Search results for: modal identification
2061 Study of a Photovoltaic System Using MPPT Buck-Boost Converter
Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni
Abstract:
The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump
Procedia PDF Downloads 3802060 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1042059 Polymorphism of Candidate Genes for Meat Production in Lori Sheep
Authors: Shahram Nanekarania, Majid Goodarzia
Abstract:
Calpastatin and callipyge have been known as one of the candidate genes in meat quality and quantity. Calpastatin gene has been located to chromosome 5 of sheep and callipyge gene has been localized in the telomeric region on ovine chromosome 18. The objective of this study was identification of calpastatin and callipyge genes polymorphism and analysis of genotype structure in population of Lori sheep kept in Iran. Blood samples were taken from 120 Lori sheep breed and genomic DNA was extracted by salting out method. Polymorphism was identified using the PCR-RFLP technique. The PCR products were digested with MspI and FaqI restriction enzymes for calpastatin gene and callipyge gene, respectively. In this population, three patterns were observed and AA, AB, BB genotype have been identified with the 0.32, 0.63, 0.05 frequencies for calpastatin gene. The results obtained for the callipyge gene revealed that only the wild-type allele A was observed, indicating that only genotype AA was present in the population under consideration.Keywords: polymorphism, calpastatin, callipyge, PCR-RFLP, Lori sheep
Procedia PDF Downloads 6112058 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1462057 Birth Weight, Weight Gain and Feeding Pattern as Predictors for the Onset of Obesity in School Children
Authors: Thimira Pasas P, Nirmala Priyadarshani M, Ishani R
Abstract:
Obesity is a global health issue. Early identification is essential to plan interventions and intervene than to reduce the worsening of obesity and its consequences on the health issues of the individual. Childhood obesity is multifactorial, with both modifiable and unmodifiable risk factors. A genetically susceptible individual (unmodifiable), when placed in an obesogenic environment (modifiable), is likely to become obese in onset and progression. The present study was conducted to identify the age of onset of childhood obesity and the influence of modifiable risk factors for childhood obesity among school children living in a suburban area of Sri Lanka. The study population was aged 11-12 years of Piliyandala Educational Zone. Data were collected from 11–12-year-old school children attending government schools in the Piliyandala Educational Zone. They were using a validated, pre-tested self-administered questionnaire. A stratified random sampling method was performed to select schools and to select a representative sample to include all 3 types of government schools of students due to the prevailing pandemic situation, information from the last school medical inspection on data from 2020used for this purpose. For each obese child identified, 2 non-obese children were selected as controls. A single representative from the area was selected by using a systematic random sampling method with a sampling interval of 3. Data was collected using a validated, pre-tested self-administered questionnaire and the Child Health Development Record of the child. An introduction, which included explanations and instructions for filing the questionnaire, was carried out as a group activity prior to distributing the questionnaire among the sample. The results of the present study aligned with the hypothesis that the age of onset of childhood obesity and prediction must be within the first two years of child life. A total of 130 children (66 males: 64 females) participated in the study. The age of onset of obesity was seen to be within the first two years of life. The risk of obesity at 11-12 years of age was Obesity risk was identified at 3-time s higher among females who underwent rapid weight gain within their infancy period. Consuming milk prior to breakfast emerged as a risk factor that increases the risk of obesity by three times. The current study found that the drink before breakfast tends to increase the obesity risk by 3-folds, especially among obese females. Proper monitoring must be carried out to identify the rapid weight gain, especially within the first 2 years of life. Consumption of mug milk before breakfast tends to increase the obesity risk by 3 times. Identification of the confounding factors, proper awareness of the mothers/guardians and effective proper interventions need to be carried out to reduce the obesity risk among school children in the future.Keywords: childhood obesity, school children, age of onset, weight gain, feeding pattern, activity level
Procedia PDF Downloads 1412056 The Face Sync-Smart Attendance
Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.
Abstract:
Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.
