Search results for: wing box design
12575 The Shrinking of the Pink Wave and the Rise of the Right-Wing in Latin America
Authors: B. M. Moda, L. F. Secco
Abstract:
Through free and fair elections and others less democratic processes, Latin America has been gradually turning into a right-wing political region. In order to understand these recent changes, this paper aims to discuss the origin and the traits of the pink wave in the subcontinent, the reasons for its current rollback and future projections for left-wing in the region. The methodology used in this paper will be descriptive and analytical combined with secondary sources mainly from the social and political sciences fields. The canons of the Washington Consensus was implemented by the majority of the Latin American governments in the 80s and 90s under the social democratic and right-wing parties. The neoliberal agenda caused political, social and economic dissatisfaction bursting into a new political configuration for the region. It started in 1998 when Hugo Chávez took the office in Venezuela through the Fifth Republic Movement under the socialist flag. From there on, Latin America was swiped by the so-called ‘pink wave’, term adopted to define the rising of self-designated left-wing or center-left parties with a progressive agenda. After Venezuela, countries like Chile, Brazil, Argentina, Uruguay, Bolivia, Equator, Nicaragua, Paraguay, El Salvador and Peru got into the pink wave. The success of these governments was due a post-neoliberal agenda focused on cash transfers programs, increasing of public spending, and the straightening of national market. The discontinuation of the preference for the left-wing started in 2012 with the coup against Fernando Lugo in Paraguay. In 2015, the chavismo in Venezuela lost the majority of the legislative seats. In 2016, an impeachment removed the Brazilian president Dilma Rousself from office who was replaced by the center-right vice-president Michel Temer. In the same year, Mauricio Macri representing the right-wing party Proposta Republicana was elected in Argentina. In 2016 center-right and liberal, Pedro Pablo Kuczynski was elected in Peru. In 2017, Sebastián Piñera was elected in Chile through the center-right party Renovación Nacional. The pink wave current rollback points towards some findings that can be arranged in two fields. Economically, the 2008 financial crisis affected the majority of the Latin American countries and the left-wing economic policies along with the end of the raw materials boom and the subsequent shrinking of economic performance opened a flank for popular dissatisfaction. In Venezuela, the 2014 oil crisis reduced the revenues for the State in more than 50% dropping social spending, creating an inflationary spiral, and consequently loss of popular support. Politically, the death of Hugo Chavez in 2013 weakened the ‘socialism of the twenty first century’ ideal, which was followed by the death of Fidel Castro, the last bastion of communism in the subcontinent. In addition, several cases of corruption revealed during the pink wave governments made the traditional politics unpopular. These issues challenge the left-wing to develop a future agenda based on innovation of its economic program, improve its legal and political compliance practices, and to regroup its electoral forces amid the social movements that supported its ascension back in the early 2000s.Keywords: Latin America, political parties, left-wing, right-wing, pink wave
Procedia PDF Downloads 24012574 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error
Procedia PDF Downloads 32512573 Methodology of Preliminary Design and Performance of a Axial-Flow Fan through CFD
Authors: Ramiro Gustavo Ramirez Camacho, Waldir De Oliveira, Eraldo Cruz Dos Santos, Edna Raimunda Da Silva, Tania Marie Arispe Angulo, Carlos Eduardo Alves Da Costa, Tânia Cristina Alves Dos Reis
Abstract:
It presents a preliminary design methodology of an axial fan based on the lift wing theory and the potential vortex hypothesis. The literature considers a study of acoustic and engineering expertise to model a fan with low noise. Axial fans with inadequate intake geometry, often suffer poor condition of the flow at the entrance, varying from velocity profiles spatially asymmetric to swirl floating with respect to time, this produces random forces acting on the blades. This produces broadband gust noise which in most cases triggers the tonal noise. The analysis of the axial flow fan will be conducted for the solution of the Navier-Stokes equations and models of turbulence in steady and transitory (RANS - URANS) 3-D, in order to find an efficient aerodynamic design, with low noise and suitable for industrial installation. Therefore, the process will require the use of computational optimization methods, aerodynamic design methodologies, and numerical methods as CFD- Computational Fluid Dynamics. The objective is the development of the methodology of the construction axial fan, provide of design the geometry of the blade, and evaluate aerodynamic performanceKeywords: Axial fan design, CFD, Preliminary Design, Optimization
