Search results for: enhancing learning experience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12618

Search results for: enhancing learning experience

168 The Influence of Active Breaks on the Attention/Concentration Performance in Eighth-Graders

Authors: Christian Andrä, Luisa Zimmermann, Christina Müller

Abstract:

Introduction: The positive relation between physical activity and cognition is commonly known. Relevant studies show that in everyday school life active breaks can lead to improvement in certain abilities (e.g. attention and concentration). A beneficial effect is in particular attributed to moderate activity. It is still unclear whether active breaks are beneficial after relatively short phases of cognitive load and whether the postulated effects of activity really have an immediate impact. The objective of this study was to verify whether an active break after 18 minutes of cognitive load leads to enhanced attention/concentration performance, compared to inactive breaks with voluntary mobile phone activity. Methodology: For this quasi-experimental study, 36 students [age: 14.0 (mean value) ± 0.3 (standard deviation); male/female: 21/15] of a secondary school were tested. In week 1, every student’s maximum heart rate (Hfmax) was determined through maximum effort tests conducted during physical education classes. The task was to run 3 laps of 300 m with increasing subjective effort (lap 1: 60%, lap 2: 80%, lap 3: 100% of the maximum performance capacity). Furthermore, first attention/concentration tests (D2-R) took place (pretest). The groups were matched on the basis of the pretest results. During week 2 and 3, crossover testing was conducted, comprising of 18 minutes of cognitive preload (test for concentration performance, KLT-R), a break and an attention/concentration test after a 2-minutes transition. Different 10-minutes breaks (active break: moderate physical activity with 65% Hfmax or inactive break: mobile phone activity) took place between preloading and transition. Major findings: In general, there was no impact of the different break interventions on the concentration test results (symbols processed after physical activity: 185.2 ± 31.3 / after inactive break: 184.4 ± 31.6; errors after physical activity: 5.7 ± 6.3 / after inactive break: 7.0. ± 7.2). There was, however, a noticeable development of the values over the testing periods. Although no difference in the number of processed symbols was detected (active/inactive break: period 1: 49.3 ± 8.8/46.9 ± 9.0; period 2: 47.0 ± 7.7/47.3 ± 8.4; period 3: 45.1 ± 8.3/45.6 ± 8.0; period 4: 43.8 ± 7.8/44.6 ± 8.0), error rates decreased successively after physical activity and increased gradually after an inactive break (active/inactive break: period 1: 1.9 ± 2.4/1.2 ± 1.4; period 2: 1.7 ± 1.8/ 1.5 ± 2.0, period 3: 1.2 ± 1.6/1.8 ± 2.1; period 4: 0.9 ± 1.5/2.5 ± 2.6; p= .012). Conclusion: Taking into consideration only the study’s overall results, the hypothesis must be dismissed. However, more differentiated evaluation shows that the error rates decreased after active breaks and increased after inactive breaks. Obviously, the effects of active intervention occur with a delay. The 2-minutes transition (regeneration time) used for this study seems to be insufficient due to the longer adaptation time of the cardio-vascular system in untrained individuals, which might initially affect the concentration capacity. To use the positive effects of physical activity for teaching and learning processes, physiological characteristics must also be considered. Only this will ensure optimum ability to perform.

Keywords: active breaks, attention/concentration test, cognitive performance capacity, heart rate, physical activity

Procedia PDF Downloads 315
167 Outcomes-Based Qualification Design and Vocational Subject Literacies: How Compositional Fallacy Short-Changes School-Leavers’ Literacy Development

Authors: Rose Veitch

Abstract:

Learning outcomes-based qualifications have been heralded as the means to raise vocational education and training (VET) standards, meet the needs of the changing workforce, and establish equivalence with existing academic qualifications. Characterized by explicit, measurable performance statements and atomistically specified assessment criteria, the outcomes model has been adopted by many VET systems worldwide since its inception in the United Kingdom in the 1980s. Debate to date centers on how the outcomes model treats knowledge. Flaws have been identified in terms of the overemphasis of end-points, neglect of process and a failure to treat curricula coherently. However, much of this censure has evaluated the outcomes model from a theoretical perspective; to date, there has been scant empirical research to support these criticisms. Various issues therefore remain unaddressed. This study investigates how the outcomes model impacts the teaching of subject literacies. This is of particular concern for subjects on the academic-vocational boundary such as Business Studies, since many of these students progress to higher education in the United Kingdom. This study also explores the extent to which the outcomes model is compatible with borderline vocational subjects. To fully understand if this qualification model is fit for purpose in the 16-18 year-old phase, it is necessary to investigate how teachers interpret their qualification specifications in terms of curriculum, pedagogy and assessment. Of particular concern is the nature of the interaction between the outcomes model and teachers’ understandings of their subject-procedural knowledge, and how this affects their capacity to embed literacy into their teaching. This present study is part of a broader doctoral research project which seeks to understand if and how content-area, disciplinary literacy and genre approaches can be adapted to outcomes-based VET qualifications. This qualitative research investigates the ‘what’ and ‘how’ of literacy embedding from the perspective of in-service teacher development in the 16-18 phase of education. Using ethnographic approaches, it is based on fieldwork carried out in one Further Education college in the United Kingdom. Emergent findings suggest that the outcomes model is not fit for purpose in the context of borderline vocational subjects. It is argued that the outcomes model produces inferior qualifications due to compositional fallacy; the sum of a subject’s components do not add up to the whole. Findings indicate that procedural knowledge, largely unspecified by some outcomes-based qualifications, is where subject-literacies are situated, and that this often gets lost in ‘delivery’. It seems that the outcomes model provokes an atomistic treatment of knowledge amongst teachers, along with the privileging of propositional knowledge over procedural knowledge. In other words, outcomes-based VET is a hostile environment for subject-literacy embedding. It is hoped that this research will produce useful suggestions for how this problem can be ameliorated, and will provide an empirical basis for the potential reforms required to address these issues in vocational education.

Keywords: literacy, outcomes-based, qualification design, vocational education

Procedia PDF Downloads 10
166 The Practise of Hand Drawing as a Premier Form of Representation in Architectural Design Teaching: The Case of FAUP

Authors: Rafael Santos, Clara Pimenta Do Vale, Barbara Bogoni, Poul Henning Kirkegaard

Abstract:

In the last decades, the relevance of hand drawing has decreased in the scope of architectural education. However, some schools continue to recognize its decisive role, not only in the architectural design teaching, but in the whole of architectural training. With this paper it is intended to present the results of a research developed on the following problem: the practise of hand drawing as a premier form of representation in architectural design teaching. The research had as its object the educational model of the Faculty of Architecture of the University of Porto (FAUP) and was led by three main objectives: to identify the circumstance that promoted hand drawing as a form of representation in FAUP's model; to characterize the types of hand drawing and their role in that model; to determine the particularities of hand drawing as a premier form of representation in architectural design teaching. Methodologically, the research was conducted according to a qualitative embedded single-case study design. The object – i.e., the educational model – was approached in FAUP case considering its Context and three embedded unities of analysis: the educational Purposes, Principles and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is Assumed; the architectural design classes, expressing how the model is Achieved; and the students, expressing how the model is Acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal that the educational model of FAUP – following the model of the former Porto School – was largely due to the methodological foundations created with the hand drawing teaching-learning processes. In the absence of a culture of explicit theoretical elaboration or systematic research, hand drawing was the support for the continuity of the school, an expression of a unified thought about what should be the reflection and practice of architecture. As a form of representation, hand drawing plays a transversal role in the entire educational model, since its purposes are not limited to the conception of architectural design – it is also a means for perception, analysis and synthesis. Regarding the architectural design teaching, there seems to be an understanding of three complementary dimensions of didactics: the instrumental, methodological and propositional dimension. At FAUP, hand drawing is recognized as the common denominator among these dimensions, according to the idea of "globality of drawing". It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance and valorisation of FAUP’s model; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the hand drawing in architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.

Keywords: architectural design teaching, architectural education, forms of representation, hand drawing

Procedia PDF Downloads 131
165 Improving Working Memory in School Children through Chess Training

Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy

Abstract:

Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess training, cognitive development, executive functions, school children, working memory

Procedia PDF Downloads 263
164 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments

Authors: Shari S. C. Shang, Lynn S. L. Chiu

Abstract:

In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.

Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions

Procedia PDF Downloads 158
163 Research Project on Learning Rationality in Strategic Behaviors: Interdisciplinary Educational Activities in Italian High Schools

Authors: Giovanna Bimonte, Luigi Senatore, Francesco Saverio Tortoriello, Ilaria Veronesi

Abstract:

The education process considers capabilities not only to be seen as a means to a certain end but rather as an effective purpose. Sen's capability approach challenges human capital theory, which sees education as an ordinary investment undertaken by individuals. A complex reality requires complex thinking capable of interpreting the dynamics of society's changes to be able to make decisions that can be rational for private, ethical and social contexts. Education is not something removed from the cultural and social context; it exists and is structured within it. In Italy, the "Mathematical High School Project" is a didactic research project is based on additional laboratory courses in extracurricular hours where mathematics intends to bring itself in a dialectical relationship with other disciplines as a cultural bridge between the two cultures, the humanistic and the scientific ones, with interdisciplinary educational modules on themes of strong impact in younger life. This interdisciplinary mathematics presents topics related to the most advanced technologies and contemporary socio-economic frameworks to demonstrate how mathematics is not only a key to reading but also a key to resolving complex problems. The recent developments in mathematics provide the potential for profound and highly beneficial changes in mathematics education at all levels, such as in socio-economic decisions. The research project is built to investigate whether repeated interactions can successfully promote cooperation among students as rational choice and if the skill, the context and the school background can influence the strategies choice and the rationality. A Laboratory on Game Theory as mathematical theory was conducted in the 4th year of the Mathematical High Schools and in an ordinary scientific high school of the Scientific degree program. Students played two simultaneous games of repeated Prisoner's Dilemma with an indefinite horizon, with two different competitors in each round; even though the competitors in each round will remain the same for the duration of the game. The results highlight that most of the students in the two classes used the two games with an immunization strategy against the risk of losing: in one of the games, they started by playing Cooperate, and in the other by the strategy of Compete. In the literature, theoretical models and experiments show that in the case of repeated interactions with the same adversary, the optimal cooperation strategy can be achieved by tit-for-tat mechanisms. In higher education, individual capacities cannot be examined independently, as conceptual framework presupposes a social construction of individuals interacting and competing, making individual and collective choices. The paper will outline all the results of the experimentation and the future development of the research.

Keywords: game theory, interdisciplinarity, mathematics education, mathematical high school

Procedia PDF Downloads 74
162 Improving Patient Outcomes for Aspiration Pneumonia

Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu

Abstract:

Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).

Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions

Procedia PDF Downloads 62
161 What Is At Stake When Developing and Using a Rubric to Judge Chemistry Honours Dissertations for Entry into a PhD?

Authors: Moira Cordiner

Abstract:

As a result of an Australian university approving a policy to improve the quality of assessment practices, as an academic developer (AD) with expertise in criterion-referenced assessment commenced in 2008. The four-year appointment was to support 40 'champions' in their Schools. This presentation is based on the experiences of a group of Chemistry academics who worked with the AD to develop and implement an honours dissertation rubric. Honours is a research year following a three-year undergraduate year. If the standard of the student's work is high enough (mainly the dissertation) then the student can commence a PhD. What became clear during the process was that much more was at stake than just the successful development and trial of the rubric, including academics' reputations, university rankings and research outputs. Working with the champion-Head of School(HOS) and the honours coordinator, the AD helped them adapt an honours rubric that she had helped create and trial successfully for another Science discipline. A year of many meetings and complex power plays between the two academics finally resulted in a version that was critiqued by the Chemistry teaching and learning committee. Accompanying the rubric was an explanation of grading rules plus a list of supervisor expectations to explain to students how the rubric was used for grading. Further refinements were made until all staff were satisfied. It was trialled successfully in 2011, then small changes made. It was adapted and implemented for Medicine honours with her help in 2012. Despite coming to consensus about statements of quality in the rubric, a few academics found it challenging matching these to the dissertations and allocating a grade. They had had no time to undertake training to do this, or make overt their implicit criteria and standards, which some admitted they were using - 'I know what a first class is'. Other factors affecting grading included: the small School where all supervisors knew each other and the students, meant that friendships and collegiality were at stake if low grades were given; no external examiners were appointed-all were internal with the potential for bias; supervisors’ reputations were at stake if their students did not receive a good grade; the School's reputation was also at risk if insufficient honours students qualified for PhD entry; and research output was jeopardised without enough honours students to work on supervisors’ projects. A further complication during the study was a restructure of the university and retrenchments, with pressure to increase research output as world rankings assumed greater importance to senior management. In conclusion, much more was at stake than developing a usable rubric. The HOS had to be seen to champion the 'new' assessment practice while balancing institutional demands for increased research output and ensuring as many honours dissertations as possible met high standards, so that eventually the percentage of PhD completions and research output rose. It is therefore in the institution's best interest for this cycle to be maintained as it affects rankings and reputations. In this context, are rubrics redundant?

Keywords: explicit and implicit standards, judging quality, university rankings, research reputations

Procedia PDF Downloads 336
160 The Effectiveness of Therapeutic Exercise on Motor Skills and Attention of Male Students with Autism Spectrum Disorder

Authors: Masoume Pourmohamadreza-Tajrishi, Parviz Azadfallah

Abstract:

Autism spectrum disorders (ASD) involve myriad aberrant perceptual, cognitive, linguistic, and social behaviors. The term spectrum emphasizes that the disabilities associated with ASD fall on a continuum from relatively mild to severe. People with ASD may display stereotyped behaviors such as twirling, spinning objects, flapping the hands, and rocking. The individuals with ASD exhibit communication problems due to repetitive/restricted behaviors. Children with ASD who lack the motivation to learn, who do not enjoy physical challenges, or whose sensory perception results in confusing or unpleasant feedback from movement may not become sufficiently motivated to practice motor activities. As a result, they may show both a delay in developing certain motor skills. Additionally, attention is an important component of learning. As far as children with ASD have problems in joint attention, many education-based programs are needed to consider some aspects of attention and motor activities development for students with ASD. These programs focus on the basic movement skills that are crucial for the future development of the more complex skills needed in games, dance, sports, gymnastics, active play, and recreational physical activities. The purpose of the present research was to determine the effectiveness of therapeutic exercise on motor skills and attention of male students with ASD. This was an experimental study with a control group. The population consisted of 8-10 year-old male students with ASD and 30 subjects were selected randomly from an available center suitable for the children with ASD. They were evaluated by the Basic Motor Ability Test (BMAT) and Persian version of computerized Stroop color-word test and randomly assigned to an experimental and control group (15 students in per group). The experimental group participated in 16 therapeutic exercise sessions and received therapeutic exercise program (twice a week; each lasting for 45 minutes) designed based on the Spark motor program while the control group did not. All subjects were evaluated by BMAT and Stroop color-word test after the last session again. The collected data were analyzed by using multivariate analysis of covariance (MANCOVA). The results of MANCOVA showed that experimental and control groups had a significant difference in motor skills and at least one of the components of attention (correct responses, incorrect responses, no responses, the reaction time of congruent words and reaction time of incongruent words in the Stroop test). The findings showed that the therapeutic exercise had a significant effect on motor skills and all components of attention in students with ASD. We can conclude that the therapeutic exercise led to promote the motor skills and attention of students with ASD, so it is necessary to design or plan such programs for ASD students to prevent their communication or academic problems.

Keywords: Attention, autism spectrum disorder, motor skills, therapeutic exercise

Procedia PDF Downloads 130
159 Parents as a Determinant for Students' Attitudes and Intentions toward Higher Education

Authors: Anna Öqvist, Malin Malmström

Abstract:

Attaining a higher level of education has become an increasingly important prerequisite for people’s economic and social independence and mobility. Young people who do not pursue higher education are not as attractive as potential employees in the modern work environment. Although completing a higher education degree is not a guarantee for getting a job, it substantially increases the chances for employment and, consequently, the chances for a better life. Despite this, it’s a fact that in several regions in Sweden, fewer students are choosing to engage in higher education. Similar trends have been emphasized in, for instance, the US where high dropout patterns among young people have been noted. This is a threat to future employment and industry development in these regions because the future employment base for society is dependent upon students’ willingness to invest in higher education. Much of prior studies have focused on the role of parents’ involvement in their children’s’ school work and the positive influence parents involvement have on their children’s school performance. Parental influence on education in general has been a topic of interest among those concerned with optimal developmental and educational outcomes for children and youth in pre-, secondary- and high school. Across a range of studies, there has emerged a strong conclusion that parental influence on child and youths education generally benefits children's and youths learning and school success. Arguably then, we could expect that parents influence on whether or not to pursue a higher education would be of importance to understand young people’s choice to engage in higher education. Accordingly, understanding what drives students’ intentions to pursue higher education is an essential component of motivating students to aspire to make the most of their potential in their future work life. Drawing on the theory of planned behavior, this study examines the role of parents influence on students’ attitudes about whether higher education can be beneficial to their future work life. We used a qualitative approach by collecting interview data from 18 high school students in Sweden to capture students’ cognitive and motivational mechanisms (attitudes) to influence intentions to engage in higher education. We found that parents may positively or negatively influence students’ attitudes and subsequently a student's intention to pursue higher education. Accordingly, our results show that parents’ own attitudes and expectations on their children are keys for influencing students’ attitudes and intentions for higher education. Further, our finding illuminates the mechanisms that drive students in one direction or the other. As such, our findings show that the same categories of arguments are used for driving students’ attitudes and intentions in two opposite directions, namely; financial arguments and work life benefits arguments. Our results contribute to existing literature by showing that parents do affect young people’s intentions to engage in higher studies. The findings contribute to the theory of planned behavior and have implications for the literature on higher education and educational psychology and also provide guidance on how to inform students about facts of higher studies in school.

