Search results for: coupled neurons
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1703

Search results for: coupled neurons

503 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers

Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant

Abstract:

Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.

Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams

Procedia PDF Downloads 66
502 Bio-Mimetic Foam Fractionation Technology for the Treatment of Per- and PolyFluoroAlkyl Substances (PFAS) in Contaminated Water

Authors: Hugo Carronnier, Wassim Almouallem, Eric Branquet

Abstract:

Per- and polyfluoroalkyl Substances (PFAS) are a group of man-made refractory compounds that have been widely used in a variety of industrial and commercial products since the 1940s, leading to contamination of groundwater and surface water systems. They are persistent, bioaccumulative and toxic chemicals. Foam fractionation is a potential remedial technique for treating PFAS-contaminated water, taking advantage of the high surface activity to remove them from the solution by adsorption onto the surface of the air bubbles. Nevertheless, traditional foam fractionation technology developed for PFAS is challenging and found to be ineffective in treating the less surface-active compounds. Different chemicals were the subject of investigation as amendments to achieve better removal. However, most amendments are toxic, expensive and complicated to use. In this situation, patent-pending PFAS technology overcomes these challenges by using rather biological amendments. Results from the first laboratory trial showed remarkable results using a simple and cheap BioFoam Fractionation (BioFF) process based on biomimetics. The study showed that the BioFF process is effective in removing greater than 99% of PFOA (C8), PFOS (C8), PFHpS (C7) and PFHxS (C6) in PFAS-contaminated water. For other PFAS such as PFDA (C10) and 6:2 FTAB, a slightly less stable removal between 94% and 96% was achieved while between 34% and 73% removal efficiency was observed for PFBA (C4), PFBS (C4), PFHxA (C6), and Gen-X. In sum, the advantages of the BioFF presented as a low-waste production, a cost and energy-efficient operation and the use of a biodegradable amendment requiring no separation step after treatment, coupled with these first findings, suggest that the BioFF process is a highly applicable treatment technology for PFAS contaminated water. Additional investigations are currently carried on in order to optimize the process and establish a promising strategy for on-site PFAS remediation.

Keywords: PFAS, treatment, foam fractionation, contaminated amendments

Procedia PDF Downloads 54
501 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 112
500 Modelling of Damage as Hinges in Segmented Tunnels

Authors: Gelacio JuáRez-Luna, Daniel Enrique GonzáLez-RamíRez, Enrique Tenorio-Montero

Abstract:

Frame elements coupled with springs elements are used for modelling the development of hinges in segmented tunnels, the spring elements modelled the rotational, transversal and axial failure. These spring elements are equipped with constitutive models to include independently the moment, shear force and axial force, respectively. These constitutive models are formulated based on damage mechanics and experimental test reported in the literature review. The mesh of the segmented tunnels was discretized in the software GID, and the nonlinear analyses were carried out in the finite element software ANSYS. These analyses provide the capacity curve of the primary and secondary lining of a segmented tunnel. Two numerical examples of segmented tunnels show the capability of the spring elements to release energy by the development of hinges. The first example is a segmental concrete lining discretized with frame elements loaded until hinges occurred in the lining. The second example is a tunnel with primary and secondary lining, discretized with a double ring frame model. The outer ring simulates the segmental concrete lining and the inner ring simulates the secondary cast-in-place concrete lining. Spring elements also modelled the joints between the segments in the circumferential direction and the ring joints, which connect parallel adjacent rings. The computed load vs displacement curves are congruent with numerical and experimental results reported in the literature review. It is shown that the modelling of a tunnel with primary and secondary lining with frame elements and springs provides reasonable results and save computational cost, comparing with 2D or 3D models equipped with smeared crack models.

