Search results for: distributed disaster reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7141

Search results for: distributed disaster reduction

5971 The Role of the Corporate Social Responsibility in Poverty Reduction

Authors: M. Verde, G. Falzarano

Abstract:

The paper examines the connection between corporate social responsibility (CSR), capability approach and poverty reduction; in particular, the local employment development (LED) by way of CSR initiatives. The joint action of LED/CSR results in a win-win situation, not only for the enterprises but also for all the stakeholders involved; in this regard, subsidiarity and coordination between national and regional/local authorities are central to a socially-oriented market economy. In the first section, the CSR is analysed on the basis of its social function in the fight against poverty, as a 'capabilities deprivation'. In the central part, the attention is focused on the relationship between CSR and LED; ergo, on the role of the enterprises in fostering capabilities development (the employment). Besides, all the potential solutions are presented, stressing the possible combinations, in the last part. The benchmark is the enterprise as an economic and a social institution: the business should not be combined with profit merely, paying more attention to its sustainable impact and social contribution. In which way could it be possible? The answer is the CSR. The impact of CSR on poverty reduction is still little explored. The companies help to reduce poverty through economic contribution, human rights and social inclusion; hence, the business becomes an 'agent of development' in order to fight against 'inequality'. The starting point is the pyramid of social responsibility, where ethic and philanthropic responsibilities involve programmes and actions aimed at personal development of the individuals, improving human standard of living in all forms, including poverty, when people do not have a choice between different 'life options', ranging from level of education to employment. At this point, CSR comes into play and works on two dimensions: poverty reduction and poverty prevention, by means of a series of initiatives: first of all, job creation and precarious work reduction. Empowerment of the local actors, financial support and combination of top down and bottom up initiatives are some of CSR areas of activity. Several positive effects occur on individual levels of educations, access to capital, individual health status, empowerment of youth and woman, access to social networks and it was observed that these effects depend on the type of CSR strategy. Indeed, CSR programmes should take into account fundamental criteria, such as the transparency, the information about benefits, a coordination unit among institutions and more clear guidelines. In this way, the advantages to the corporate reputation and to the community translate into a better job matching on the labour market, inter alia. It is important to underline that the success depends on the specific measures of the areas in question, by adapting them to the local needs, in light of general principles and index; therefore, the concrete commitment of the all stakeholders involved is decisive in order to achieve the goals. The enterprise would represent a concrete contribution for the pursuit of sustainable development and for the dissemination of a social and well being awareness.

Keywords: capability approach, local employment development, poverty, social inclusion

Procedia PDF Downloads 114
5970 Evaluating the Factors That Influence Caries Reduction During Pregnancy

Authors: Mimoza Canga, Irene Malagnino, Vergjini Mulo, Alketa Qafmolla, Vito Antonio Malagnino

Abstract:

Background: Dental caries is the most common dental disease and pregnancy represents a special process of physical, hormonal and metabolic changes in pregnant women, which is accompanied by an imbalance in the oral cavity. Objective: The objective of this study is to evaluate caries reduction after dental visits, the scaling of teeth, fluoridated water, brushing of the teeth and using fluoride toothpaste before and during pregnancy. Materials and methods: This study was conducted in the time period March 2018- September 2021, the age range of the participants was: 18-41 years old. The sample taken under observation was composed of 84 pregnant women. The questionnaire included the demographic characteristics of the sample, such as age, women's education level was primary, secondary, and higher education. Based on women's education level, our analysis found that 25.9% of pregnant women had completed primary education, 35.2% of them had secondary education and 38.9% of pregnant women had higher education. The descriptive and analytical research analysis is formulated as a longitudinal study. Statistical analysis was performed using IBM SPSS Statistics 23.0. The significance level (α) was set at 0.05, whereas P-value and analysis of variance (ANOVA) were used to analyze the data. Results: In the present study, it was observed that there is a strong relationship between dental visits and the scaling of the teeth with the value of P˂ .0001. While the number of teeth with caries before pregnancy and fluoridated water have a P-value=0.002. If we compare the same factor with the number of teeth with dental caries during pregnancy, the correlation is P-value = 0.0001. The number of teeth with caries before pregnancy and carbohydrates consumption has a strong relation with P-value=0.05. According to the present research, the number of teeth with dental caries before pregnancy in relation to brushing the teeth has a P-value ˂ 0.05. Furthermore, in the actual research, it was established that using fluoride toothpaste doesn’t affect the number of teeth with caries before pregnancy with a P-value= .314. Conclusion: According to the results of the present study performed in Albania, it was found out that the periodical dental visits, scaling of the teeth, fluoridated water, brushing of the teeth influenced caries reduction before and during pregnancy. In comparison, the usage of fluoride toothpaste did not have any effect on dental caries reduction in the same time period. The recommendations are as follows: maintaining oral hygiene, using fluoridated water and brushing the teeth regularly. Healthcare providers should inform pregnant women about the importance of oral health and the implementation of measures to manage dental caries.