Keywords: higher studies, intentions, parents influence, theory of planned behavior

Procedia PDF Downloads 257
158 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 183
157 The Dilemma of Translanguaging Pedagogy in a Multilingual University in South Africa

Authors: Zakhile Somlata

Abstract:

In the context of international linguistic and cultural diversity, all languages can be used for all purposes. Africa in general and South Africa, in particular, is not an exception to multilingual and multicultural society. The multilingual and multicultural nature of South African society has a direct bearing to the heterogeneity of South African Universities in general. Universities as the centers of research, innovation, and transformation of the entire society should be at the forefront in leading multilingualism. The universities in South Africa had been using English and to a certain extent Afrikaans as the only academic languages during colonialism and apartheid regime. The democratic breakthrough of 1994 brought linguistic relief in South Africa. The Constitution of the Republic of South Africa recognizes 11 official languages that should enjoy parity of esteem for the realization of multilingualism. The elevation of the nine previously marginalized indigenous African languages as academic languages in higher education is central to multilingualism. It is high time that Afrocentric model instead of Eurocentric model should be the one which underpins education system in South Africa at all levels. Almost all South African universities have their language policies that seek to promote access and success of students through multilingualism, but the main dilemma is the implementation of language policies. This study is significant to respond to two objectives: (i) To evaluate how selected institutions use language policies for accessibility and success of students. (ii) To study how selected universities integrate African languages for both academic and administrative purposes. This paper reflects the language policy practices in one selected University of Technology (UoT) in South Africa. The UoT has its own language policy which depicts linguistic diversity of the institution and its commitment to promote multilingualism. Translanguaging pedagogy which accommodates minority languages' usage in the teaching and learning process plays a pivotal role in promoting multilingualism. This research paper employs mixed methods (quantitative and qualitative research) approach. Qualitative data has been collected from the key informants (insiders and experts), while quantitative data has been collected from a cohort of third-year students. A mixed methods approach with its convergent parallel design allows the data to be collected separately, analysed separately but with the comparison of the results. Language development initiatives have been discussed within the framework of language policy and policy implementation strategies. Theoretically, this paper is rooted in language as a problem, language as a right and language as a resource. The findings demonstrate that despite being a multilingual institution, there is a perpetuation of marginalization of African languages to be used as academic languages. Findings further display the hegemony of English. The promotion of status quo compromises the promotion of multilingualism, Africanization of Higher Education and intellectualization of indigenous African languages in South Africa under a democratic dispensation.

Keywords: afro-centric model, hegemony of English, language as a resource, translanguaging pedagogy

Procedia PDF Downloads 192
156 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
155 Teachers' and Learners' Experiences of Learners' Writing in English First Additional Language

Authors: Jane-Francis A. Abongdia, Thandiswa Mpiti

Abstract:

There is an international concern to develop children’s literacy skills. In many parts of the world, the need to become fluent in a second language is essential for gaining meaningful access to education, the labour market and broader social functioning. In spite of these efforts, the problem still continues. The level of English language proficiency is far from satisfactory and these goals are unattainable by others. The issue is more complex in South Africa as learners are immersed in a second language (L2) curriculum. South Africa is a prime example of a country facing the dilemma of how to effectively equip a majority of its population with English as a second language or first additional language (FAL). Given the multilingual nature of South Africa with eleven official languages, and the position and power of English, the study investigates teachers’ and learners’ experiences on isiXhosa and Afrikaans background learners’ writing in English First Additional Language (EFAL). Moreover, possible causes of writing difficulties and teacher’s practices for writing are explored. The theoretical and conceptual framework for the study is provided by studies on constructivist theories and sociocultural theories. In exploring these issues, a qualitative approach through semi-structured interviews, classroom observations, and document analysis were adopted. This data is analysed by critical discourse analysis (CDA). The study identified a weak correlation between teachers’ beliefs and their actual teaching practices. Although the teachers believe that writing is as important as listening, speaking, reading, grammar and vocabulary, and that it needs regular practice, the data reveal that they fail to put their beliefs into practice. Moreover, the data revealed that learners were disturbed by their home language because when they do not know a word they would write either the isiXhosa or the Afrikaans equivalent. Code-switching seems to have instilled a sense of “dependence on translations” where some learners would not even try to answer English questions but would wait for the teacher to translate the questions into isiXhosa or Afrikaans before they could attempt to give answers. The findings of the study show a marked improvement in the writing performance of learners who used the process approach in writing. These findings demonstrate the need for assisting teachers to shift away from focusing only on learners’ performance (testing and grading) towards a stronger emphasis on the process of writing. The study concludes that the process approach to writing could enable teachers to focus on the various parts of the writing process which can give more freedom to learners to experiment their language proficiency. It would require that teachers develop a deeper understanding of the process/genre approaches to teaching writing advocated by CAPS. All in all, the study shows that both learners and teachers face numerous challenges relating to writing. This means that more work still needs to be done in this area. The present study argues that teachers teaching EFAL learners should approach writing as a critical and core aspect of learners’ education. Learners should be exposed to intensive writing activities throughout their school years.

Keywords: constructivism, English second language, language of learning and teaching, writing

Procedia PDF Downloads 218
154 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory

Authors: Xiaochen Mu

Abstract:

Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.