Procedia PDF Downloads 39612572 CFD Modeling of Insect Flight at Low Reynolds Numbers
Authors: Wu Di, Yeo Khoon Seng, Lim Tee Tai
Abstract:
The typical insects employ a flapping-wing mode of flight. The numerical simulations on free flight of a model fruit fly (Re=143) including hovering and are presented in this paper. Unsteady aerodynamics around a flapping insect is studied by solving the three-dimensional Newtonian dynamics of the flyer coupled with Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite Difference Method) that combines great geometry flexibility and accuracy of moving boundary definition is employed for obtaining flow dynamics. The results show good points of agreement and consistency with the outcomes and analyses of other researchers, which validate the computational model and demonstrate the feasibility of this computational approach on analyzing fluid phenomena in insect flight. The present modeling approach also offers a promising route of investigation that could complement as well as overcome some of the limitations of physical experiments in the study of free flight aerodynamics of insects. The results are potentially useful for the design of biomimetic flapping-wing flyers.Keywords: free hovering flight, flapping wings, fruit fly, insect aerodynamics, leading edge vortex (LEV), computational fluid dynamics (CFD), Navier-Stokes equations (N-S), fluid structure interaction (FSI), generalized finite-difference method (GFD)
Procedia PDF Downloads 41012571 Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge
Authors: Mohammad Mashud, S. M. Nahid Hasan
Abstract:
The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.Keywords: airfoil, momentum injection, flap, pressure distribution
Procedia PDF Downloads 14012570 An investigation of Leading Edge and Trailing Edge Corrugation for Low Reynolds Number Application
Authors: Syed Hassan Raza Shah, Mohammad Mohammad Ali
Abstract:
The flow over a smoothly profiled airfoil at a low Reynolds number is highly susceptible to separate even at a very low angle of attack. An investigation was made to study the effect of leading-edge and trailing-edge corrugation with the spanwise change in the ridges resulted due to the change in the chord length for an infinite wing. The wind tunnel results using NACA0018 wings revealed that leading and trailing edge corrugation did not have any benefit in terms of aerodynamic efficiency or delayed stall. The leading edge and trailing edge corrugation didn't change the lift curve slope, with the leading edge corrugation wing stalling first in the range of Reynolds number of 50,000 to 125,000.Keywords: leading and trailing edge corrugations, low reynolds number, wind tunnel testing, NACA0018
Procedia PDF Downloads 29112569 Two-Dimensional Dynamics Motion Simulations of F1 Rare Wing-Flap
Authors: Chaitanya H. Acharya, Pavan Kumar P., Gopalakrishna Narayana
Abstract:
In the realm of aerodynamics, numerous vehicles incorporate moving components to enhance their performance. For instance, airliners deploy hydraulically operated flaps and ailerons during take-off and landing, while Formula 1 racing cars utilize hydraulic tubes and actuators for various components, including the Drag Reduction System (DRS). The DRS, consisting of a rear wing and adjustable flaps, plays a crucial role in overtaking manoeuvres. The DRS has two positions: the default position with the flaps down, providing high downforce, and the lifted position, which reduces drag, allowing for increased speed and aiding in overtaking. Swift deployment of the DRS during races is essential for overtaking competitors. The fluid flow over the rear wing flap becomes intricate during deployment, involving flow reversal and operational changes, leading to unsteady flow physics that significantly influence aerodynamic characteristics. Understanding the drag and downforce during DRS deployment is crucial for determining race outcomes. While experiments can yield accurate aerodynamic data, they can be expensive and challenging to conduct across varying speeds. Computational Fluid Dynamics (CFD) emerges as a cost-effective solution to predict drag and downforce across a range of speeds, especially with the rapid deployment of the DRS. This study employs the finite volume-based solver Ansys Fluent, incorporating dynamic mesh motions and a turbulent model to capture the complex flow phenomena