Keywords: brushing of the teeth, dental visits, dental scaling, fluoridated water, pregnancy

Procedia PDF Downloads 172
5969 Assess and Improve Building Energy Efficiency– a Case Study on the Office of Research and Graduate Studies at Qatar University

Authors: Mohamed Youssef

Abstract:

The proliferation of energy consumption in the built environment has made energy efficiency and savings strategies a priority objective for energy policies in most countries. Qatar is a clear example, where it has initiated several programs and institutions to mitigate the overuse of electricity consumption and control the energy load of the building by following global standards and spreading awareness campaigns. A Case study on the Office of Research and Graduate Studies at Qatar University has been investigated in this paper. The paper studied the rating load of existing buildings before and after retrofitting by using Carrier’s Hourly Analysis Program (HAP). The performance of the building has increased especially after using the LED light system instead of fluorescent light with a low payback period. GINAN paint and green roof have shown a considerable contribution to the reduction of electrical load in the building. In comparison, the double HR window had the least effect on the reduction of electricity consumption.

Keywords: energy conservation in Qatar, HAP, LED light, GINAN paint, green roof, double HR window

Procedia PDF Downloads 156
5968 A Comprehensive Study on Cast NiTi and Ti64 Alloys for Biomedical Applications

Authors: Khaled Mohamed Ibrahim

Abstract:

A comprehensive study on two biomaterials of NiTi and Ti-6Al-4V (Ti64) was done. Those materials were cast using vacuum arc remelting technique. As-cast structure of Ni-Ti alloy consists of NiTi matrix and some fine precipitates of Ni4Ti3. Ti-6Al-4V alloy showed a structure composed of equiaxed β grains and varied α-phase morphologies. Maximum ultimate compressive strength and reduction in height of 2042 MPa of 18%, respectively, were reported for the cast Ti64 alloy. However, minimum ultimate compressive strength of 1804 MPa and low reduction in height of 3% were obtained for the cast NiTi alloy. Wear rate of both Ni-Ti and Ti-6Al-4V alloys significantly increased at saline solution (0.9% NaCl) condition as compared to dry testing condition. Saline solution harmed the wear resistance of about 2 to 4 times compared to the dry condition. Corrosion rate of NiTi alloy at saline solution (0.9% NaCl) was (0.00038 mm/yr) is almost three times the value of Ti64 alloy (0.000171 mm/yr). The corrosion rate of Ti64 in SBF (0.00024 mm/yr) was lower than Ni-Ti (0.0003 mm/yr).

Keywords: NiTi, Ti64, vacuum casting, biomaterials

Procedia PDF Downloads 65
5967 Sensitivity Analysis of Interference of Localised Corrosion on Bending Capacity of a Corroded RC Beam

Authors: Mohammad Mahdi Kioumarsi

Abstract:

In this paper, using the response surface method (RSM), tornado diagram method and non-linear finite element analysis, the effect of four parameters on residual bending capacity of a corroded RC beam was investigated. The parameters considered are amount of localised cross section reduction, ratio of pit distance on adjacent bars to rebar distance, concrete compressive strength, and rebar tensile strength. The focus is on the influence on the bending ultimate limit state. Based on the obtained results, the effects of the ratio of pit distance to rebar distance (Lp⁄Lr) and the ratio of the localised cross section reduction to the original area of the rebar (Apit⁄A0) were found significant. The interference of localised corrosion on adjacent reinforcement bars reduces the bending capacity of under-reinforced concrete beam. Using the sensitivity analysis could lead to recognize uncertainty parameters, which have the most influences on the performance of the structure.