Keywords: data protection, property rights, intellectual property, Big data

Procedia PDF Downloads 39
153 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
152 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
151 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 32
150 Parenting Interventions for Refugee Families: A Systematic Scoping Review

Authors: Ripudaman S. Minhas, Pardeep K. Benipal, Aisha K. Yousafzai

Abstract:

Background: Children of refugee or asylum-seeking background have multiple, complex needs (e.g. trauma, mental health concerns, separation, relocation, poverty, etc.) that places them at an increased risk for developing learning problems. Families encounter challenges accessing support during resettlement, preventing children from achieving their full developmental potential. There are very few studies in literature that examine the unique parenting challenges refugee families’ face. Providing appropriate support services and educational resources that address these distinctive concerns of refugee parents, will alleviate these challenges allowing for a better developmental outcome for children. Objective: To identify the characteristics of effective parenting interventions that address the unique needs of refugee families. Methods: English-language articles published from 1997 onwards were included if they described or evaluated programmes or interventions for parents of refugee or asylum-seeking background, globally. Data were extracted and analyzed according to Arksey and O’Malley’s descriptive analysis model for scoping reviews. Results: Seven studies met criteria and were included, primarily studying families settled in high-income countries. Refugee parents identified parenting to be a major concern, citing they experienced: alienation/unwelcoming services, language barriers, and lack of familiarity with school and early years services. Services that focused on building the resilience of parents, parent education, or provided services in the family’s native language, and offered families safe spaces to promote parent-child interactions were most successful. Home-visit and family-centered programs showed particular success, minimizing barriers such as transportation and inflexible work schedules, while allowing caregivers to receive feedback from facilitators. The vast majority of studies evaluated programs implementing existing curricula and frameworks. Interventions were designed in a prescriptive manner, without direct participation by family members and not directly addressing accessibility barriers. The studies also did not employ evaluation measures of parenting practices or the caregiving environment, or child development outcomes, primarily focusing on parental perceptions. Conclusion: There is scarce literature describing parenting interventions for refugee families. Successful interventions focused on building parenting resilience and capacity in their native language. To date, there are no studies that employ a participatory approach to program design to tailor content or accessibility, and few that employ parenting, developmental, behavioural, or environmental outcome measures.

Keywords: asylum-seekers, developmental pediatrics, parenting interventions, refugee families

Procedia PDF Downloads 161
149 Exploring Factors That May Contribute to the Underdiagnosis of Hereditary Transthyretin Amyloidosis in African American Patients

Authors: Kelsi Hagerty, Ami Rosen, Aaliyah Heyward, Nadia Ali, Emily Brown, Erin Demo, Yue Guan, Modele Ogunniyi, Brianna McDaniels, Alanna Morris, Kunal Bhatt

Abstract:

Hereditary transthyretin amyloidosis (hATTR) is a progressive, multi-systemic, and life-threatening disease caused by a disruption in the TTR protein that delivers thyroxine and retinol to the liver. This disruption causes the protein to misfold into amyloid fibrils, leading to the accumulation of the amyloid fibrils in the heart, nerves, and GI tract. Over 130 variants in the TTR gene are known to cause hATTR. The Val122Ile variant is the most common in the United States and is seen almost exclusively in people of African descent. TTR variants are inherited in an autosomal dominant fashion and have incomplete penetrance and variable expressivity. Individuals with hATTR may exhibit symptoms from as early as 30 years to as late as 80 years of age. hATTR is characterized by a wide range of clinical symptoms such as cardiomyopathy, neuropathy, carpal tunnel syndrome, and GI complications. Without treatment, hATTR leads to progressive disease and can ultimately lead to heart failure. hATTR disproportionately affects individuals of African descent; the estimated prevalence of hATTR among Black individuals in the US is 3.4%. Unfortunately, hATTR is often underdiagnosed and misdiagnosed because many symptoms of the disease overlap with other cardiac conditions. Due to the progressive nature of the disease, multi-systemic manifestations that can lead to a shortened lifespan, and the availability of free genetic testing and promising FDA-approved therapies that enhance treatability, early identification of individuals with a pathogenic hATTR variant is important, as this can significantly impact medical management for patients and their relatives. Furthermore, recent literature suggests that TTR genetic testing should be performed in all patients with suspicion of TTR-related cardiomyopathy, regardless of age, and that follow-up with genetic counseling services is recommended. Relatives of patients with hATTR benefit from genetic testing because testing can identify carriers early and allow relatives to receive regular screening and management. Despite the striking prevalence of hATTR among Black individuals, hATTR remains underdiagnosed in this patient population, and germline genetic testing for hATTR in Black individuals seems to be underrepresented, though the reasons for this have not yet been brought to light. Historically, Black patients experience a number of barriers to seeking healthcare that has been hypothesized to perpetuate the underdiagnosis of hATTR, such as lack of access and mistrust of healthcare professionals. Prior research has described a myriad of factors that shape an individual’s decision about whether to pursue presymptomatic genetic testing for a familial pathogenic variant, such as family closeness and communication, family dynamics, and a desire to inform other family members about potential health risks. This study explores these factors through 10 in-depth interviews with patients with hATTR about what factors may be contributing to the underdiagnosis of hATTR in the Black population. Participants were selected from the Emory University Amyloidosis clinic based on having a molecular diagnosis of hATTR. Interviews were recorded and transcribed verbatim, then coded using MAXQDA software. Thematic analysis was completed to draw commonalities between participants. Upon preliminary analysis, several themes have emerged. Barriers identified include i) Misdiagnosis and a prolonged diagnostic odyssey, ii) Family communication and dynamics surrounding health issues, iii) Perceptions of healthcare and one’s own health risks, and iv) The need for more intimate provider-patient relationships and communication. Overall, this study gleaned valuable insight from members of the Black community about possible factors contributing to the underdiagnosis of hATTR, as well as potential solutions to go about resolving this issue.