associated with the moving rear wing flap. A dedicated section for the rare wing-flap is considered in the present simulations, and the aerodynamics of these sections closely resemble S1223 aerofoils. Before delving into the simulations of the rare wing-flap aerofoil, numerical results undergo validation using experimental data from an NLR flap aerofoil case, encompassing different flap angles at two distinct angles of attack was carried out. The increase in flap angle as increase in lift and drag is observed for a given angle of attack. The simulation methodology for the rare-wing-flap aerofoil case involves specific time durations before lifting the flap. During this period, drag and downforce values are determined as 330 N and 1800N, respectively. Following the flap lift, a noteworthy reduction in drag to 55 % and a decrease in downforce to 17 % are observed. This understanding is critical for making instantaneous decisions regarding the deployment of the Drag Reduction System (DRS) at specific speeds, thereby influencing the overall performance of the Formula 1 racing car. Hence, this work emphasizes the utilization of dynamic mesh motion methodology to predict the aerodynamic characteristics during the deployment of the DRS in a Formula 1 racing car.Keywords: DRS, CFD, drag, downforce, dynamics mesh motion
Procedia PDF Downloads 9412568 Deformed Wing Virus and Varroa Destructor in the Local Honey Bee Colonies Apis mellifera intermissa in Algeria
Authors: Noureddine Adjlane, Nizar Haddad
Abstract:
Deformed Wing Virus (DWV) is considered as the most prevalent virus that dangerous the honeybee health worldwide today. In this study we aimed to evaluate the impact of the virus on honeybees (Apis mellifera intermissa) mortality in Algeria and we conducted the study on samples collected from the central area in the country. We used PCR for the diagnoses of the (DWV) in the diagnosis. The results had shown a high infestation in the sampled colonies and it represented 42% of the total sample. In this study, we found a clear role of both Varroa destructor mite and DWV on hive mortality in the experimented apiary. Further studies need to be conducted in order to give soled recommendations to the beekeepers, decision makers and stockholders of the Algerian beekeeping sector.Keywords: honey bee, DWV, Varroa destructor, mortality, prevalence, infestation
Procedia PDF Downloads 45612567 Integrating the Athena Vortex Lattice Code into a Multivariate Design Synthesis Optimisation Platform in JAVA
Authors: Paul Okonkwo, Howard Smith
Abstract:
This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology by Mark Drela allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.Keywords: aerodynamics, automation, optimisation, AVL, JNI
Procedia PDF Downloads 58212566 Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database
Authors: Ahmed Ait Hou
Abstract:
The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center.Keywords: thermochchemicals calculations, HSC software, oxidation and chloridation, wings in space
Procedia PDF Downloads 12412565 Aerodynamic Analysis of Multiple Winglets for Aircrafts
Authors: S. Pooja Pragati, B. Sudarsan, S. Raj Kumar
Abstract:
This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree.Keywords: multiple winglets, induced drag, aerodynamics analysis, low speed aircrafts
Procedia PDF Downloads 48012564 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality
Authors: Qian Yi Ooi
Abstract:
At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality
Procedia PDF Downloads 22212563 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance
Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec
Abstract:
The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV
Procedia PDF Downloads 13812562 Representation of the Kurdish Opposition: From Periphery to Center
Authors: Songul Miftakhov
Abstract:
This study explores political representation and engagement of Eastern and Southeastern Anatolia regions, known to have dense Kurdish population and referred further to as Eastern region, in the Turkish parliament between 1946 and 1980. Traditional local notables had most of the privileges to be represented given their connectedness with political parties. Traditional local notables integrated into right-wing parties considering political and economic aspects. At the same time, they kept control over local political involvement channels. As a result, political representation and presence were monopolized at central, local and civil society levels. One part of Kurdish intellectuals was marginalized from the parliament after addressing issues in Eastern Anatolia and trying to develop solutions apart from the mainstream. Some of them took part in Kurdish oppositional left wing in the 1960s and jounced power of settled notables in 1970s in local administrations or as independent members of the parliament.Keywords: Kurdish representation, parliament, local nobles, Eastern and Southeastern Anatolia