Keywords: localised corrosion, concrete beam, sensitivity analyses, ultimate capacity

Procedia PDF Downloads 239
5966 Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water

Authors: Georgios Psakis, Imren Rahbay, David Spiteri, Jeanice Mallia, Martin Polidano, Vasilis P. Valdramidis

Abstract:

Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C.

Keywords: disinfection, groundwater, hydrosonication, UV-C

Procedia PDF Downloads 150
5965 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data

Procedia PDF Downloads 174
5964 Effect of Powder Shape on Physical Properties of Porous Coatings

Authors: M. Moayeri, A. Kaflou

Abstract:

Decreasing the size of heat exchangers in industries is favorable due to a reduction in the initial costs and maintenance. This can be achieved generally by increasing the heat transfer coefficient, which can be done by increasing tube surface by passive methods named “porous coat”. Since these coatings are often in contact with the fluid, mechanical strength of coatings should be considered as main concept beside permeability and porosity in design, especially in high velocity services. Powder shape affected mechanical property more than other factors. So in this study, the Copper powder with three different shapes (spherical, dendritic and irregular) was coated on Cu-Ni base metal with thickness of ~300µm in a reduction atmosphere (5% H2-N2) and programmable furnace. The morphology and physical properties of coatings, such as porosity, permeability and mechanical strength were investigated. Results show although irregular particle have maximum porosity and permeability but strength level close to spherical powder, in addition, mentioned particle has low production cost, so for creating porous coats in high velocity services these powder recommended.

Keywords: porous coat, permeability, mechanical strength, porosity

Procedia PDF Downloads 343
5963 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic

Authors: Nousheen Hashmi, Shoab Ahmad Khan

Abstract:

Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.

Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions

Procedia PDF Downloads 468
5962 Comparison of Blockchain Ecosystem for Identity Management

Authors: K. S. Suganya, R. Nedunchezhian

Abstract:

In recent years, blockchain technology has been found to be the most significant discovery in this digital era, after the discovery of the Internet and Cloud Computing. Blockchain is a simple, distributed public ledger that contains all the user’s transaction details in a block. The global copy of the block is then shared among all its peer-peer network users after validation by the Blockchain miners. Once a block is validated and accepted, it cannot be altered by any users making it a trust-free transaction. It also resolves the problem of double-spending by using traditional cryptographic methods. Since the advent of bitcoin, blockchain has been the backbone for all its transactions. But in recent years, it has found its roots and uses in many fields like Smart Contracts, Smart City management, healthcare, etc. Identity management against digital identity theft has become a major concern among financial and other organizations. To solve this digital identity theft, blockchain technology can be employed with existing identity management systems, which maintain a distributed public ledger containing details of an individual’s identity containing information such as Digital birth certificates, Citizenship number, Bank details, voter details, driving license in the form of blocks verified on the blockchain becomes time-stamped, unforgeable and publicly visible for any legitimate users. The main challenge in using blockchain technology to prevent digital identity theft is ensuring the pseudo-anonymity and privacy of the users. This survey paper will exert to study the blockchain concepts, consensus protocols, and various blockchain-based Digital Identity Management systems with their research scope. This paper also discusses the role of Blockchain in COVID-19 pandemic management by self-sovereign identity and supply chain management.

Keywords: blockchain, consensus protocols, bitcoin, identity theft, digital identity management, pandemic, COVID-19, self-sovereign identity

Procedia PDF Downloads 109
5961 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers

Authors: H. Ucar, U. Aridogan

Abstract:

Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.

Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling

Procedia PDF Downloads 162
5960 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition

Authors: H. F. Shi, C. L. Zhang

Abstract:

Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.

Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4

Procedia PDF Downloads 191
5959 Biodegradation of Triclosan and Tetracycline in Sewage Sludge by Pleurotus Ostreatus Fungal Pellets

Authors: Ayda Maadani Mallak, Amir lakzian, Elham Khodaverdi, Gholam Hossein Haghnia

Abstract:

The use of pharmaceuticals and personal care products such as antibiotics and antibacterials has been increased in recent years. Since the major part of consumed compounds remains unchanged in the wastewater treatment plant, they will easily find their way into the human food chain following the land use of sewage sludge (SS). Biological treatment of SS is one the most effective methods for expunging contaminants. White rot fungi, due to their ligninolytic enzymes, are extensively used to degrade organic compounds. Among all three different morphological forms and growth patterns of filamentous fungi (mycelia, clumps, and pellets), fungal pellet formation has been the subject of interest in industrial bioprocesses. Therefore this study was aimed to investigate the uptake of tetracycline (TC) and triclosan (TCS) by radish plant (Raphanus sativus) from soil amended with untreated and pretreated SS by P. ostreatus fungal pellets under greenhouse conditions. The experimental soil was amended with 1) Contaminated SS with TC at a concentration of 100 mgkg-1 and pretreated by fungal pellets, 2) Contaminated SS with TC at 100 mgkg-1 and untreated with fungal pellets, 3) Contaminated SS with TCS at a concentration of 50 mgkg-1 and pretreated by fungal pellets, 4) contaminated SS with TCS at 50 mgkg-1 and untreated with fungal pellets. An uncontaminated and untreated SS-amended soil also was considered as control treatment. An AB SCIEX 3200 QTRAP LC-MS/MS system was used in order to analyze the concentration of TC and TCS in plant tissues and soil medium. Results of this study revealed that the presence of TC and TCS in SS-amended soil decreased the radish biomass significantly. The reduction effect of TCS on dry biomass of shoot and root was 39 and 45% compared to controls, whereas for TC, the reduction percentage for shoot and root was 27 and 40.6%, respectively. However, fungal treatment of SS by P. ostreatus pellets reduced the negative effect of both compounds on plant biomass remarkably, as no significant difference was observed compared to control treatments. Pretreatment of SS with P. ostreatus also caused a significant reduction in translocation factor (concentration in shoot/root), especially for TC compound up to 32.3%, whereas this reduction for TCS was less (8%) compared to untreated SS. Generally, the results of this study confirmed the positive effect of using fungal pellets in SS amendment to decrease TC and TCS uptake by radish plants. In conclusion, P. ostreatus fungal pellets might provide future insights into bioaugmentation to remove antibiotics from environmental matrices.

Keywords: antibiotic, fungal pellet, sewage sludge, white-rot fungi

Procedia PDF Downloads 141
5958 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.

Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge

Procedia PDF Downloads 147
5957 The Structure and Function Investigation and Analysis of the Automatic Spin Regulator (ASR) in the Powertrain System of Construction and Mining Machines with the Focus on Dump Trucks

Authors: Amir Mirzaei

Abstract:

The powertrain system is one of the most basic and essential components in a machine. The occurrence of motion is practically impossible without the presence of this system. When power is generated by the engine, it is transmitted by the powertrain system to the wheels, which are the last parts of the system. Powertrain system has different components according to the type of use and design. When the force generated by the engine reaches to the wheels, the amount of frictional force between the tire and the ground determines the amount of traction and non-slip or the amount of slip. At various levels, such as icy, muddy, and snow-covered ground, the amount of friction coefficient between the tire and the ground decreases dramatically and considerably, which in turn increases the amount of force loss and the vehicle traction decreases drastically. This condition is caused by the phenomenon of slipping, which, in addition to the waste of energy produced, causes the premature wear of driving tires. It also causes the temperature of the transmission oil to rise too much, as a result, causes a reduction in the quality and become dirty to oil and also reduces the useful life of the clutches disk and plates inside the transmission. this issue is much more important in road construction and mining machinery than passenger vehicles and is always one of the most important and significant issues in the design discussion, in order to overcome. One of these methods is the automatic spin regulator system which is abbreviated as ASR. The importance of this method and its structure and function have solved one of the biggest challenges of the powertrain system in the field of construction and mining machinery. That this research is examined.