Procedia PDF Downloads 582055 Identification of Bayesian Network with Convolutional Neural Network
Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz
Abstract:
In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference
Procedia PDF Downloads 1762054 The Plan for the Establishment of the Talent Organization of the United Nations
Authors: Hassan Kian
Abstract:
The future of millions of people and consequently, the future of societies and humanity is threatened by a great threat which is called wasted human resources. Perhaps Pasteur, Beethoven and Avicenna, Lavoisier and Einstein and millions of genius individuals and thinkers may have never been discovered and could not found a chance of being known due to various reasons such as poverty or social status, and other problems. So without being able to serve humanity, their talents are fully wasted. While, if a global mechanism exists to discover their talents in different countries and provide to them the right direction, during less than a generation, human society will face to a profound transformation and sustainable social justice will be formed as the basis of sustainable development of human resources. Therefore, the situation of the institution which organizes the affair of discovering and guiding talents was vacant at the level of the international community and its necessity has been felt. So in this plan, the establishment and development of such an organization have been suggested in the international context.Keywords: talent identification, comparative advantage, sustainable justice, sustainable development
Procedia PDF Downloads 2232053 Test of Biological Control against Brachytrupes Megacephalus Lefèbre, 1827 (Orthoptera, Gryllinae) by Using Entomopathogenic Fungi
Authors: W. Lakhdari, B. Doumendji-Mitich, A. Dahliz, S. Doumendji, Y. Bouchikh, R. M'lik, H. Hammi, A. Soud
Abstract:
This work was done in order to fight against Brachytrupes megacephalus, a major pest in the Algerian oasis and promote one aspect of biological control against it. He wears a hand on the isolation and identification of indigenous fungi on imagos of this insect harvested in the station of INRAA Touggourt and secondly, the study of the pathogenicity of these strains fungal on this orthoptère adults. The results obtained showed the presence of six different species of entomopathogenic fungi, it is: Aspergillus flavus, Fusarium sp, Beauveria bassiana, Penicillium sp, Metharizium anisopliae and Aspergillus Niger. The pathogenicity test using fungi Beauveria bassiana strains and Metharizium anisopliae. On adult of B. megacephalus highlights the effectiveness of these strains of predatory adults, with a mortality rate approaching 100% after 11 days.Keywords: biological control, brachytrupes megacephalus, entomopathogenic fungi, Southeastern Algeria
Procedia PDF Downloads 4102052 Gaussian Mixture Model Based Identification of Arterial Wall Movement for Computation of Distension Waveform
Authors: Ravindra B. Patil, P. Krishnamoorthy, Shriram Sethuraman
Abstract:
This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.Keywords: distension waveform, Gaussian Mixture Model, RF ultrasound, arterial wall movement
Procedia PDF Downloads 5062051 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion
Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe
Abstract:
Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.Keywords: SIFT feature, MLBP, PCA, face sketch
Procedia PDF Downloads 3362050 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points
Authors: Nougrara Zineb
Abstract:
The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.Keywords: fovea, optic disc, registration, retinal images
Procedia PDF Downloads 2662049 Psychosocial Predictors of Non-Suicidal Self-Injury in Adolescents: Literature Review
Authors: K. Grigoryan, T. Jurcik
Abstract:
Interpersonal and school-related factors, along with individual characteristics, can predict non-suicidal self-injures (NSSI). The objective of this review is to describe psychosocial variables associated with NSSI among adolescents. A better understanding of this phenomenon may facilitate the identification of potentially effective interventions for adolescents. Relevant empirical studies and reviews from clinical, cross-cultural, and social psychology, as well as cognitive psychology literature, were synthesized into two broad topics: social/interpersonal and individual factors. Variables related to the occurrence of NSSI are discussed, including social support, peer modeling, abuse, personality traits, sense of belongingness, self-compassion, and others. Based on these findings, specific clinical recommendations were identified that need to be further evaluated empirically. The systemic interventions recommended in this review may further promote research in circumventing this social and clinical problem.Keywords: non-suicidal self-injury, psychosocial factors, mental health, adolescence
Procedia PDF Downloads 1902048 Impact of Ethiopia's Productive Safety Net Program on Household Dietary Diversity and Child Nutrition in Rural Ethiopia
Authors: Tagel Gebrehiwot, Carolina Castilla
Abstract:
Food insecurity and child malnutrition are among the most critical issues in Ethiopia. Accordingly, different reform programs have been carried to improve household food security. The Food Security Program (FSP) (among others) was introduced to combat the persistent food insecurity problem in the country. The FSP combines a safety net component called the Productive Safety Net Program (PSNP) started in 2005. The goal of PSNP is to offer multi-annual transfers, such as food, cash or a combination of both to chronically food insecure households to break the cycle of food aid. Food or cash transfers are the main elements of PSNP. The case for cash transfers builds on the Sen’s analysis of ‘entitlement to food’, where he argues that restoring access to food by improving demand is a more effective and sustainable response to food insecurity than food aid. Cash-based schemes offer a greater choice of use of the transfer and can allow a greater diversity of food choice. It has been proven that dietary diversity is positively associated with the key pillars of food security. Thus, dietary diversity is considered as a measure of household’s capacity to access a variety of food groups. Studies of dietary diversity among Ethiopian rural households are somewhat rare and there is still a dearth of evidence on the impact of PSNP on household dietary diversity. In this paper, we examine the impact of the Ethiopia’s PSNP on household dietary diversity and child nutrition using panel household surveys. We employed different methodologies for identification. We exploit the exogenous increase in kebeles’ PSNP budget to identify the effect of the change in the amount of money households received in transfers between 2012 and 2014 on the change in dietary diversity. We use three different approaches to identify this effect: two-stage least squares, reduced form IV, and generalized propensity score matching using a continuous treatment. The results indicate the increase in PSNP transfers between 2012 and 2014 had no effect on household dietary diversity. Estimates for different household dietary indicators reveal that the effect of the change in the cash transfer received by the household is statistically and economically insignificant. This finding is robust to different identification strategies and the inclusion of control variables that determine eligibility to become a PSNP beneficiary. To identify the effect of PSNP participation on children height-for-age and stunting we use a difference-in-difference approach. We use children between 2 and 5 in 2012 as a baseline because by then they have achieved long-term failure to grow. The treatment group comprises children ages 2 to 5 in 2014 in PSNP participant households. While changes in height-for-age take time, two years of additional transfers among children who were not born or under the age of 2-3 in 2012 have the potential to make a considerable impact on reducing the prevalence of stunting. The results indicate that participation in PSNP had no effect on child nutrition measured as height-for-age or probability of beings stunted, suggesting that PSNP should be designed in a more nutrition-sensitive way.Keywords: continuous treatment, dietary diversity, impact, nutrition security
Procedia PDF Downloads 3352047 Structural Health Assessment of a Masonry Bridge Using Wireless
Authors: Nalluri Lakshmi Ramu, C. Venkat Nihit, Narayana Kumar, Dillep
Abstract:
Masonry bridges are the iconic heritage transportation infrastructure throughout the world. Continuous increase in traffic loads and speed have kept engineers in dilemma about their structural performance and capacity. Henceforth, research community has an urgent need to propose an effective methodology and validate on real-time bridges. The presented research aims to assess the structural health of an Eighty-year-old masonry railway bridge in India using wireless accelerometer sensors. The bridge consists of 44 spans with length of 24.2 m each and individual pier is 13 m tall laid on well foundation. To calculate the dynamic characteristic properties of the bridge, ambient vibrations were recorded from the moving traffic at various speeds and the same are compared with the developed three-dimensional numerical model using finite element-based software. The conclusions about the weaker or deteriorated piers are drawn from the comparison of frequencies obtained from the experimental tests conducted on alternative spans. Masonry is a heterogeneous anisotropic material made up of incoherent materials (such as bricks, stones, and blocks). It is most likely the earliest largely used construction material. Masonry bridges, which were typically constructed of brick and stone, are still a key feature of the world's highway and railway networks. There are 1,47,523 railway bridges across India and about 15% of these bridges are built by masonry, which are around 80 to 100 year old. The cultural significance of masonry bridges cannot be overstated. These bridges are considered to be complicated due to the presence of arches, spandrel walls, piers, foundations, and soils. Due to traffic loads and vibrations, wind, rain, frost attack, high/low temperature cycles, moisture, earthquakes, river overflows, floods, scour, and soil under their foundations may cause material deterioration, opening of joints and ring separation in arch barrels, cracks in piers, loss of brick-stones and mortar joints, distortion of the arch profile. Few NDT tests like Flat jack Tests are being employed to access the homogeneity, durability of masonry structure, however there are many drawbacks because of the test. A modern approach of structural health assessment of masonry structures by vibration analysis, frequencies and stiffness properties is being explored in this paper.Keywords: masonry bridges, condition assessment, wireless sensors, numerical analysis modal frequencies
