterocycles, and etc. In particular, 8-methylquinolines have been found as good substrates for sp3 C–H functionalization due to its ability to form cyclometalated complexes. Succinimides have been recognized as privileged structural cores found in a number of bioactive natural products, pharmaceuticals, and functional materials. Furthermore, the reduced derivatives such as pyrrolidines and γ-lactams have been also found in a large number of pharmaceutical relevant molecules, thus making them one of the most important and promising compounds. We herein describe the first C(sp3)–H activation of 8-methylquinolines and subsequent functionalization with maleimides to afford various succinimide derivatives.Keywords: C(sp3)–H activation, 8-methylquinolines, maleimides, succinimides
Procedia PDF Downloads 2213591 Toxicological Effects of Heavy Metals; Copper, Lead and Chromium on Brain and Liver Tissue of Grass Carp (Ctenopharyngodon idella)
Authors: Ahsan Khan, Nazish Shah, Muhammad Salman
Abstract:
The present study deals with the toxicological effects of copper, lead and chromium on brain and liver tissues of grass carp (Ctenopharyngodon idella). The average length of experimental fish was 8.5 ± 5.5 cm and weighed 9.5 ± 6.5 g. Grass carp was exposed to lethal concentration (LC₁₅) of copper, lead and chromium for 24, 48, 72 and 96 hours respectively. (LC₁₅) for copper was 1.5, 1.4, 1.2 and 1mgL⁻¹. Similarly, LC₁₅ of lead was 250, 235, 225 and 216mgL⁻¹ while (LC₁₅) for chromium was 25.5, 22.5, 20 and 18mgL⁻¹ respectively. During the time of exposure against various doses of heavy metals the grass carp showed some behavioral changes. In the initial stages of experiment, the rapid movements and gulping of air were observed. Several times the fish tried to jump to scat from the toxic median. In addition, the accumulation of heavy metals in different tissues of grass carp particularly in liver and brain tissues were observed. Lead was highly accumulated in brain tissue after the exposure of fish for 24 and 48 hours, while highly accumulated in liver tissues after the exposure of fish for 72 and 96 hours. Chromium was highly accumulated in the liver tissues after the exposure of fish for 24 hours while its accumulation was found highly in the brain tissues after the exposure of fish for 48, 72 and 96 hours. Similarly, accumulation of copper concentration was found highly in brain tissues after the exposure of 48 and 96 hours while its accumulation was high in liver tissues after the exposure of 24 and 72 hours. Comparatively maximum accumulation of lead was found in brain and liver tissues of grass carp followed by chromium and copper. Furthermore, accumulation of these metals caused many abnormalities like gliosis, destruction of cell, change in cell shape and shrinkage of cells in brain tissue while in liver tissues aggregation in hepatocytes, widen space between cells and also destruction of cell was observed. These experiments and observations can be useful to monitor the aquatic pollution and quality of aquatic environment system.Keywords: brain, grass carp, liver, lethal concentration, toxicity
Procedia PDF Downloads 1563590 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System
Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi
Abstract:
Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model
Procedia PDF Downloads 2053589 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform
Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat
Abstract:
Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency
Procedia PDF Downloads 2023588 Collaborative Implementation of Master Plans in Afghanistan's Context Considering Land Readjustment as Case Study
Authors: Ahmad Javid Habib, Tetsuo Kidokoro
Abstract:
There is an increasing demand for developing urban land to provide better living conditions for all citizens in Afghanistan. Most of the development will involve the acquisition of land. And the current land acquisition method practiced by central government is expropriation, which is a cash-based transaction method that imposes heavy fiscal burden on local municipalities and central government, and it does not protect ownership rights and social equity of landowners besides it relocates the urban poor to remote areas with limited access to jobs and public services. The questionnaire analysis, backed by observations of different case studies in countries where land readjustment is used as a collaborative land development tool indicates that the method plays a key role in valuing landowners’ rights, giving other community members and stakeholders the opportunity to collaboratively implement urban development projects. The practice of the method is reducing the heavy fiscal burden on the local and central governments and is a better option to deal with the current development challenges in Afghanistan.Keywords: collaboration, land readjustment, master plan, expropriation
Procedia PDF Downloads 2953587 Investigation of Ignition Delay for Low Molecular Hydrocarbon Fuel and Oxygen Mixture behind the Reflected Shock
Authors: K. R. Guna, Aldin Justin Sundararaj, B. C. Pillai, A. N. Subash
Abstract:
A systematic study has been made for ignition delay times measurement behind a reflected shock wave for the low molecular weight hydrocarbon fuel in argon simulated gas mixtures. The low molecular hydrocarbon fuel–oxygen was diluted with argon for desired concentration is taken for the study. The suitability of the shock tube for measuring the ignition delay time is demonstrated by measuring the ignition delay for the liquefied petroleum gas for equivalence ratios (ф=0.5 & 1) in the temperature range 1150-1650 K. The pressure range was fixed from 5-15 bar. The ignition delay was measured by recording the ignition-induced pressure jump and emission from CH radical simultaneously. From conducting experiments, it was found that the ignition delay time for liquefied petroleum gas reduces with increase in temperature. The shock tube was calibrated for ethane-oxygen gas mixture and the results obtained from this study is compared with the earlier reported values and found to be comparably well suited for the measurement of ignition delay times. The above work was carried out using the shock tube facility at propulsion and high enthalpy laboratory, Karunya University.Keywords: ignition delay, LPG, reflected shock, shock wave