Procedia PDF Downloads 15312561 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles
Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar
Abstract:
Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles
Procedia PDF Downloads 28312560 A Theoretical Approach on Electoral Competition, Lobby Formation and Equilibrium Policy Platforms
Authors: Deepti Kohli, Meeta Keswani Mehra
Abstract:
The paper develops a theoretical model of electoral competition with purely opportunistic candidates and a uni-dimensional policy using the probability voting approach while focusing on the aspect of lobby formation to analyze the inherent complex interactions between centripetal and centrifugal forces and their effects on equilibrium policy platforms. There exist three types of agents, namely, Left-wing, Moderate and Right-wing who comprise of the total voting population. Also, it is assumed that the Left and Right agents are free to initiate a lobby of their choice. If initiated, these lobbies generate donations which in turn can be contributed to one (or both) electoral candidates in order to influence them to implement the lobby’s preferred policy. Four different lobby formation scenarios have been considered: no lobby formation, only Left, only Right and both Left and Right. The equilibrium policy platforms, amount of individual donations by agents to their respective lobbies and the contributions offered to the electoral candidates have been solved for under each of the above four cases. Since it is assumed that the agents cannot coordinate each other’s actions during the lobby formation stage, there exists a probability with which a lobby would be formed, which is also solved for in the model. The results indicate that the policy platforms of the two electoral candidates converge completely under the cases of no lobby and both (extreme) formations but diverge under the cases of only one (Left or Right) lobby formation. This is because in the case of no lobby being formed, only the centripetal forces (emerging from the election-winning aspect) are present while in the case of both extreme (Left-wing and Right-wing) lobbies being formed, centrifugal forces (emerging from the lobby formation aspect) also arise but cancel each other out, again resulting in a pure policy convergence phenomenon. In contrast, in case of only one lobby being formed, both centripetal and centrifugal forces interact strategically, leading the two electoral candidates to choose completely different policy platforms in equilibrium. Additionally, it is found that in equilibrium, while the donation by a specific agent type increases with the formation of both lobbies in comparison to when only one lobby is formed, the probability of implementation of the policy being advocated by that lobby group falls.Keywords: electoral competition, equilibrium policy platforms, lobby formation, opportunistic candidates
Procedia PDF Downloads 33312559 The Influence of Variable Geometrical Modifications of the Trailing Edge of Supercritical Airfoil on the Characteristics of Aerodynamics
Authors: P. Lauk, K. E. Seegel, T. Tähemaa
Abstract:
The fuel consumption of modern, high wing loading, commercial aircraft in the first stage of flight is high because the usable flight level is lower and the weather conditions (jet stream) have great impact on aircraft performance. To reduce the fuel consumption, it is necessary to raise during first stage of flight the L/D ratio value within Cl 0.55-0.65. Different variable geometrical wing trailing edge modifications of SC(2)-410 airfoil were compared at M 0.78 using the CFD software STAR-CCM+ simulation based Reynolds-averaged Navier-Stokes (RANS) equations. The numerical results obtained show that by increasing the width of the airfoil by 4% and by modifying the trailing edge airfoil, it is possible to decrease airfoil drag at Cl 0.70 for up to 26.6% and at the same time to increase commercial aircraft L/D ratio for up to 5.0%. Fuel consumption can be reduced in proportion to the increase in L/D ratio.Keywords: L/D ratio, miniflaps, mini-TED, supercritical airfoil
Procedia PDF Downloads 20712558 Mixed Method Analysis to Propose a Policy Action against Racism and Xenophobia in India
Authors: Anwesha Das
Abstract:
There are numerous cases of racism and discriminatory practices in India against the northeast citizens and the African migrants. The right-wing extremism of the presently ruling political party in India has resulted in increased cases of xenophobia and Afrophobia. The rigid Indian caste system contributes to such practices of racism. The establishment of the ‘Hindu race’ by the present right-wing government, leading to instilling pride among Hindus being of a superior race, has resulted in more atrocious racist practices. This paper argues that policy action is required against racist, discriminatory practices. Policy actors in India do not ask the right questions and fail to give the needed redirection. It critically analyses Acts 14 and 15 of the Indian constitution in order to examine the cause of a policy action. In proposing the need for policy action, this paper places its arguments as a vital extension of the existing scholarship on public policy studies in India. It uses mixed-method analysis to examine the factors responsible for the policy problem and aims to suggest specific points of intervention in a policy progression. The study finds that despite anti-discriminatory policies in the mentioned Acts of the Indian constitution, there are rampant cases of racism owing to religious and cultural factors. The major findings of the study show how the present right-wing government violated the constitution in aggravating xenophobia. This paper proposes a policy action required to stop such further practices.Keywords: India, migrants, policy action, racism, xenophobia
Procedia PDF Downloads 4712557 The Use of the Social Media as a Propaganda Tool from the Political Parties in Europe against the Immigrants
Authors: Gülbuğ Erol, Caner Çakı
Abstract:
In Europe, it is seen that the immigrant population has increased in recent years. The rapid increase in the immigrant population has led to that some extreme right-wing parties increased their harsh discourse against the immigrants in Europe. In particular, it is seen that some right-wing parties in some European countries have demanded that the immigrant population could be controlled in the countries they are in, and even those immigrants should be removed from their countries. In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In this study, it was tried to investigate how and why the extreme right-wing parties in Europe have used social media in their propaganda activities towards immigrant populations in Europe. For this purpose, the political parties of the three German-speaking countries in Europe were elected; Die Nationaldemokratische Partei Deutschlands (NPD) from Germany, Die Freiheitliche Partei Österreichs (FPÖ) from Austria, Die Schweizerische Volkspartei (SVP) from Switzerland. As social media platform, only their Facebook accounts were analyzed in this study. Accounts The political parties selected were examined with content analysis, and that social media was effectively used by extreme right-wing parties for propaganda purposes towards immigrants in Europe revealed.In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In Europe, it is seen that the immigrant population has increased in recent years. The rapid increase in the immigrant population has led to that some extreme right-wing parties increased their harsh discourse against the immigrants in Europe. In particular, it is seen that some right-wing parties in some European countries have demanded that the immigrant population should be controlled in the countries they are in, and even those immigrants should be removed from their countries. In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In this study, it was tried to investigate how and why the extreme right-wing parties in Europe have used social media in their propaganda activities towards immigrant populations in Europe. For this purpose, the political parties of the three German-speaking countries in Europe were elected; Die Nationaldemokratische Partei Deutschlands (NPD) from Germany, Die Freiheitliche Partei Österreichs (FPÖ) from Austria, Die Schweizerische Volkspartei (SVP) from Switzerland. As social media platform, only their Facebook accounts were analyzed in this study. Accounts The political parties selected were examined with content analysis and that social media was effectively used by extreme right-wing parties for propaganda purposes towards immigrants in Europe revealed.Keywords: content analysis, political parties, propaganda, social media
Procedia PDF Downloads 41612556 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles using Enhanced Collaborative Optimization
Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre
Abstract:
The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and a dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.Keywords: multidisciplinary, multilevel, morphing, enhanced collaborative optimization
Procedia PDF Downloads 92912555 Design and Computational Fluid Dynamics Analysis of Aerodynamic Package of a Formula Student Car
Authors: Aniketh Ravukutam, Rajath Rao M., Pradyumna S. A.