Procedia PDF Downloads 1692046 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber
Procedia PDF Downloads 2662045 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, LIU Xuebin, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Lao Xuerui
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature have led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using Yolov5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network, machine vision
Procedia PDF Downloads 992044 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control
Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi
Abstract:
Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM
Procedia PDF Downloads 2312043 Diagnosis on Environmental Impacts of Tourism at Caju Beach in Palmas, Tocantins, Brazil
Authors: Mary L. G. S. Senna, Veruska, C. Dutra, Jr., Keity L. F. Oliveira, Patrícia A. Santos, Alana C. M. Santana
Abstract:
Environmental impacts are the changes in the physical, chemical or biological properties of natural areas that are most often caused by human actions on the environment and which have consequences for human health, society and the elements of nature. The identification of the environmental impacts is important so that they are mitigated, and above all that the mitigating measures are applied in the area. This work aims to identify the environmental impacts generated in the Praia do Caju area in the city of Palmas/Brazil and show that the lack of structure on the beach intensifies the environmental impacts. The present work was carried out having as parameter, the typologies of exploratory and descriptive and quantitative research through a matrix of environmental impacts through direct observation and registration. The study took place during the holidays from August to December 2016 and photographic record of impacts. From the collected data it was possible to verify that Caju beach suffers constant degradation due to irregular deposition.Keywords: leisure, tourism, environmental impacts, Brazil
Procedia PDF Downloads 3372042 User Experience in Relation to Eye Tracking Behaviour in VR Gallery
Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski
Abstract:
Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication
Procedia PDF Downloads 422041 The Conservation of the Botanical Collar of Tutankhamun
Authors: Safwat Mohamed Sayed Ali, Hussein Kamal
Abstract:
This paper discusses the conservation procedures of the botanical collar of King Tutankhamun. It dates back to the new Kingdom. This collar was kept in a box but found in bad condition. Many parts of the collar were separated. The collar suffered from dryness and dust, so it needed to be cleaned mechanically and recollected together. Japanese paper was used to collect the separated parts of the collar on a linen thread. The linen thread was dyed with organic dye to match the color of the plant material. The guidance in collecting the different parts of the plant collar is the original photograph captured at the discovery of the tomb. Also, the optical microscope was used in collecting fractured parts. The weak parts of the collar were treated with a suitable consolidation material. Klucel G dissolved in Ethyl Alcohol 0.5% was used in the treatment and gave convenient results. Some investigations were executed in order to identify the plant types used in making the botanical collar. Scanning Electron microscope and optical microscope were used in plant identification.Keywords: sustainable, consolidation, plant, investigation
Procedia PDF Downloads 802040 Parasitic and Fungal Identification Bamboo Lobster Panulirus versicolour and Ornate Lobster P. ornatus Cultures
Authors: Indriyani Nur, Yusnaini
Abstract:
Lobster cultures have failed because of mortalities associated with parasitic and fungal infections. Monitoring of spawned eggs and larva of bamboo lobsters, Panulirus versicolour, and ornate lobsters, P. ornatus, in a hatchery, was conducted in order to characterize fungal and parasitic diseases of eggs and larva. One species of protozoan parasite (Vorticella sp.) was identified from larvae while two species of fungi (Lagenidium sp. and Haliphthoros sp.) were found on eggs. Furthermore, adult lobsters cultured in floating net cage had burning-like diseases on their pleopod, uropod, and telson. Histopathological samples were collected for parasite and tissue changes. There were two parasites found to infect lobsters on external body and gill which are Octolasmis sp. and Oodinium sp. Histopathology showed tissue changes which are necrosis on hepatopancreas, necrosis in the gills and around the uropods and telson.Keywords: fungal, histopathology, lobster, parasite, infection