Keywords: damage, hinges, lining, tunnel

Procedia PDF Downloads 373
499 Secondary Charged Fragments Tracking for On-Line Beam Range Monitoring in Particle Therapy

Authors: G. Traini, G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, S. M. Valle, C. Voena, V. Patera

Abstract:

In Particle Therapy (PT) treatments a large amount of secondary particles, whose emission point is correlated to the dose released in the crossed tissues, is produced. The measurement of the secondary charged fragments component could represent a valid technique to monitor the beam range during the PT treatments, that is a still missing item in the clinical practice. A sub-millimetrical precision on the beam range measurement is required to significantly optimise the technique and to improve the treatment quality. In this contribution, a detector, named Dose Profiler (DP), is presented. It is specifically planned to monitor on-line the beam range exploiting the secondary charged particles produced in PT Carbon ions treatment. In particular, the DP is designed to track the secondary fragments emitted at large angles with respect to the beam direction (mainly protons), with the aim to reconstruct the spatial coordinates of the fragment emission point extrapolating the measured track toward the beam axis. The DP is currently under development within of the INSIDE collaboration (Innovative Solutions for In-beam Dosimetry in hadrontherapy). The tracker is made by six layers (20 × 20 cm²) of BCF-12 square scintillating fibres (500 μm) coupled to Silicon Photo-Multipliers, followed by two plastic scintillator layers of 6 mm thickness. A system of front-end boards based on FPGAs arranged around the detector provides the data acquisition. The detector characterization with cosmic rays is currently undergoing, and a data taking campaign with protons will take place in May 2017. The DP design and the performances measured with using MIPs and protons beam will be reviewed.

Keywords: fragmentation, monitoring, particle therapy, tracking

Procedia PDF Downloads 206
498 Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa

Authors: Abraham Addo-Bediako

Abstract:

Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use.

Keywords: land use, health risk, metal pollution, water quality

Procedia PDF Downloads 63
497 Biochar and Food Security in Central Uganda

Authors: Nataliya Apanovich, Mark Wright

Abstract:

Uganda is among the poorest but fastest growing populations in the world. Its annual population growth of 3% puts additional stress through land fragmentation, agricultural intensification, and deforestation on already highly weathered tropical (Ferralsol) soils. All of these factors lead to decreased agricultural yields and consequently diminished food security. The central region of Uganda, Buganda Kingdom, is especially vulnerable in terms of food security as its high population density coupled with mismanagement of natural resources led to gradual loss of its soil and even changes in microclimate. These changes are negatively affecting livelihoods of smallholder farmers who comprise 80% of all population in Uganda. This research focuses on biochar for soil remediation in Masaka District, Uganda. If produced on a small scale from locally sourced materials, biochar can increase the quality of soil in a cost and time effective manner. To assess biochar potential, 151 smallholder farmers were interviewed on the types of crops grown, agricultural residues produced and their use, as well as on attitudes towards biochar use and its production on a small scale. The interviews were conducted in 7 sub-counties, 32 parishes, and 92 villages. The total farmland covered by the study was 606.2 kilometers. Additional information on the state of agricultural development and environmental degradation in the district was solicited from four local government officials via informal interviews. This project has been conducted in collaboration with the international agricultural research institution, Makerere University in Kampala, Uganda. The results of this research can have implications on the way farmers perceive the value of their agricultural residues and what they decide to do with them. The underlying objective is to help smallholders in degraded soils increase their agricultural yields through the use of biochar without diverting the already established uses of agricultural residues to a new soil management practice.

Keywords: agricultural residues, biochar, central Uganda, food security, soil erosion, soil remediation

Procedia PDF Downloads 262
496 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 109
495 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment

Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan

Abstract:

With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.

Keywords: data sharing, cross-domain, data exchange, publish-subscribe

Procedia PDF Downloads 109
494 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage

Authors: Meng H. Lean, Wei-Ping L. Chu

Abstract:

The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.

Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport

Procedia PDF Downloads 330
493 Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”

Authors: Evgeny Obraztsov, Ilya Kremnev, Vitaly Sokolov, Maksim Gavrilov, Evgeny Tretyakov, Vladimir Kukhtevich, Vladimir Bezlepkin

Abstract:

Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system).

Keywords: best-estimate code, complex simulation suite, engineering simulator, power plant, thermal hydraulic, VEB, virtual power unit

Procedia PDF Downloads 358
492 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis

Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella

Abstract:

The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.

Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS

Procedia PDF Downloads 372
491 Water Quality, Risk, Management and Distribution in Abeokuta, Ogun State

Authors: Ayedun Hassan, Ayadi Odunayo Peter

Abstract:

The ancient city of Abeokuta has been supplied with pipe borne water since 1911, yet, a continuous increase in population and unplanned city expansion makes water a very precious and scarce commodity. The government reserved areas (GRA’s) are well planned, and public water supply is available; however, the sub-urban areas consist of scattered structures with individuals trying to source water by digging wells and boreholes. The geology of the city consists of basement rock which makes digging wells and boreholes very difficult. The present study was conducted to assess the risk arising from the consumption of toxic elements in the groundwater of Abeokuta, Ogun State, Nigeria. Forty-five groundwater samples were collected from nine different areas of Abeokuta and analyzed for physicochemical parameters and toxic elements. The physicochemical parameters were determined using standard methods, while the toxic elements were determined using Inductively Coupled Plasma-Mass Spectrometer (ICP/MS). Ninety-six percent (96%) of the water sample has pH < 6.5, and 11% has conductivity > 250 µSCm⁻¹ limits in drinking water as recommended by WHO. Seven percent (7%) of the samples have Pb concentration >10 µgL⁻¹ while 75% have Al concentration >200 µgL⁻¹ recommended by WHO. The order for risk of cancer from different area of Abeokuta are Cd²⁺ > As³⁺ > Pb²⁺ > Cr⁶⁺ for Funaab, Camp and Obantoko; As³⁺ > Cd²⁺ > Pb²⁺ > Cr⁶⁺ for Ita Osin, Isale Igbein, Ake and Itoku; Cd²⁺ >As > Cr⁶⁺ > Pb²⁺ for Totoro; Pb²⁺ > Cd²⁺ > As³⁺ > Cr⁶⁺ for Idiaba. The order of non-cancer hazard index (HI) calculated for groundwater of Abeokuta City are Cd²⁺ > As³⁺ > Mn²⁺ > Pb²⁺ > Ni²⁺ and were all greater than one, which implies susceptibility to other illnesses. The sources of these elements are the rock and inappropriate waste disposal method, which leached the elements into the groundwater. A combination of sources from food will accumulate these elements in the human body system. Treatment to remove Al and Pb is necessary, while the method of water distribution should be reviewed to ensure access to potable water by the residents.

Keywords: Abeokuta, groundwater, Nigeria, risk

Procedia PDF Downloads 72
490 Influence of Magnetic Field on the Antibacterial Properties of Pine Oil

Authors: Dawid Sołoducha, Tomasz Borowski, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives.

Keywords: rotating magnetic field, pine oil, antimicrobial activity, Escherichia coli

Procedia PDF Downloads 197
489 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach

Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou

Abstract:

Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.

Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization

Procedia PDF Downloads 137
488 Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves

Authors: Aymen Laadhari

Abstract:

During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency.

Keywords: eulerian, level set, newton, valve

Procedia PDF Downloads 261
487 Performances of Ashwagandha (Withania somnifera Duanal) as Affected by Method of Planting and Source of Nutrients

Authors: Ewon Kaliyadasa, U. L. B. Jayasinghe, S. E. Peiris

Abstract:

Ashwagandha (Withania sominifera Duanal) is an important medicinal herb belongs to family Solanaceae. This plant has raised its popularity after discovering anti stress and sex stimulating properties that mainly due to the presence of biologically active alkaloid compounds. Therefore it is vital to adapt to a proper agro technological package that ensure optimum growth of ashwagandha to obtain the finest quality without degrading pharmacologically active constituents. Organic and inorganic fertilizer mixtures were combined with direct seeding and transplanting as four different treatments in this study. Tuber fresh and dry weights were recorded up to twelve months starting from two months after sowing (MAS) while shoot height, root length, number of leaves, shoot fresh and dry weights and root: shoot ratio up to 6MAS. Results revealed that growth of ashwagandha was not affected significantly by method of planting or type of fertilizer or its combinations during most of the harvests. However, tubers harvested at 6MAS recorded the highest dry tuber weight per plant in all four treatments compared to early harvests where two direct seeded treatments are the best. Chemical comparison of these two treatments, direct seeding coupled with organic and inorganic fertilizer shown that direct seeding with organic treatment recorded the highest values for alkaloid and withaferine A content with lower percentage of fiber. Further these values are in concurring with the values of commercially available tuber samples. Having considered all facts, 6MAS can be recommended as the best harvesting stage to obtain high quality tubers of ashwagandha under local conditions.