Keywords: automatic spin regulator, ASR, methods of reducing slipping, methods of preventing the reduction of the useful life of clutches disk and plate, methods of preventing the premature dirtiness of transmission oil, method of preventing the reduction of the useful life of tires

Procedia PDF Downloads 65
5956 Comparison of Wind Fragility for Window System in the Simplified 10 and 15-Story Building Considering Exposure Category

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Window system in high rise building is occasionally subjected to an excessive wind intensity, particularly during typhoon. The failure of window system did not affect overall safety of structural performance; however, it could endanger the safety of the residents. In this paper, comparison of fragility curves for window system of two residential buildings was studied. The probability of failure for individual window was determined with Monte Carlo Simulation method. Then, lognormal cumulative distribution function was used to represent the fragility. The results showed that windows located on the edge of leeward wall were more susceptible to wind load and the probability of failure for each window panel increased at higher floors.

Keywords: wind fragility, window system, high rise building, wind disaster

Procedia PDF Downloads 299
5955 Asymmetric Information and Composition of Capital Inflows: Stock Market Microstructure Analysis of Asia Pacific Countries

Authors: Farid Habibi Tanha, Hawati Janor, Mojtaba Jahanbazi

Abstract:

The purpose of this study is to examine the effect of asymmetric information on the composition of capital inflows. This study uses the stock market microstructure to capture the asymmetric information. Such an approach allows one to capture the level and extent of the asymmetric information from a firm’s perspective. This study focuses on the two-dimensional measure of the market microstructure in capturing asymmetric information. The composition of capital inflows is measured by running six models simultaneously. By employing the panel data technique, the main finding of this research shows an increase in the asymmetric information of the stock market, in any of the two dimensions of width and depth. This leads to the reduction of foreign investments in both forms of foreign portfolio investment (FPI) and foreign direct investment (FDI), while the reduction in FPI is higher than that of the FDI. The significant effect of asymmetric information on capital inflows implicitly suggests for policymakers to control the changes of foreign capital inflows through transparency in the level of the market.

Keywords: capital flows composition, asymmetric information, stock market microstructure, foreign portfolio investment, foreign direct investment

Procedia PDF Downloads 349
5954 Didactics for Enhancing Balance in Adolescents: Core and Centering

Authors: A. Fogliata, L. Martiniello, A. Ambretti

Abstract:

Introduction: The significance of balance and stability in physical education among adolescents is well-established. This study aims to assess the efficacy of Centering (CENT), which employs intra-abdominal pressure (IAP) in line with the Synchrony Method, in optimizing balance and reducing perceived stress. Materials and Methods: A 6-week intervention was conducted on a sample of adolescents, divided into a control group and an experimental group that incorporated CENT into their physical education program. The Stork Balance Test and the Perceived Stress Scale (PSS) were used to measure changes. Results: Findings revealed a significant enhancement in the balance of both the dominant and non-dominant limbs in the experimental group compared to the control group. Moreover, the PSS test indicated a reduction in perceived stress within the experimental group. Conclusion: Integrating the centering technique into physical education programs can lead to substantial improvements in adolescents' balance and stability, in addition to a reduction in perceived stress levels. These findings suggest the need for further research on broader populations to solidify these pivotal outcomes.

Keywords: adolescents, physical education, balance, centering, intra-abdominal pressure

Procedia PDF Downloads 48
5953 Geospatial Curve Fitting Methods for Disease Mapping of Tuberculosis in Eastern Cape Province, South Africa

Authors: Davies Obaromi, Qin Yongsong, James Ndege

Abstract:

To interpolate scattered or regularly distributed data, there are imprecise or exact methods. However, there are some of these methods that could be used for interpolating data in a regular grid and others in an irregular grid. In spatial epidemiology, it is important to examine how a disease prevalence rates are distributed in space, and how they relate with each other within a defined distance and direction. In this study, for the geographic and graphic representation of the disease prevalence, linear and biharmonic spline methods were implemented in MATLAB, and used to identify, localize and compare for smoothing in the distribution patterns of tuberculosis (TB) in Eastern Cape Province. The aim of this study is to produce a more “smooth” graphical disease map for TB prevalence patterns by a 3-D curve fitting techniques, especially the biharmonic splines that can suppress noise easily, by seeking a least-squares fit rather than exact interpolation. The datasets are represented generally as a 3D or XYZ triplets, where X and Y are the spatial coordinates and Z is the variable of interest and in this case, TB counts in the province. This smoothing spline is a method of fitting a smooth curve to a set of noisy observations using a spline function, and it has also become the conventional method for its high precision, simplicity and flexibility. Surface and contour plots are produced for the TB prevalence at the provincial level for 2012 – 2015. From the results, the general outlook of all the fittings showed a systematic pattern in the distribution of TB cases in the province and this is consistent with some spatial statistical analyses carried out in the province. This new method is rarely used in disease mapping applications, but it has a superior advantage to be assessed at subjective locations rather than only on a rectangular grid as seen in most traditional GIS methods of geospatial analyses.

Keywords: linear, biharmonic splines, tuberculosis, South Africa

Procedia PDF Downloads 227
5952 Examining the Usefulness of an ESP Textbook for Information Technology: Learner Perspectives

Authors: Yun-Husan Huang

Abstract:

Many English for Specific Purposes (ESP) textbooks are distributed globally as the content development is often obliged to compromises between commercial and pedagogical demands. Therefore, the issue of regional application and usefulness of globally published ESP textbooks has received much debate. For ESP instructors, textbook selection is definitely a priority consideration for curriculum design. An appropriate ESP textbook can facilitate teaching and learning, while an inappropriate one may cause a disaster for both teachers and students. This study aims to investigate the regional application and usefulness of an ESP textbook for information technology (IT). Participants were 51 sophomores majoring in Applied Informatics and Multimedia at a university in Taiwan. As they were non-English majors, their English proficiency was mostly at elementary and elementary-to-intermediate levels. This course was offered for two semesters. The textbook selected was Oxford English for Information Technology. At class end, the students were required to complete a survey comprising five choices of Very Easy, Easy, Neutral, Difficult, and Very Difficult for each item. Based on the content design of the textbook, the survey investigated how the students viewed the difficulty of grammar, listening, speaking, reading, and writing materials of the textbook. In terms of difficulty, results reveal that only 22% of them found the grammar section difficult and very difficult. For listening, 71% responded difficult and very difficult. For general reading, 55% responded difficult and very difficult. For speaking, 56% responded difficult and very difficult. For writing, 78% responded difficult and very difficult. For advanced reading, 90% reported difficult and very difficult. These results indicate that, except the grammar section, more than half of the students found the textbook contents difficult in terms of listening, speaking, reading, and writing materials. Such contradictory results between the easy grammar section and the difficult four language skills sections imply that the textbook designers do not well understand the English learning background of regional ESP learners. For the participants, the learning contents of the grammar section were the general grammar level of junior high school, while the learning contents of the four language skills sections were more of the levels of college English majors. Implications from the findings are obtained for instructors and textbook designers. First of all, existing ESP textbooks for IT are few and thus textbook selections for instructors are insufficient. Second, existing globally published textbooks for IT cannot be applied to learners of all English proficiency levels, especially the low level. With limited textbook selections, third, instructors should modify the selected textbook contents or supplement extra ESP materials to meet the proficiency level of target learners. Fourth, local ESP publishers should collaborate with local ESP instructors who understand best the learning background of their students in order to develop appropriate ESP textbooks for local learners. Even though the instructor reduced learning contents and simplified tests in curriculum design, in conclusion, the students still found difficult. This implies that in addition to the instructor’s professional experience, there is a need to understand the usefulness of the textbook from learner perspectives.

Keywords: ESP textbooks, ESP materials, ESP textbook design, learner perspectives on ESP textbooks

Procedia PDF Downloads 325
5951 Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawaz

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 64
5950 Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents

Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawa

Abstract:

Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.

Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing

Procedia PDF Downloads 68
5949 Corrosion Characteristics and Electrochemical Treatment of Heritage Silver Alloys

Authors: Ahmad N. Abu-Baker

Abstract:

This study investigated the corrosion of a group of heritage silver-copper alloy coins and their conservation treatment by potentiostatic methods. The corrosion products of the coins were characterized by a combination of scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD) analyses. Cathodic polarization curves, measured by linear sweep voltammetry (LSV), also identified the corrosion products and the working conditions to treat the coins using a potentiostatic reduction method, which was monitored by chronoamperometry. The corrosion products showed that the decay mechanisms were dominated by selective attack on the copper-rich phases of the silver-copper alloys, which is consistent with an internal galvanic corrosion phenomenon, which leads to the deposition of copper corrosion products on the surface of the coins. Silver chloride was also detected on the coins, which reflects selective corrosion of the silver-rich phases under different chemical environments. The potentiostatic treatment showed excellent effectiveness in determining treatment parameters and monitoring the reduction process of the corrosion products on the coins, which helped to preserve surface details in the cleaning process and to prevent over-treatment.

Keywords: silver alloys, corrosion, conservation, heritage

Procedia PDF Downloads 119
5948 Carbon Footprint Reduction Using Cleaner Production Strategies in a Otoshimi Producing Plant

Authors: Razuana Rahim, Abdul Aziz Abdul Raman

Abstract:

In this work, a study was conducted to evaluate the feasibility of using Cleaner Production (CP) strategy to reduce carbon dioxide emission (CO2) in a plant that produces Otoshimi. CP strategy is meant to reduce CO2 emission while taking into consideration the economic aspect. For this purpose, a CP audit was conducted and the information obtained were analyzed and major contributors of CO2 emission inside the boundary of the production plant was identified. Electricity, water and fuel consumption and generation of solid waste and wastewater were identified as the main contributors. Total CO2 emission generated was 0.27 kg CO2 per kg of Otoshimi produced, where 68% was contributed by electricity consumption. Subsequently, a total of three CP options were generated and implementations of these options are expected to reduce the CO2 emission from electricity consumption to 0.16 kg CO2 per kg of Otoshimi produced, a reduction of about 14%. The study proves that CP strategy can be implemented even without any investment to reduce CO2 for a plant that produces Otoshimi.

Keywords: carbon dioxide emission, cleaner production audit, cleaner production options, otoshimi production

Procedia PDF Downloads 411
5947 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines

Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky

Abstract:

Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.

Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods

Procedia PDF Downloads 100
5946 Transformation of the Ili Delta Ecosystems Related to the Runoff Control of the Ile-Balkhash Basin Rivers

Authors: Ruslan Salmurzauli, Sabir Nurtazin, Buho Hoshino, Niels Thevs, A. B. Yeszhanov, Aiman Imentai

Abstract:

This article presents the results of a research on the transformation of the diverse ecosystems of the Ili delta during the period 1979-2014 based on the analysis of the hydrological regime dynamics, weather conditions and satellite images. Conclusions have been drawn on the decisive importance of the water runoff of the Ili River in the negative changes and environmental degradation in delta areas over the past forty-five years. The increase of water consumption in the Chinese and Kazakhstan parts of the Ili-Balkhash basin caused desiccation and desertification of many hydromorphic delta ecosystems and the reduction of water flow into Lake Balkhash. We demonstrate that a significant reduction of watering of the delta areas could drastically accelerate the aridization and degradation of the hydromorphic ecosystems. Under runoff decrease, a transformation process of the delta ecosystems begins from the head part and gradually spread northward to the periphery of the delta. The desertification is most clearly expressed in the central and western parts of the delta areas.

Keywords: Ili-Balkhash basin, Ili river delta, runoff, hydrological regime, transformation of ecosystems, remote sensing

Procedia PDF Downloads 418
5945 Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study

Authors: Dhanesh Sing Das, Bharat Tadikonda Venkata

Abstract:

Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes.

Keywords: collapse behavior, inundation pressure, kaolin, microstructure

Procedia PDF Downloads 123
5944 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 122
5943 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method

Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya

Abstract:

This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.

Keywords: particle size reduction, micromixer, FDM modelling, wet etching

Procedia PDF Downloads 415
5942 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review

Authors: G. W. Greubel, A. Kalam

Abstract:

South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues, but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be spared the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’ which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid. This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy.

Keywords: load shedding, renewable energy integration, smart grid, virtual grid

Procedia PDF Downloads 41