Abstract:
In the past few decades there has been great advancement in use of aerodynamics in cars. Now its use has been evident from commercial cars to race cars for achieving higher speeds, stability and efficiency. This paper focusses on studying the effects of aerodynamics in Formula Student car. These cars weigh around 200kgs with an average speed of 60kmph. With increasing competition every year, developing a competitive car is a herculean task. The race track comprises mostly of tight corners and little or no straights thus testing the car’s cornering capabilities. Higher cornering speeds can be achieved by increasing traction at the tires. Studying the aerodynamics helps in achieving higher traction without much addition in overall weight of car. The main focus is to develop an aerodynamic package involving front wing, under tray and body to obtain an optimum value of down force. The initial process involves the detail study of geometrical constraints mentioned in the rule book and calculating the limiting value of drag as per the engine specifications. The successive steps involve conduction of various iterations in ANSYS for selection of airfoils, deciding the number of elements, designing the nose for low drag, channelizing the flow under the body and obtain an optimum value of down force within the limits defined in the initial process. The final step involves design of model using these results in Virtual environment called OptimumLap® for detailed study of performance with and without the presence of aerodynamics. The CFD analysis results showed an overall down force of 377.44N with a drag of 164.08N. The corresponding parameters of the last model were applied in OptimumLap® and an improvement of 3.5 seconds in lap times was observed.Keywords: aerodynamics, formula student, traction, front wing, undertray, body, rule book, drag, down force, virtual environment, computational fluid dynamics (CFD)
Procedia PDF Downloads 24112554 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres
Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav
Abstract:
Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.Keywords: amplitude, NACA0012, tubercles, unmanned space robots
Procedia PDF Downloads 14612553 Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface
Authors: Paul Okonkwo, Howard Smith
Abstract:
This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.Keywords: aerodynamics, automation, optimisation, AVL, JNI
Procedia PDF Downloads 56512552 The Uruguayan Left Wing from the XX to XXI Century: International Dimensions
Authors: Anton Andreev
Abstract:
With the collapse of the Soviet Union and the collapse of a large part of the socialist regimes, left-wing parties all over the world entered the space of crisis, of problems with ideology, identity, with the definition of its goals and objectives. First of all, we can say that the communist parties actually lost their foundation. In 1992, despite the victory of left-wing forces, a Broad Front in which was the winner in the struggle against dictatorship plunged into a deep crisis, the nature of which is looking for a new platform, a new foundation, new goals. Thus, in the late 20th century, the party has revised theoretical beliefs and positions. Radical communist ideology was moderated to social reformism. Modern leftist movement in Uruguay is a movement of moderate reform. Left forces suggest going through successive changes. Changes in ideology and ideas have influenced to the understanding of foreign policy. After the collapse of the Soviet Union Broad Front has changed the direction of its diplomacy from the orientation to the Soviet state to support the USA policy. Government formed by Broad Front, supported the integration processes in the South America. Uruguay was developing the cooperation in the framework of MERCOSUR and began to create relationship with the new centers of power in world political space. Uruguay in the early 21st century is a country that starts to play important role in the international arena. Elections of 26 October 2014 should answer the question of support of internal policy of a Broad Front, as well as of the support of the diplomatic work of the "Left" governments of the country.Keywords: Uruguay, broad front, Vazquez, international dimensions
Procedia PDF Downloads 35412551 Trajectory Tracking of Fixed-Wing Unmanned Aerial Vehicle Using Fuzzy-Based Sliding Mode Controller
Authors: Feleke Tsegaye
Abstract:
The work in this thesis mainly focuses on trajectory tracking of fixed wing unmanned aerial vehicle (FWUAV) by using fuzzy based sliding mode controller(FSMC) for surveillance applications. Unmanned Aerial Vehicles (UAVs) are general-purpose aircraft built to fly autonomously. This technology is applied in a variety of sectors, including the military, to improve defense, surveillance, and logistics. The model of FWUAV is complex due to its high non-linearity and coupling effect. In this thesis, input decoupling is done through extracting the dominant inputs during the design of the controller and considering the remaining inputs as uncertainty. The proper and steady flight maneuvering of UAVs under uncertain and unstable circumstances is the most critical problem for researchers studying UAVs. A FSMC technique was suggested to tackle the complexity of FWUAV systems. The trajectory tracking control algorithm primarily uses the sliding-mode (SM) variable structure control method to address the system’s control issue. In the SM control, a fuzzy logic control(FLC) algorithm is utilized in place of the discontinuous phase of the SM controller to reduce the chattering impact. In the reaching and sliding stages of SM control, Lyapunov theory is used to assure finite-time convergence. A comparison between the conventional SM controller and the suggested controller is done in relation to the chattering effect as well as tracking performance. It is evident that the chattering is effectively reduced, the suggested controller provides a quick response with a minimum steady-state error, and the controller is robust in the face of unknown disturbances. The designed control strategy is simulated with the nonlinear model of FWUAV using the MATLAB® / Simulink® environments. The simulation result shows the suggested controller operates effectively, maintains an aircraft’s stability, and will hold the aircraft’s targeted flight path despite the presence of uncertainty and disturbances.Keywords: fixed-wing UAVs, sliding mode controller, fuzzy logic controller, chattering, coupling effect, surveillance, finite-time convergence, Lyapunov theory, flight path