Keywords: alkaloids, direct seeding, dry tuber weight, inorganic fertilizer, organic fertilizer, transplanting, withaferine a

Procedia PDF Downloads 321
486 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 46
485 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems

Authors: Zongyao Sha

Abstract:

Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.

Keywords: vegetation phenology, growing season, NPP, correlation analysis

Procedia PDF Downloads 84
484 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe

Authors: H. Shokouhmand, M. Tajerian

Abstract:

A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.

Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor

Procedia PDF Downloads 250
483 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites

Authors: S. D. El Wakil, M. Pladsen

Abstract:

Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.

Keywords: drilling of composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites

Procedia PDF Downloads 374
482 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 84
481 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 518
480 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease

Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang

Abstract:

Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.

Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation

Procedia PDF Downloads 48
479 Numerical Investigation into Capture Efficiency of Fibrous Filters

Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard

Abstract:

Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.

Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory

Procedia PDF Downloads 186
478 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts

Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert

Abstract:

Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.

Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs

Procedia PDF Downloads 316
477 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs

Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi

Abstract:

Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.

Keywords: active damper, fixation system, hardened material, passive damper

Procedia PDF Downloads 191
476 Impacts of Ibeju - Lekki New Town on Neighbouring Residents of Ibeju, Lagos Nigeria

Authors: Abolade Olajoke, Adigun Folasade Oyenike, Odunjo Oluronke Omolola Olaleye, Babajide Rotimi

Abstract:

Against the shortfall associated with unprecedented urbanization in most cities of the world, coupled with rapid expansion of outer boundaries, is the resultant birth of the development of new towns. The paper therefore examines the impacts of Ibeju - Lekki New Town on Neighbouring communities of Ibeju Lekki. Random systematic sampling was employed elicit relevant information from a total number of 269 residents at interval of five buildings in four neighbouring communities. Descriptive statistics was employed to test for the socioeconomic characteristics of respondents, problems faced by government officials during the implementation and monitoring process. Likert scale was employed to ascertain respondents view on the impact of the new town on neighbouring communities. Result from the findings shows that male (56.9%) are the most dominant occupant in the study area of which most (68.1%) fall within the most the active age group (18-39 and 40-59 years). Results further shows that 36% of the total respondents are traders and majority (32%) earn below government salary wage cap of ₦18000 thus indicating that majority of the respondents are petty traders. Results of findings from development authority reveals that the major problem encountered during monitoring and implementation is harassment of government officials (35%). Result of likert scale further show that new town has brought increase in intensity of land use within neighbouring communities (RAI 3.65), provision of job opportunity (RAI 3.57). This have consequently improve standard of living of the neighbouring community (RAI 3.27). On the contrary some (RAI 1.97) opined that attention should paid to provision of power supply and provision of recreation facilities (RAI I.63). The study recommends that government should make adequate provisions for basic facilities such power supply, adequate health care system, basic education and provision of healthy portable water. This should be given utmost priority to enhance the living condition of residents. To forestall attack from residents’ adequate security measures should be provided as backup for Government official during implementation and monitoring. Appropriate sanction to illegal occupants and demolition of illegal structures should be fully implemented, This will indubitably prevent haphazard development and also promote a liveable environment. Against the shortfall associated with unprecedented urbanization in most cities of the world, coupled with rapid expansion of outer boundaries, is the resultant birth of the development of new towns. The paper therefore examines the impacts of Ibeju - Lekki New Town on Neighbouring communities of Ibeju Lekki. Random systematic sampling was employed elicit relevant information from a total number of 269 residents at interval of five buildings in four neighbouring communities. Descriptive statistics was employed to test for the socioeconomic characteristics of respondents, problems faced by government officials during the implementation and monitoring process. Likert scale was employed to ascertain respondents view on the impact of the new town on neighbouring communities. Result from the findings shows that male (56.9%) are the most dominant occupant in the study area of which most (68.1%) fall within the most the active age group (18-39 and 40-59 years). Results further shows that 36% of the total respondents are traders and majority (32%) earn below government salary wage cap of ₦18000 thus indicating that majority of the respondents are petty traders. Results of findings from development authority reveals that the major problem encountered during monitoring and implementation is harassment of government officials (35%) Result of likert scale further show that new town has brought increase in intensity of land use within neighbouring communities (RAI 3.65), provision of job opportunity (RAI 3.57). This have consequently improve standard of living of the neighbouring community (RAI 3.27). On the contrary some (RAI 1.97) opined that attention should paid to provision of power supply and provision of recreation facilities (RAI I.63). The study recommends that government should make adequate provisions for basic facilities such power supply, adequate health care system, basic education and provision of healthy portable water. This should be given utmost priority to enhance the living condition of residents. To forestall attack from residents’ adequate security measures should be provided as backup for Government official during implementation and monitoring. Appropriate sanction to illegal occupants and demolition of illegal structures should be fully implemented, This will indubitably prevent haphazard development and also promote a liveable environment.