Procedia PDF Downloads 2932039 Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array
Authors: Andrew Youssef, David Matthews, Jie Pan
Abstract:
Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors.Keywords: embedded sensor, monitoring, PVDF, vibration
Procedia PDF Downloads 3382038 Strategic Partnerships for Sustainable Tourism Development in Papua New Guinea
Authors: Zainab Olabisi Tairu
Abstract:
Strategic partnerships are a core requirement in delivering sustainable tourism for development in developing nations like Papua New Guinea. This paper unveils the strategic partnerships for sustainable tourism development in Papua New Guinea. Much emphasis is made among tourism stakeholders, on the importance of strategic partnership and positioning in developing sustainable tourism development. This paper engages stakeholders’ ecotourism differentiation and power relations in the discussion of the paper through interviews and observations with tourism stakeholders in Papua New Guinea. Collaborative approaches in terms of sustaining the tourism industry, having a milestone of achieved plans, are needed for tourism growth and development. This paper adds a new insight to the body of knowledge on stakeholders’ identification, formation, power relations and an integrated approach to successful tourism development. In order to achieve responsible tourism planning and management outcomes, partnerships must be holistic in perspective and based on sustainable development principles.Keywords: stakeholders, sustainable tourism, Papua New Guinea, partnerships
Procedia PDF Downloads 6622037 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods
Authors: J. Tamosaitiene
Abstract:
The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.Keywords: risk, system, model, construction
Procedia PDF Downloads 1672036 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm
Authors: Soumaya Sallem, Marc Olivas
Abstract:
This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm
Procedia PDF Downloads 1942035 Utilizing IoT for Waste Collection: A Review of Technologies for Eco-Friendly Waste Management
Authors: Fatemehsadat Mousaviabarbekouh
Abstract:
Population growth and changing consumption patterns have led to waste management becoming a significant global challenge. With projections indicating that nearly 67% of the Earth's population will live in megacities by 2050, there is a pressing need for smart solutions to address citizens' demands. Waste collection, facilitated by the Internet of Things (IoT), offers an efficient and cost-effective approach. This study aims to review the utilization of IoT for waste collection and explore technologies that promote eco-friendly waste management. The research focuses on information and communication technologies (ICTs), including spatial, identification, acquisition, and data communication technologies. Additionally, the study examines various energy harvesting technologies to further reduce costs. The findings indicate that the application of these technologies can lead to significant cost savings, energy efficiency, and ultimately reshape the future of waste management.Keywords: waste collection, IoT, smart cities, eco-friendly, information and communication technologies, energy harvesting
Procedia PDF Downloads 1112034 Transport Mode Selection under Lead Time Variability and Emissions Constraint
Authors: Chiranjit Das, Sanjay Jharkharia
Abstract:
This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection
Procedia PDF Downloads 4342033 Managing Psychogenic Non-Epileptic Seizure Disorder: The Benefits of Collaboration between Psychiatry and Neurology
Authors: Donald Kushon, Jyoti Pillai
Abstract:
Psychogenic Non-epileptic Seizure Disorder (PNES) is a challenging clinical problem for the neurologist. This study explores the benefits of on-site collaboration between psychiatry and neurology in the management of PNES. A 3 month period at a university hospital seizure clinic is described detailing specific management approaches taken as a result of this collaboration. This study describes four areas of interest: (1. After the video EEG results confirm the diagnosis of PNES, the presentation of the diagnosis of PNES to the patient. (2. The identification of co-morbid psychiatric illness (3. Treatment with specific psychotherapeutic interventions (including Cognitive Behavioral Therapy) and psychopharmacologic interventions (primarily SSRIs) and (4. Preliminary treatment outcomes.Keywords: cognitive behavioral therapy (CBT), psychogenic non-epileptic seizure disorder (PNES), selective serotonin reuptake inhibitors (SSRIs), video electroencephalogram (VEEG)
Procedia PDF Downloads 3152032 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit
Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi
Abstract:
Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.Keywords: combined cycle power plant, energy benchmarking, modelling, retrofit
Procedia PDF Downloads 305