Keywords: cardiac amyloidosis, heart failure, TTR, genetic testing

Procedia PDF Downloads 97
148 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis

Authors: Avi Shrivastava

Abstract:

In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.

Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine

Procedia PDF Downloads 72
147 Developing Computational Thinking in Early Childhood Education

Authors: Kalliopi Kanaki, Michael Kalogiannakis

Abstract:

Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.

Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses

Procedia PDF Downloads 120
146 Servant Leadership and Organisational Climate in South African Private Schools: A Qualitative Study

Authors: Christo Swart, Lidia Pottas, David Maree

Abstract:

Background: It is a sine qua non that the South African educational system finds itself in a profound crisis and that traditional school leadership styles are outdated and hinder quality education. New thinking is mandatory to improve the status quo and school leadership has an immense role to play to improve the current situation. It is believed that the servant leadership paradigm, when practiced by school leadership, may have a significant influence on the school environment in totality. This study investigates the private school segment in search of constructive answers to assist with the educational crises in South Africa. It is assumed that where school leadership can augment a supportive and empowering environment for teachers to constructively engage in their teaching and learning activities - then many challenges facing by school system may be subjugated in a productive manner. Aim: The aim of this study is fourfold. To outline the constructs of servant leadership which are perceived by teachers of private schools as priorities to enhance a successful school environment. To describe the constructs of organizational climate which are observed by teachers of private schools as priorities to enhance a successful school environment. To investigate whether the participants perceived a link between the constructs of servant leadership and organizational climate. To consider the process to be followed to introduce the constructs of SL and OC the school system in general as perceived by participants. Method: This study utilized a qualitative approach to explore the mediation between school leadership and the organizational climate in private schools in the search for amicable answers. The participants were purposefully selected for the study. Focus group interviews were held with participants from primary and secondary schools and a focus group discussion was conducted with principals of both primary and secondary schools. The interview data were transcribed and analyzed and identical patterns of coded data were grouped together under emerging themes. Findings: It was found that the practice of servant leadership by school leadership indeed mediates a constructive and positive school climate. It was found that the constructs of empowerment, accountability, humility and courage – interlinking with one other - are prominent of servant leadership concepts that are perceived by teachers of private schools as priorities for school leadership to enhance a successful school environment. It was confirmed that the groupings of training and development, communication, trust and work environment are perceived by teachers of private schools as prominent features of organizational climate as practiced by school leadership to augment a successful school environment. It can be concluded that the participants perceived several links between the constructs of servant leadership and organizational climate that encourage a constructive school environment and that there is a definite positive consideration and motivation that the two concepts be introduced to the school system in general. It is recommended that school leadership mentors and guides teachers to take ownership of the constructs of servant leadership as well as organizational climate and that public schools be researched and consider to implement the two paradigms. The study suggests that aspirant teachers be exposed to leadership as well as organizational paradigms during their studies at university.

Keywords: empowering environment for teachers and learners, new thinking required, organizational climate, school leadership, servant leadership

Procedia PDF Downloads 220
145 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
144 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 381
143 Current Applications of Artificial Intelligence (AI) in Chest Radiology

Authors: Angelis P. Barlampas

Abstract:

Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.

Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses

Procedia PDF Downloads 72
142 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 90
141 Implementing Quality Improvement Projects to Enhance Contraception and Abortion Care Service Provision and Pre-Service Training of Health Care Providers

Authors: Munir Kassa, Mengistu Hailemariam, Meghan Obermeyer, Kefelegn Baruda, Yonas Getachew, Asnakech Dessie

Abstract:

Improving the quality of sexual and reproductive health services that women receive is expected to have an impact on women’s satisfaction with the services, on their continued use and, ultimately, on their ability to achieve their fertility goals or reproductive intentions. Surprisingly, however, there is little empirical evidence of either whether this expectation is correct, or how best to improve service quality within sexual and reproductive health programs so that these impacts can be achieved. The Recent focus on quality has prompted more physicians to do quality improvement work, but often without the needed skill sets, which results in poorly conceived and ultimately unsuccessful improvement initiatives. As this renders the work unpublishable, it further impedes progress in the field of health care improvement and widens the quality chasm. Moreover, since 2014, the Center for International Reproductive Health Training (CIRHT) has worked diligently with 11 teaching hospitals across Ethiopia to increase access to contraception and abortion care services. This work has included improving pre-service training through education and curriculum development, expanding hands-on training to better learn critical techniques and counseling skills, and fostering a “team science” approach to research by encouraging scientific exploration. This is the first time this systematic approach has been applied and documented to improve access to high-quality services in Ethiopia. The purpose of this article is to report initiatives undertaken, and findings concluded by the clinical service team at CIRHT in an effort to provide a pragmatic approach to quality improvement projects. An audit containing nearly 300 questions about several aspects of patient care, including structure, process, and outcome indicators was completed by each teaching hospital’s quality improvement team. This baseline audit assisted in identifying major gaps and barriers, and each team was responsible for determining specific quality improvement aims and tasks to support change interventions using Shewart’s Cycle for Learning and Improvement (the Plan-Do-Study-Act model). To measure progress over time, quality improvement teams met biweekly and compiled monthly data for review. Also, site visits to each hospital were completed by the clinical service team to ensure monitoring and support. The results indicate that applying an evidence-based, participatory approach to quality improvement has the potential to increase the accessibility and quality of services in a short amount of time. In addition, continued ownership and on-site support are vital in promoting sustainability. This approach could be adapted and applied in similar contexts, particularly in other African countries.

Keywords: abortion, contraception, quality improvement, service provision

Procedia PDF Downloads 222
140 Leadership Education for Law Enforcement Mid-Level Managers: The Mediating Role of Effectiveness of Training on Transformational and Authentic Leadership Traits

Authors: Kevin Baxter, Ron Grove, James Pitney, John Harrison, Ozlem Gumus

Abstract:

The purpose of this research is to determine the mediating effect of effectiveness of the training provided by Northwestern University’s School of Police Staff and Command (SPSC), on the ability of law enforcement mid-level managers to learn transformational and authentic leadership traits. This study will also evaluate the leadership styles, of course, graduates compared to non-attendees using a static group comparison design. The Louisiana State Police pay approximately $40,000 in salary, tuition, housing, and meals for each state police lieutenant attending the 10-week program of the SPSC. This school lists the development of transformational leaders as an increasing element. Additionally, the SPSC curriculum addresses all four components of authentic leadership - self-awareness, transparency, ethical/moral, and balanced processing. Upon return to law enforcement in roles of mid-level management, there are questions as to whether or not students revert to an “autocratic” leadership style. Insufficient evidence exists to support claims for the effectiveness of management training or leadership development. Though it is widely recognized that transformational styles are beneficial to law enforcement, there is little evidence that suggests police leadership styles are changing. Police organizations continue to hold to a more transactional style (i.e., most senior police leaders remain autocrats). Additionally, research in the application of transformational, transactional, and laissez-faire leadership related to police organizations is minimal. The population of the study is law enforcement mid-level managers from various states within the United States who completed leadership training presented by the SPSC. The sample will be composed of 66 active law enforcement mid-level managers (lieutenants and captains) who have graduated from SPSC and 65 active law enforcement mid-level managers (lieutenants and captains) who have not attended SPSC. Participants will answer demographics questions, Multifactor Leadership Questionnaire, Authentic Leadership Questionnaire, and the Kirkpatrick Hybrid Evaluation Survey. Analysis from descriptive statistics, group comparison, one-way MANCOVA, and the Kirkpatrick Evaluation Model survey will be used to determine training effectiveness in the four levels of reaction, learning, behavior, and results. Independent variables are SPSC graduates (two groups: upper and lower) and no-SPSC attendees, and dependent variables are transformational and authentic leadership scores. SPSC graduates are expected to have higher MLQ scores for transformational leadership traits and higher ALQ scores for authentic leadership traits than SPSC non-attendees. We also expect the graduates to rate the efficacy of SPSC leadership training as high. This study will validate (or invalidate) the benefits, costs, and resources required for leadership development from a nationally recognized police leadership program, and it will also help fill the gap in the literature that exists between law enforcement professional development and transformational and authentic leadership styles.

Keywords: training effectiveness, transformational leadership, authentic leadership, law enforcement mid-level manager

Procedia PDF Downloads 105
139 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 71