Keywords: new town, urbanization, infrastructure boundary

Procedia PDF Downloads 394
475 Re-thinking Trust in Refugee Resettlement: A Contextual Perspective and Proposal for Reciprocal Integration

Authors: Mahfoudha Sid'Elemine

Abstract:

The refugee resettlement process profoundly shapes the trajectories of individuals in their new host countries, exerting lasting effects on their long-term integration. Prevailing literature underscores the pivotal role of trust in facilitating successful refugee resettlement. However, this research challenges the notion of trust as universally paramount, contending that its significance is contingent upon variables such as the nature of resettlement programs and the diverse backgrounds and perspectives of refugees. Rather than advocating for a blanket approach to trust-building, this research contends that for certain resettlement programs, trust may prove counterproductive amidst resource constraints and tight service timelines. Moreover, trust may not uniformly emerge as a primary requisite for all refugees, presenting formidable challenges in its establishment. Focusing specifically on resettlement in the United States, this study illustrates how the temporal constraints of resettlement services, coupled with refugees' varied cultural experiences, can impede the cultivation of trust between aid workers and refugees. As an alternative paradigm, this research proposes an approach centered on fostering opportunities for reciprocal engagement, positioning refugees as active contributors within their newfound communities. Embracing reciprocity as the cornerstone of burgeoning relationships promises to fortify refugees' ties with the broader community, bolster their autonomy, and facilitate sustained integration over time. The research draws upon qualitative analyses of in-depth interviews conducted with a subset of resettled refugees, as well as aid workers and volunteers involved in refugee resettlement endeavors within Hampton Roads, Virginia, over the past decade. Through this nuanced examination, the study offers insights into the complexities of trust dynamics in refugee resettlement contexts and advocates for a paradigm shift towards reciprocal integration strategies.

Keywords: Resettlement programs, Trust dynamics, Reciprocity, Long-term integration

Procedia PDF Downloads 11
474 Leveraging on Application of Customer Relationship Management Strategy as Business Driving Force: A Case Study of Major Industries

Authors: Odunayo S. Faluse, Roger Telfer

Abstract:

Customer relationship management is a business strategy that is centred on the idea that ‘Customer is the driving force of any business’ i.e. Customer is placed in a central position in any business. However, this belief coupled with the advancement in information technology in the past twenty years has experienced a change. In any form of business today it can be concluded that customers are the modern dictators to whom the industry always adjusts its business operations due to the increase in availability of information, intense market competition and ever growing negotiating ideas of customers in the process of buying and selling. The most vital role of any organization is to satisfy or meet customer’s needs and demands, which eventually determines customer’s long-term value to the industry. Therefore, this paper analyses and describes the application of customer relationship management operational strategies in some of the major industries in business. Both developed and up-coming companies nowadays value the quality of customer services and client’s loyalty, they also recognize the customers that are not very sensitive when it comes to changes in price and thereby realize that attracting new customers is more tasking and expensive than retaining the existing customers. However, research shows that several factors have recently amounts to the sudden rise in the execution of CRM strategies in the marketplace, such as a diverted attention of some organization towards integrating ideas in retaining existing customers rather than attracting new one, gathering data about customers through the use of internal database system and acquiring of external syndicate data, also exponential increase in technological intelligence. Apparently, with this development in business operations, CRM research in Academia remain nascent; hence this paper gives detailed critical analysis of the recent advancement in the use of CRM and key research opportunities for future development in using the implementation of CRM as a determinant factor for successful business optimization.

Keywords: agriculture, banking, business strategies, CRM, education, healthcare

Procedia PDF Downloads 209