Procedia PDF Downloads 2523586 Monitoring and Evaluation of the Reverse Osmosis Reject Wastewater from the Sulaibiya Wastewater Treatment Plant in Kuwait
Authors: Mishari Khajah, Mohd. Elmuntasir Ahmed, Abdullah Al-Matouq, Farah Al-Ajeel, Fatemah Dashti, Ahmed Shishter
Abstract:
The overall aim of this study was to monitor and evaluate the effluent quality of a reverse osmosis (RO) reject wastewater from the biggest wastewater treatment plant in the world that is using RO and ultrafiltration membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. The RO reject wastewater or brine included various contaminants that could harm the human health and the environment such as trace organics, organic matters, heavy metals, nutrients and pathogens. Unfortunately, there are no legally binding regulatory guidelines for brine management in Kuwait as many countries around the world. This study monitors and evaluate the RO reject wastewater (brine) generated from the Sulaibiya Wastewater Treatment Plant. Samples were collected and analyzed about 37 parameters for one-year period, twice a month, and compare it to Kuwait Environment Public Authority, KEPA. Results showed that the heavy metals parameters were above KEPA standards, which needs to be treated.Keywords: domestic wastewater, management, potable water, RO reject wastewater, Sulaibiya wastewater treatment plant
Procedia PDF Downloads 933585 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications
Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien
Abstract:
The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media
Procedia PDF Downloads 3013584 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences
Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan
Abstract:
Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies
Procedia PDF Downloads 2923583 Recovery of Zn from Different Çinkur Leach Residues by Acidic Leaching
Authors: Mehmet Ali Topçu, Aydın Ruşen
Abstract:
Çinkur is the only plant in Turkey that produces zinc from primary ore containing zinc carbonate from its establishment until 1997. After this year, zinc concentrate coming from Iran was used in this plant. Therefore, there are two different leach residues namely Turkish leach residue (TLR) and Iranian leach residue (ILR), in Çinkur stock piles. This paper describes zinc recovery by sulphuric acid (H2SO4) treatment for each leach residue and includes comparison of blended of TLR and ILR. Before leach experiments; chemical, mineralogical and thermal analysis of three different leach residues was carried out by using atomic absorption spectrometry (AAS), X-Ray diffraction (XRD) and differential thermal analysis (DTA), respectively. Leaching experiments were conducted at optimum conditions; 100 oC, 150 g/L H2SO4 and 2 hours. In the experiments, stirring rate was kept constant at 600 r/min which ensures complete mixing in leaching solution. Results show that zinc recovery for Iranian LR was higher than Turkish LR due to having different chemical composition from each other.Keywords: hydrometallurgy, leaching, metal extraction, metal recovery
Procedia PDF Downloads 3543582 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent
Authors: Hiroyuki Aoki
Abstract:
The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging
Procedia PDF Downloads 1313581 CFD Analysis of Flow Regimes of Non-Newtonian Liquids in Chemical Reactor
Authors: Nenashev Yaroslav, Russkin Oleg
Abstract:
The mixing process is one of the most important and critical stages in many industrial sectors, such as chemistry, pharmaceuticals, and the food industry. When designing equipment with mixing impellers, technology developers often encounter working environments with complex physical properties and rheology. In such cases, the use of computational fluid dynamics tools is an excellent solution to mitigate risks and ensure the stable operation of the equipment. The research focuses on one of the designed reactors with mixing impellers intended for polymer synthesis. The study describes an approach to modeling reactors of similar configurations, taking into account the complex properties of the mixed liquids using the computational fluid dynamics (CFD) method. To achieve this goal, a complex 3D model was created, accurately replicating the functionality of chemical equipment. The model allows for the assessment of the hydrodynamic behavior of the reaction mixture inside the reactor, consideration of heat release due to the reaction, and the heat exchange between the reaction mixture and the cooling medium. The results indicate that the choice of the type and size of the mixing device significantly affects the efficiency of the mixing process inside the chemical reactor.Keywords: CFD, mixing, blending, chemical reactor, non-Newton liquids, polymers
Procedia PDF Downloads 353580 Comparison of Real-Time PCR and FTIR with Chemometrics Technique in Analysing Halal Supplement Capsules
Authors: Mohd Sukri Hassan, Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman
Abstract:
Halal authentication and verification in supplement capsules are highly required as the gelatine available in the market can be from halal or non-halal sources. It is an obligation for Muslim to consume and use the halal consumer goods. At present, real-time polymerase chain reaction (RT-PCR) is the most common technique being used for the detection of porcine and bovine DNA in gelatine due to high sensitivity of the technique and higher stability of DNA compared to protein. In this study, twenty samples of supplements capsules from different products with different Halal logos were analyzed for porcine and bovine DNA using RT-PCR. Standard bovine and porcine gelatine from eurofins at a range of concentration from 10-1 to 10-5 ng/µl were used to determine the linearity range, limit of detection and specificity on RT-PCR (SYBR Green method). RT-PCR detected porcine (two samples), bovine (four samples) and mixture of porcine and bovine (six samples). The samples were also tested using FT-IR technique where normalized peak of IR spectra were pre-processed using Savitsky Golay method before Principal Components Analysis (PCA) was performed on the database. Scores plot of PCA shows three clusters of samples; bovine, porcine and mixture (bovine and porcine). The RT-PCR and FT-IR with chemometrics technique were found to give same results for porcine gelatine samples which can be used for Halal authentication.Keywords: halal, real-time PCR, gelatine, chemometrics
Procedia PDF Downloads 241