Procedia PDF Downloads 5712550 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation
Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling
Abstract:
The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling
Procedia PDF Downloads 34112549 Investigating the Effect of the Shape of the Side Supports of the Gates of the Gotvand Reservoir Dam (from the Peak Overflows) on the Narrowing Coefficients
Authors: M. Abbasi
Abstract:
A spillway structure is used to pass excess water and floods from upstream or upstream to downstream or tributary. The spillway is considered one of the most key members of the dam, and the failure of many dams is attributed to the inefficiency of their spillway. Weirs should be selected as strong, reliable and high-performance structures, and weirs should be ready for use in all conditions and able to drain the flood so that we do not witness many casualties and financial losses when a flood occurs. The purpose of this study is to simulate the flow pattern passing over the peak spillway in order to optimize and adjust the height of the spillway walls. In this research, the effect of the shape of the side wings on the flow pattern over the peak spillways of the Gotvand reservoir dam was simulated and modelled using Flow3D software. In this research, side wings with rounded walls with six different approach angles were used. In addition, the different value of H/Hd was used to check the effect of the tank head. The results showed that with the constant H/Hd ratio and the increase of the approach angle of the side wing, the flow depth first decreases and then increases. These changes were the opposite regarding the depth average speed of the flow and the depth average concentration of the air entering the flow. At the same time, with the constant angle of approach of the side wing and with the increase of H/Hd ratio, the flow depth increases. In general, a correct understanding of the operation of overflows and a correct design can significantly reduce construction costs and solve flooding problems.Keywords: effect of the shape, gotvand reservoir dam, narrowing coefficients, supports of the gates
Procedia PDF Downloads 6712548 Turkish College Students’ Attitudes toward Homophobia; Relations with, Right-Wing Authoritarianism, Social Dominance Orientation and Just World Beliefs
Authors: Melek Göregenli, Işık Gürşimşek
Abstract:
There has been a great deal of research in the past few decades examining attitudes toward homosexuals.Theoretic research has demonstrated that antihomosexual attitudes are expressed in cognitive, affective, behavioral and cultural components. Homophobia is generally defined as hostility towards or fear of LGBTI people, but can also refer to social and cultural ideologies which stigmatize homosexuality. Negative feelings or attitudes towards non-heterosexual behavior, identity, relationships and community can lead to homophobic behavior and is the root of the discrimination experienced by many lesbian, gay, bisexual and transgender (LGBTI) people. Since the increase in number of hate crimes during the last decade, there has been a sense of urgency to respond to the problem of hate violence in Turkey. The LGBTI Rights Association KAOS-GL indicated that the most of lesbian, gay, bisexual, travesty and transsexuals reported some form of victimization in their lifetimes based on their sexual orientation in Turkey. This study explored the relations between homophobia, right-wing authoritarianism, social dominance orientation and just world belief attitudes towards LGBTI individuals in a sample of 393 Turkish college students from Ege University in Izmir, Turkey. Data were collected with a questionnaire including the Homosexism Scale, the Right-Wing Authoritarianism Scale, Social Dominance Orientation Scale and Just World Belief Scale. Participants completed a questionnaire containing the attitude measures and other several questions related with the socio-demographic variables. Consistent with the previous finding males were more homophobic than females. Contrary to this finding the main effects of other demographic variables (age, income, place of birth, class) were not statistically significant except the department of participants. These findings imply that efforts to garner wide-ranging support for policies designed to change negative attitudes to LGBT people and to enhance the given awareness on homophobia. The results of the study were discussed in cross-cultural and social psychological perspective considering cultural and social values of Turkey and current political circumstances of the country.Keywords: homophobia, just world belief, right-wing authoritarianism, social dominance orientation, Turkey
Procedia PDF Downloads 36612547 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer
Authors: Timothee Gidenne, Xia Pinqi
Abstract:
In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression
Procedia PDF Downloads 12812546 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter
Authors: Jiri Cecrdle
Abstract:
This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator
Procedia PDF Downloads 96